
Parallel Gain-Bandwidth Characteristics Calculations for
Thin Avalanche Photodiodes on an SGI Origin 2000

Supercomputer

Yi Pan
Department of Computer Science

Georgia State University
Atlanta, GA 30303, USA
email: pan@cs.gsu.edu

Constantinos S. Ierotheou

Parallel Processing Research Group
University of Greenwich
London SE10 9LS, UK

Email: C.Ierotheou@gre.ac.uk

Majeed M. Hayat
Department of Electrical & Computer Engineering

The University of New Mexico
Albuquerque, NM 87131-1356, USA

Email: hayat@eece.unm.edu

ABSTRACT
An important factor for high speed optical communication is the availability of ultrafast
and low-noise photodetectors. Among the semiconductor photodetectors that are
commonly used in today's long-haul and metro-area fiber-optic systems, avalanche
photodiodes (APDs) are often preferred over p-i-n photodiodes due to their internal gain,
which significantly improves the receiver sensitivity and alleviates the need for optical
pre-amplification. Unfortunately, the random nature of the very process of carrier impact
ionization, which generates the gain, is inherently noisy and results in fluctuations not
only in the gain but also in the time response. Recently, a theory characterizing the
autocorrelation function (or the power spectral density) of APDs has been developed by
us which incorporates the dead-space effect. The research extends the time-domain
analysis of the dead-space multiplication model to compute the autocorrelation function
of the APD impulse response. However, the computation requires a large amount of
memory space and is very time consuming. In this research, we describe our experiences
in parallelizing the code using both MPI and OpenMP. Several array partitioning
schemes and scheduling policies are implemented and tested. Our results show that the
code is scalable up to 64 processors on an SGI Origin 2000 machine and has small
average errors.

1 Introduction

High-speed optical communication has been used widely in networks. One key factor for
high speed optical communication is the availability of ultrafast and low-noise
photodetectors [1,2,3,5]. Among the semiconductor photodetectors that are commonly
used in today's long-haul and metro-area fiber-optic systems, avalanche photodiodes
(APDs) are often preferred over p-i-n photodiodes due to their internal gain, which
significantly improves the receiver sensitivity and alleviates the need for optical pre-
amplification. Unfortunately, the random nature of the very process of carrier impact
ionization, which generates the gain, is inherently noisy and results in fluctuations not
only in the gain but also in the time response [1,2,3,5].

Just as accounting for dead space is essential in the correct prediction of the excess noise
factor in thin APDs, accurately predicting the bandwidth characteristics of thin APDs
necessitates having a time-response analysis of the avalanche multiplication that includes
the effect of dead space. This is particularly important if we were to push the
performance limits of thin APDs to meet the needs of next-generation 40-Gbps lightwave
systems [3].

Recently, a theory characterizing the autocorrelation function (or the power spectral
density) of APDs has been developed which incorporates the dead-space effect [3]. The
research extends the time-domain analysis of the dead-space multiplication model
reported in [5] to compute the autocorrelation function of the APD impulse response.
This extension involves developing six recurrence equations, which are derived
according to the same renewal-theory rationale used in [3]. To solve these equations, a
program called NP3 was developed. It deals with the calculation of the autocorrelation
function of the APD's impulse response. We get the power spectral density by simply
taking the Fourier transform of the autocorrelation function. The gain is not calculated in
this code, and was calculated using another serial code, since it is much simpler.
Numerical analysis indicates that the software gives accurate predictions. In general, the
agreement with the experimental bandwidth vs. gain plots is good in the range of high
gains (>15) with an approximate average error of 10%.

The computation of the autocorrelation functions in the code involves 12 huge three-
dimensional arrays and hence requires a large amount of memory space. For example, for
a suitable (200 × 500 × 500) array size, we estimate that we need at least 2.4 GBytes
memory (assume that 32 bits are used for each floating-point numbers). Personal
computers or workstations rarely exceed 2 GBytes of memory space. Thus, handling
suitable mesh size for accurate calculation is currently problematic with serial
programming due to limited memory space available on a single processor machine. Big
execution time on a sequential machine is also a problem for repeated calculations. For
example, for a problem with small array size such as 100 × 100 × 100, the computation
time using one processor on an SGI Origin 2000 takes about two and half hours. For
larger problem sizes, the time will increase rapidly and the problem soon becomes

impractical within a reasonable time on a single processor system. Thus, solving these
equations on a high performance computing (HPC) system is essential to solve both the
time and memory constraints existing on a single processor system.

