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ABSTRACT 
An important factor for high speed optical communication is the availability of ultrafast 
and low-noise photodetectors. Among the semiconductor photodetectors that are 
commonly used in today's long-haul and metro-area fiber-optic systems, avalanche 
photodiodes (APDs) are often preferred over p-i-n photodiodes due to their internal gain, 
which significantly improves the receiver sensitivity and alleviates the need for optical 
pre-amplification. Unfortunately, the random nature of the very process of carrier impact 
ionization, which generates the gain, is inherently noisy and results in fluctuations not 
only in the gain but also in the time response. Recently, a theory characterizing the 
autocorrelation function (or the power spectral density) of APDs has been developed by 
us which incorporates the dead-space effect. The research extends the time-domain 
analysis of the dead-space multiplication model to compute the autocorrelation function 
of the APD impulse response. However, the computation requires a large amount of 
memory space and is very time consuming. In this research, we describe our experiences 
in parallelizing the code using both MPI and OpenMP. Several array partitioning 
schemes and scheduling policies are implemented and tested. Our results show that the 
code is scalable up to 64 processors on an SGI Origin 2000 machine and has small 
average errors. 



 

1 Introduction 
 
High-speed optical communication has been used widely in networks. One key factor for 
high speed optical communication is the availability of ultrafast and low-noise 
photodetectors [1,2,3,5]. Among the semiconductor photodetectors that are commonly 
used in today's long-haul and metro-area fiber-optic systems, avalanche photodiodes 
(APDs) are often preferred over p-i-n photodiodes due to their internal gain, which 
significantly improves the receiver sensitivity and alleviates the need for optical pre-
amplification. Unfortunately, the random nature of the very process of carrier impact 
ionization, which generates the gain, is inherently noisy and results in fluctuations not 
only in the gain but also in the time response [1,2,3,5]. 
  
Just as accounting for dead space is essential in the correct prediction of the excess noise 
factor in thin APDs, accurately predicting the bandwidth characteristics of thin APDs 
necessitates having a time-response analysis of the avalanche multiplication that includes 
the effect of dead space. This is particularly important if we were to push the 
performance limits of thin APDs to meet the needs of next-generation 40-Gbps lightwave 
systems [3]. 
 
Recently, a theory characterizing the autocorrelation function (or the power spectral 
density) of APDs has been developed which incorporates the dead-space effect [3]. The 
research extends the time-domain analysis of the dead-space multiplication model 
reported in [5] to compute the autocorrelation function of the APD impulse response.  
This extension involves developing six recurrence equations, which are derived 
according to the same renewal-theory rationale used in [3]. To solve these equations, a 
program called NP3 was developed. It deals with the calculation of the autocorrelation 
function of  the APD's impulse response. We get the power spectral density by simply 
taking the Fourier transform of the autocorrelation function. The gain is not calculated in 
this code, and was calculated using another serial code, since it is much simpler. 
Numerical analysis indicates that the software gives accurate predictions. In general, the 
agreement with the experimental bandwidth vs. gain plots is good in the range of high 
gains (>15) with an approximate average error of 10%.  
 
The computation of the autocorrelation functions in the code involves 12 huge three-
dimensional arrays and hence requires a large amount of memory space. For example, for 
a suitable (200 × 500 × 500) array size, we estimate that we need at least 2.4 GBytes 
memory (assume that 32 bits are used for each floating-point numbers). Personal 
computers or workstations rarely exceed 2 GBytes of memory space. Thus, handling 
suitable mesh size for accurate calculation is currently problematic with serial 
programming due to limited memory space available on a single processor machine. Big 
execution time on a sequential machine is also a problem for repeated calculations. For 
example, for a problem with small array size such as 100 × 100 × 100, the computation 
time using one processor on an SGI Origin 2000 takes about two and half hours. For 
larger problem sizes, the time will increase rapidly and the problem soon becomes 



impractical within a reasonable time on a single processor system. Thus, solving these 
equations on a high performance computing (HPC) system is essential to solve both the 
time and memory constraints existing on a single processor system.  
  
In this research, we describe our experimental results of parallelizing the NP3 code using 
both Message Passing Interface (MPI) [9] and OpenMP [4]. Our results show that the 