In this research, we describe our experimental results of parallelizing the NP3 code using
both Message Passing Interface (MPI) [9] and OpenMP [4]. Our results show that the
code can be parallelized efficiently and the code is also scalable up to at least 64
processors on an SGI Origin 2000 machine [8]. The rest of the paper is organized as
follows.

The numerical formulation and basic structure of the corresponding sequential code will
be discussed in section 2. MPI parallelization of the code is presented in section 3.
Section 4 will cover the parallelization process using OpenMP. Experimental results,
observation, and comparisons will be given in section 5. We conclude our paper in
section 6.

2 Numerical Formulations and Structure of Sequential Code

To describe the computations involved in obtaining the power spectral density of APDs,
we first provide a brief description of the mathematical model involved, drawing freely
from the formulation developed in [3]. We begin by recalling key definitions involved in
the dead-space multiplication theory developed in [3,5]. We will then recall the basic
equations developed in [3], which characterise the first and second-order statistics of the
APD’s impulse response function. The parallel computing technique reported in this
paper is developed precisely for the purpose of solving these integral equations.

2.1. The dead-space multiplication model (DSMT)
Consider an electron-injected APD with a multiplication region of width w. Let Ze(t,x) be
the total number of electrons resulting from an initial parent electron born at location x, t
units of time after its birth. Similarly, let Zh(t,x) be the total number of holes resulting
from an initial parent electron, at location x, t units of time after its birth. The random
impulse response, which is a stochastic process, can be related to the functions Ze and Zh
through the relation I(t) = (q/w) [veZe(t,0) + vh Zh(t,0)], where ve and ve, are, respectively,
the electron and hole saturation velocities in the APD’s depletion region. Our goal is to
mathematically characterize the first and second-order moments of I(t), which is
accomplished when the statistics of Ze(t,0) and veZh(t,0) are determined.

As discussed in [3], it turns out that it is necessary to first characterize the statistics of
Ze(t,x) and Zh(t,x) for all x and then specialize the results to x=0. We also need to
introduce auxiliary quantities representing cases when a hole initiates the multiplication.
In particular, let Ye(t,x) be the total number of electrons resulting from a parent hole born

at location x, t units of time after its birth, and let Yh(t,x) be defined similarly to Ye(t,x) but
with the number of generated electrons replaced with the number of generated holes.
Using the above definitions, recurrence equations (integral equations) characterizing the
mean of Ze(t,x), Zh(t,x), Ye(t,x) and Yh(t,x) have been derived in [5]. For example, if we
define the mean quantities ze(t,x), zh(t,x), ye(t,x) and yh(t,x), then the functions ze(t,x) and
ye(t,x) are related by the following integral equation:

 (1.1) min(,)

2

(,) ([(-) /] -) [1- ()]

[2 (- () / ,) (- () / ,)] (-)
e

e e e e
x v t w

e e e e e
x

z t x u w x v t H v t

z t s x v s y t s x v s h s x ds
+

=

+ − + −∫
where He(x) is the indefinite integral of he(x), which is a known probability density
function whose form is given in [3], and u(x) is the unit step function. A similar integral
equation exits for ye(t,x) (also involving ye(t,x) and ze(t,x)). Hence, to determine the mean
quantities ze(t,x) and ye(t,x), we must solve two coupled integral equations of the type
shown in (1.1). Similarly, two more coupled integral equations are available and must be
solved to compute yh(t,x) and zh(t,x). This completes the description of computing the
first-order statistics of the impulse response.

We now state the equations that characterize the autocorrelation function of the stochastic
process I(t), defined by RI(t1 ,t2) = E[I(t1) I(t2)]. Following [3], the autocorrelation can be
expressed in terms of certain count auto and cross correlations as follows:

RI(t1 ,t2) = (q/w)2 [ve

2 CZe(t1 ,t2,0) + vh
2 CZh(t1 ,t2,0) + ve vh Cz(t1 ,t2,0) + ve vh Cz(t2 ,t1,0)],

where the count autocorrelations are defined as: CZe(t1 ,t2,x) = E[Ze(t1,x)Ze(t2,x)] and
CZh(t1,t2,x) = E[Zh(t1,x)Zh(t2,x)], and the count cross correlation is defined by Cz(t1,t2,x) =
E[Ze(t1,x)Zh(t2,x)]. In [3], it is shown that these auto and cross correlations satisfy certain
linear and pairwise-coupled (integral) equations. For example, CZe(t1,t2,x) and CYe(t1 ,t2,x)
satisfy the following equation:

 (1.2)

2

1

1

1 2 2 2

min(,)

2 1 2 1
min(,)

min(,)

2 1 2 1

1 1 2 1 2 1

(, ,) ([(-) /] -) [1- ()]

[2 (- ,) (- ,)] (-)

[2 (- ,) (- ,)] (-)

2 (- ,)[(- ,) (-

e

e

e

e

e e

Z e e e

x v t w

e e e
x v t w

x v t w

Z Y e
x

e e e

C t t x u w x v t H v t

z t s y t s h s x ds

C t s C t s h s x ds

z t s z t s y t

+

+

+

=

+ ∆ + ∆

+ ∆ + ∆

+ ∆ ∆ + ∆

∫

∫
1

1

min(,)

min(,)

1 1 2 1 2 1

,)] (-)

(- ,)[2 (- ,) (- ,)] (-)

e

e

x v t w

e
x

x v t w

e e e e
x

s h s x ds

y t s z t s y t s h s x ds

+

+

∆ ∆ + ∆

∫

∫

A similar equation exists for CYe(t1 ,t2,x), also in terms of CZe(t1 ,t2,x) and CYe(t1 ,t2,x),
resulting in a pair of coupled equations. The two coupled equations must be solved to

yield CZe(t1 ,t2,x) and CYe(t1 ,t2,x). Note that in the above equation, the first-order
quantities ye(t,x) and ze(t,x) are assumed known and must be solved using the equations
described earlier in this Section. Similarly, two coupled integral equations are also
available characterizing CZh(t1 ,t2,x) and CYh(t1 ,t2,x), and finally, two more are available
for CZ(t1 ,t2,x) and CY(t1 ,t2,x). In summary, to compute the autocorrelation function
RI(t1,t2), three pairs of pairwise coupled integral equations (characterizing the second-
order statistics) and two pairwise coupled integral equations (characterizing the first-
order statistics) must be solved.

The above mentioned equations are solved numerically using a simple iteration
technique. For example, for each pair of coupled integral equations (in two unknown
functions), the unknown functions (e.g., CZe(t1 ,t2,x) and CYe(t1 ,t2,x)) are initially assumed
to be identically zero. The initial values are then substituted in the integral equations to
yield the first-order iterates, and so on. The iteration process is terminated when the
relative change from one iteration to the other drops below a prescribed level (10-8 in the
calculations in [3]). The iteration procedure was encoded with FORTRAN.

2.2. Key subroutines used in the computations
Subroutine mean_ze numerically implements the integral equation given by (1.1). It
consists of three nested loops: two loops to exhaust the variables t and x, and a loop that
implements the integration. (The functions He and he are computed outside the subroutine
and are passed to the subroutine whenever it is called.) The t and x variables are
discretized using a mesh size nt by ns. Moreover, for each t and x, equation (1.1) is carried
out using the same mesh size used for x. The loops in the subroutine have the following
general structure:

do i=1,ns
 do j=1,nt
 “compute the first term on the right-hand side of (1.1)”
 do k=j,ns
 “compute and update the integrand in (1.1)”

Similarly-structured subroutines exist to implement the remaining three integral
equations for the first-order statistics ye(t,x), yh(t,x), and zh(t,x): these subroutines are
named mean_ye, mean_yh, mean_zh, respectively.

The subroutines used to compute the second-order statistics have an added loop to handle
the extra time variable t2. For example, subroutine auto_Cze numerically implements
the integral equation given by (1.2). In addition to the three loops handling t1, t2 and x,
there is a loop that carries out the integration. Again, the t1, t2 and x variables are
discretized using a mesh size nt by nt by ns, respectively. The loops in the subroutine have
the following general structure:

do i=1,ns

 do j=1,nt
 do k=1,nt
 “compute the first term on the right-hand side of (1.2)”
 do m=j,ns
 “compute and update the integrand in (1.2)”

Similarly structured subroutines exist to implement the remaining five integral equations
for the first-order statistics CYe(t1 ,t2,x), CZh(t1 ,t2,x) and CYh(t1 ,t2,x), CZ(t1 ,t2,x) and
CY(t1,t2,x),: these are named auto_Cye, auto_Czh, auto_Cyh, cross_Cz ,
and cross_Cy, respectively.

With the above subroutines defined, the sequential program structure is shown below.

 Program np3
 . . .
 do 10 kk=1, 300 (maximum allowed number of iterations)
 call mean_ye
 call mean_ze
 call mean_yh
 call mean_zh

 “check condition for terminating the iterations”

 . . .
10 continue
 . . .
 do 11 kk=1,300
 call cross_Cz
 call cross_Cy
 “check condition for terminating the iterations”

 . . .
11 continue
 . . .
 do 101 kk=1, 300
 call auto_Cye
 call auto_Czy
 call auto_Cyh
 call auto_Czh
 “check condition for terminating the iterations”
 . . .
101 continue
 . . .

As we can see from the serial code, the major work is done in the subroutines
mean_ye, mean_ze, mean_yh, mean_zh, cross_Cz, cross_Cy,
auto_Cye, auto_Czy, auto_Cyh and auto_Czh. Recall that all of these
subroutines involve nested loops (three or four). In particular, the correlation subroutines
are extremely memory and time intensive, since they involve three dimensional arrays
and four nested loops. Clearly, if we can parallelize these loops efficiently, then we can
reduce the computation time drastically. In the following sections, we will describe the
parallelization process in more detail.

3 MPI Parallelization
MPI is a library specification for a message-passing scheme, proposed as a standard by a
broadly based committee of vendors, implementers, and users [9]. The main advantages
of establishing a message-passing standard are portability and ease-of-use. In a
distributed memory communication environment in which the higher level routines
and/or abstractions are built upon lower level message passing routines, the benefits of
standardization are particularly apparent. Furthermore, the definition of a message
passing standard provides vendors with a clearly defined base set of routines that they can
implement efficiently, or in some cases provide hardware support for, thereby enhancing
scalability.
An important decision for an MPI implementation is to decide how to partition arrays in a
distributed memory environment. An inspection of the original NP3 serial code did not
appear to exhibit the characteristics of a code that would yield a favourable level of
performance when executed using a distributed memory parallel system. For example,
although there were a number of multi-dimensional arrays and nested loops, there
appeared to be a high communication cost that would be associated with data movement
due to the typical way in which the data was being accessed. As an illustration Figure 1
below shows a fragment of the NP3 code.

 Program np3
 . . .
 call mean_ye
 call mean_ze
 call mean_yh
 call mean_zh
 . . .

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy=0.
 do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1
 s=1+int(k-lh*(n-i))
 sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue
 c(k,n)=hh(k,n)+(sumy*dx)
 22 continue
21 continue

. . .

 subroutine mean_zh
 . . .
 do 31 k=1,nt+1
 do 32 n=1,ns
 sumz=0.
 do 33 i=n+1,min0(ns+1,n+int(((k-1.)/le)+1))

 s=1+int(k-le*(i-n))
 sumz=sumz+(2*a(s,i)+c(s,i))*(ge(i-n+1))
 33 continue
 d(k,n)=sumz*dx
 32 continue
 31 continue
 . . .

FIGURE 1. Typical data accesses for arrays in mean-based routines

From this case alone there are at least two different scenarios that can be explored.

1. The arrays a, b and c are not partitioned. This in turn causes the routines to be

executed in serial as each processor will compute information for all iterations of all
loops. Although there are very few changes required for some of the routines, this is
not ideal and will have a significant impact on the performance of the parallel version
of the code.

2. Arrays a, b and c could ideally be partitioned in index 2 (or using the n loop index).

However, this has two undesirable effects

i. arrays a and b in routine mean_yh are accessed in index 2 using the i index
(this is the innermost loop of the triple nest of loops). This conflicts with the
requirement to use the n loop to define the masked statements in the parallel
implementation. As a result the a and b arrays need to be broadcast to all
processors prior to their use in routine mean_yh.

ii. for similar reasons, array c will also require to be broadcast prior to its usage

in routine mean_zh. This conflict of data accesses is prevalent in much of the
NP3 code affecting many two and three dimensional arrays.

Therefore at a first glance, one would not expect to obtain a good quality parallelization.
Scenario (2) has the greater scope for improvement if one can re-structure the existing
code such that the data accessing of the arrays better reflects their alignment with their
defined distribution [10]. One possible solution is to attempt the separation of the
computation in routine mean_yh so that both the i index and the n index can be used to
exploit the distribution in index 2. Figure 2 shows how this can be achieved for routine
mean_yh at the expense of an increase in the program memory requirement.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1
 s=1+int(k-lh*(n-i))
 sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue

 22 continue
 21 continue

 do k=1,nt+1
 do n=2,ns+1
 c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 2. Loop split to exploit parallelism in serial code

The loop split transformation [10] is a standard modification to loop structures that can
only be applied if there is no violation in the order in which the computation is
performed. In this case it can only be applied if the scalar sumy is expanded to a two
dimensional array, thereby removing the data dependence for sumy between iterations of
the i loop. All distributed accumulations of sumy are made in the first triple nest of loops,
this is followed by a double nested loop that uses the array sumy to update the array c.
The parallelism exploited here is now both at the i loop in the first nest and also at the n
loop in the second nest. For correct parallel execution it is also necessary to complete the
reduction operation by accumulating all local contributions into a single global
summation. This would require communicating data of the order ns+1 instead of the
broadcast cost of (nt+1)*(ns+1) for each individual array.

The Computer Aided Parallelization toolkit [6] was used to attempt to perform the
parallelization using the strategy described above and to generate a Single Program
Multiple Data (SPMD) version of the NP3 code. There are a number of stages that the
user needs to go through with the tools to generate the parallel code. These are shown
schematically in Figure 3.

Serial FORTRAN code

Dependence Analysis

Data Partitioning

Execution Control

Communication

Parallel code generation

FIGURE 3. Overview of the message passing based parallelization stages
performed by the tools

Serial Fortran code: The serial FORTRAN version of the code is parsed and stored in an
internal form by the toolkit.
Dependence Analysis: the toolkit performs a detailed interprocedural, symbolic, value-
based, dependence analysis. The dependence analysis defines the core of the toolkit and
helps to identify the potential parallelism in the code. The user can then use the available
transformation tools to re-structure all the necessary routines by performing a loop split
as described in Figure 2. As part of this transformation process, the toolkit also check the
legality of any transformation to ensure that the transformed code is valid. In addition, the
user is given the opportunity to preview any transformed code and makes a decision to
either accept or reject the suggested code changes.

Data Partitioning: The data partitioning of all relevant arrays is then also carried out by
the toolkit. This process requires the user to suggest an initial starting point to the
partitioner, for example, the user can specify index 2 of array a in routine mean_yh. The
partitioner then uses this information and identifies all other arrays that can be defined to
have similar data distributions throughout the entire code. The strategy uses a 1D domain
decomposition. Due to the data dependency in the other loops a 2D decomposition is not
feasible in this case.

Execution Control Masking: The re-structuring of the serial code to execute in parallel
using an SPMD paradigm begins with attempting to identify and place execution control
masks for all relevant statements. These masks define which processor(s) at run-time will
execute any given statement. Ideally, one would like a uniform set of masks that are
applied to as many statements as possible in the code. The use of masks that reflect the
processor “ownership” or assignment area of the arrays is also desirable. So for example,
if each processor at run-time has defined low and high assignment range limits then it
would be more efficient to generate masks for routine mean_yh as shown in Figure 4.
These masks exploit the parallelism at both the i loop and also the n loop by executing
the statements (in italics) in parallel.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max(max1(1.,n-(((k-1.)/lh)+1)),low),min(n-1,high)
 s=1+int(k-lh*(n-i))
 sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue
 22 continue
 21 continue

 do k=1,nt+1
 do n=max(2,low),min(ns+1,high)
 c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 4. Execution control masks to define parallel execution

Communication Generation: In order to ensure parallel execution similar to that for the
serial code, the final step in the parallelization process is to identify and place
communication calls into the modified code. The aim is to try and identify a minimum set
of communication requirements to reflect the changes already made to the code. There
are many requests for data to be communicated based on the distribution of the data
across the processors. The toolkit identifies these requests and then attempts to migrate
them higher up in the call graph. Further movement of the communication requests is
prevented when they encounter a barrier and this is usually an assignment of the variable
requested for communication. At this point an attempt is made to merge any similar
requests for the same variable, finally culminating in a communication call to a message
passing library routine. In this code most of the communication calls were based on
reduction operations that were generated as a result of the loop split shown in Figure 2.
The final parallel version of routine mean_yh is shown in Figure 5.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max(max1(1.,n-(((k-1.)/lh)+1)),low),min(n-1,high)
 s=1+int(k-lh*(n-i))
 sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue
 22 continue
 21 continue
 call cap_mcommutative(sumy(1,1),(nt+1)*(ns+1),2,cap_mradd)
 do k=1,nt+1
 do n=max(2,low),min(ns+1,high)
 c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 5. High level communication call representing an array global
summation

Parallel code generation: The final code generation to a file (or files) can be defined in
one of two ways depending on the user’s requirements. Currently, the two options are:

1. To generate parallel code that still retains the original array declarations. Therefore,

every processor will contain a full copy of the all the arrays in the code.

2. To generate parallel code that re-defines the array declarations to be a function of the

minimum number of processors used during program execution (generally this must
be greater than 1). This will take into account whenever possible, the reduced
memory requirement for each processor as a result of the distribution of the arrays.
This approach generally has a better scalability property than (1) and will allow larger
problem sizes to be solved. This was the selected option for the experiments
conducted below.

4 OpenMP Parallelization

OpenMP's programming model uses fork-join parallelism where master thread spawns a
team of threads as needed [4]. Parallelism can be added incrementally i.e., the sequential
program evolves into a parallel program. Hence, we do not have to parallelize the whole
program at once. A user finds the most time consuming loops in the code, and for each
loop, the iterations are divided up amongst the available threads. In this section we will
give some simple examples to demonstrate the major features of OpenMP.
When parallelizing a loop in OpenMP, we may also use the schedule clause to perform
different scheduling policies to effect how loop iterations are mapped onto threads. There
are four scheduling policies available in the OpenMP specification. The static scheduling
method deals out blocks of iterations of size “chunk” to each thread. In the dynamic
scheduling method, each thread grabs “chunk” iterations off a queue until all iterations
have been handled. In the guided scheduling policy, threads dynamically grab blocks of
iterations (the size of the block starts large and shrinks down to size “chunk” as the
calculation proceeds). This helps to achieve a good load balance amongst the processors.
Finally, in the runtime scheduling method, schedule and chunk size can either be set
using the OMP_SCHEDULE environment variable or can be defined in the code for each
loop. In our study we condsidered both static and dynamic scheduling approaches with
varying chunk sizes.

The toolkit can also be used to generate OpenMP directive code for shared memory
machines [7] and was used here to parallelize the NP3 code. As with the message
passing parallelization, there are a number of stages that the user needs to go through
with the tools to generate the parallel code, but these are fewer (and somewhat easier) to
perform. These are shown schematically in Figure 6.

The serial FORTRAN code and Dependence analysis stages are the same as those
described above for the message passing based process.

Directives Generation:
This involves the structured examination of the loops within the code. The classification
of loop types makes it easier to identify critical loops and also loops that can be
potentially made parallel. The GUI directives browser allows the user to see at a glance
and to inspect the different types of serial and parallel loops that have been identified. In
conjunction with the other tools browsers such as the dependence graph, variable
definition and transformation browsers, the user is able to iteratively refine the
identification and placement of OpenMP directives. The generation of the OpenMP code
is then carried out automatically. These steps are illustrated in Figure 6.

Serial FORTRAN code

Dependence Analysis

Directives generation

Parallel code generation

FIGURE 6. Overview of the directive based parallelization stages
performed by the tools

The code segment shown in Figure 7 displays the corresponding subroutine mean_yh
after inserting OpenMP directives for loop distribution. Clearly, in the code we would
like to parallelize the k loop (the outmost loop) so that each thread has enough work to
do, in doing so make the loop scheduling overhead less significant. Here, we do not use
loop split since it may coarsen the granularity of the computation and result in poorer
performance.

 subroutine mean_yh
 . . .
 !$OMP DO
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy=0.
 do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1
 s=1+int(k-lh*(n-i))
 sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue
 c(k,n)=hh(k,n)+(sumy*dx)
22 continue
21 continue

 !$OMP END DO

FIGURE 7. OpenMP Code Segment with Loop Distribution Directives.

Figure 8 shows that the placement of directives, in particular the setting up of a
PARALLEL region can be very significant to the overall parallel performance. This can
lead to a smaller overhead in the setting up of regions if a single one can be used instead
of a number of smaller regions each with its own start up and synchronization cost. In the
example shown, a single region is used to cover the exploitation of parallelism in all
mean_ routines by defining the region outside the calls rather than four individual ones –
one inside each routine.

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(jj,j)

!$OMP& SHARED(delta)
REDUCTION(MAX:error_zh,error_yh,error_ze,error_ye)
 call mean_ye
 call mean_ze
 call mean_yh
 call mean_zh
 . . .
!$OMP END PARALLEL

FIGURE 8. OpenMP Code Segment with careful placement of Directives.

5 Experimental Results

Two test sizes for a given test case were tried. Case 1 was defined by a 110x110x110 size
problem and case 2 was defined by a 200x200x200 size problem. Results were run on an
Origin 2000 populated with 64 300MHz processors and a total of 64Gb of memory. Each
processor has a primary data cache of 32Kb, a primary instruction cache of 32Kb and a
secondary unified data/instruction cache of 8Mb.

Table 1 shows the execution times for problem size 110x110x110 with varying chunk
size using a dynamic scheduling policy. The results shows that the default chunk size (of
one iteration per thread) for the scheduling approach yields the most efficient solution.
The reason is probably that since we parallelize the outer loop using OpenMP, each
chunk has a large amount of work to do. Increasing the chunk size will make the load
more unbalanced across the threads. The corresponding speedups are shown in Figure 9.

Threads Default Chunk Size Chunk Size = 2 Chunk Size =3

1 9698 9698 9698
2 5160 5102 5147
4 2687 2717 2768
8 1443 1478 1553
16 672 845 935
32 460 475 630
64 274 287 395

Table 1. Execution Times Using Dynamic Scheduling with Problem
Size 110×110×110

Table 2 shows the execution times for problem size 110x110x110 with varying chunk
sizes using a static scheduling policy. The results shows again that the default chunk size
for the scheduling approach yields the most efficient solution when the number of threads
is large. When the number of threads used is small (2-8), then using a small chunk size
outperforms default chunk size. However, as the number of thread increases the default
chunk size yields a better performance. The corresponding speedups are shown in Figure
10.

Threads Default Size Size = 1 Size = 2 Size =3
1 9732 9732 9732 9732
2 5219 5041 5102 5147
4 2781 2753 2717 2768
8 1511 1478 1478 1553
16 796 796 845 935
32 481 490 499 630
64 291 298 310 395

Table 2. Execution Times Using Static Scheduling with Problem Size
110x110x110

Table 3 summarizes the execution times of the OpenMP code using static or dynamic
scheduling policies and the MPI code. There is little to choose between the ‘best’
dynamic and static scheduling approaches – the dynamic approach was slightly more
efficient (speedup = 35 when the number of processors used is 64). Figure 11 shows the
corresponding speedups of the best performing OpenMP code using dynamic scheduling
and the MPI code.

Results for the message passing parallelization for this test case shows an interesting
variation as the number of processors are increased. Between 2-16 processors the better
cache usage and relatively small communications give exceptional performance over the
serial run. From about 20 processors onwards the communication cost becomes more
significant and begins to outweigh the computation being carried out. The majority of
communications are reduction operations. The cost of a reduction operation
(implemented as a hypercube) is significant as the number of processors is increased.
This cost starts to outweigh the volume of computation and the cache benefits (better
with a small number of processors) being performed in the MPI parallelization.

Also notice that the MPI code outperforms the OpenMP code when the number of
processors used is between 4 and 16. In fact, the MPI code displays superlinear speedups
when the number of processors used is between 4 and 16. This is probably caused by
much reduced cache misses in the code due to much less memory requirement on each
processor when we use multiple number of processors instead of a single processor. On
the other hand, the OpenMP code performs better than the MPI code when the number of
processors used is really large (e.g., 64). Even when the number of processors is large,
each processor still has enough work to do. On the other hand, the MPI code’s
communication time dominates the total time since each processor has less work to do as
the number of processors are increased. Also the need for dynamic load balancing seems
to hit the MPI implementation harder than the OpenMP. OpenMP has more flexibility in
its use with dynamic scheduling. Due to all the above reasons, the MPI code is less
efficient than the OpenMP code when using larger numbers of processors.

Threads Default Dynamic Default Static MPI

1 9698 9732 9811
2 5160 5219 6368
4 2687 2781 1626
8 1443 1511 678
16 672 796 522
32 460 481 499

64 274 291 590
Table 3. Comparisons of OpenMP Executions and MPI Executions with
Problem Size 110x110x110

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

of threads

Sp
ee

d
up

linear
dynamic chunk=default
dynamic chunk=2
dynamic chunk=3

Figure 9. Speedups Using Dynamic Scheduling with Problem Size 110x110x110

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

of threads

Sp
ee

d
up

linear
static chunk=default
static chunk=1
static chunk=2
static chunk=3

Figure 10. Speedups Using Static Scheduling with Problem Size 110x110x110

Table 4 summarizes the execution times of the OpenMP code using the dynamic
scheduling policy and the MPI code with problem size 200x200x200. The speedups of
the corresponding runs are also shown in Figure 12.

Threads Default Dynamic MPI
1 114541 114911
2 59280 79681
4 30765 38966
8 16104 8368
16 7701 3982
32 4541 3290
64 2822 3305

Table 4. Comparisons of OpenMP Executions and MPI Executions with
Problem Size 200x200x200

For this case, the conclusions are very similar to that of the previous case. For the
message passing parallelization, the trend is shifted to a higher number of processors and
the performance of the code on 64 processors is now much closer to the OpenMP
implementation. The speedup is improved from 17 (case 1) to 35 (case 2). Performance
from the shared memory parallelization indicates a speedup of 41 when the number of
processors used is 64. Clearly, the speedup is better in this case (case 2) than in the
previous case (case 1) where the speedup is only 35 when using 64 processors. We expect
that as the problem size increases, the scalability of both codes will become even better
due to the change of ratio in computation workload on each processor vs. the
communication overheads.

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

of threads(processors)

Sp
ee

d
up

linear
dynamic chunk=default
message passing

Figure 11. Speedups for Problem Size 110x110x110.

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

of threads(processors)

Sp
ee

d
up

linear
dynamic chunk=default
static chunk=default
message passing

Figure 12. Speedups for Problem Size 200x200x200.

6 Conclusions

We have parallelized a sequential Fortran code, which is the major program for
calculating gain-bandwidth characteristics for thin avalanche photodiodes, using both
MPI and OpenMP. The code is parallelized with the aid of a toolkit which is capable of
accurately analysing dependencies in serial codes and generating portable parallel source
codes in a semi-automatic and interactive way. Using this approach, many designs can be
implemented quickly, and decisions can be made efficiently. Despite the apparent lack of
parallelism present when performing a distributed memory parallelisation, running the
executable on an SGI Origin 2000 supercomputer indicates that both OpenMp and MPI
codes are scalable up to 64 processors on the SGI machine - the OpenMP code is more
efficient than the MPI code as the number of processors is increased. We predict that the
OpenMP code will be more scalable and efficient when a bigger array size such as
500×500×500 is used. Our study further shows that it is possible to parallelize many
engineering programs efficiently and economically with much reduced porting costs
when using such a toolkit.

7 Acknowledgement

This research was supported in part by the National Science Foundation under Grant
ECS-0196569. The authors have had many useful discussions with Prof. Joe C. Campbell
of the University of Texas at Austin.

8 References

1. J. C. Campbell, W. S. Holden, G. J. Qua, and A. G. Dentai, ``Frequency response
InP/InGaAs APD's with separate absorption grading and multiplication regions,''
IEEE J. Quantum Electronics, vol. QE-21, pp. 1743--1749, 1985.

2. J. C. Campbell, B. C. Johnson, G. J. Qua, and W. T. Tsang, ``Frequency response

InP/InGaAsP/InGaAs APD's,'' J. Lightwave Technology, vol. 7, pp. 778--784,
1989.

3. M.M. Hayat, O.-H. Kwon, Yi Pan, P. Sotirelis, J.C. Campbell, B.E.A. Saleh, and

M.C. Teich, ``Gain-Bandwidth Characteristics of Thin Avalanche Photodiodes,’’
IEEE Trans. on Electron Devices, vol. 49, no. 5, pp. 770-781, May 2002.

4. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon,

Parallel Programming in OpenMP, Morgan Kaufmann Publishers, 2000.

5. M. M. Hayat, and B. E. A. Saleh, ``Statistical properties of the impulse response
function of double-carrier multiplication avalanche photodiodes including the
effect of dead space,'' Journal of Lightwave Technology, vol.10, pp.1415--1425,
1992.

6. C.S. Ierotheou, S.P. Johnson, M. Cross, and P.F. Leggett, “Computer aided

parallelization tools (CAPTools) - Conceptual Overview and Performance on the
Parallelization of Structured Mesh Codes”, Parallel Computing, vol. 22, pp.163-
195, 1996.

7. H. Jin, M. Frumkin, and J. Yan, “Automatic Generation of OpenMP Directives

and Its Application to Computational Fluid Dynamics Codes,” International
Symposium on High Performance Computing, Tokyo, Japan, October 16-18,
2000, in Lecture Notes in Computer Science, Vol. 1940, pp. 440-456.

8. J. Laudon and D. Lenoski, ``The SGI Origin: A ccNUMA Highly Scalable

Server,'' The 1997 International Symposium on Computer Architectures, Denver,
CO, pp. 241--251.

9. M. Snir, et al. MPI: the complete reference. MIT Press, Cambridge, Mass., 1996.

10. M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley

Publishing Company, 1996.

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

	Yi Pan
	Department of Computer Science
	The University of New Mexico
	Albuquerque, NM 87131-1356, USA
	1 Introduction
	2 Numerical Formulations and Structure of Sequential Code
	3 MPI Parallelization
	4 OpenMP Parallelization
	5 Experimental Results
	6 Conclusions
	7 Acknowledgement
	8 References

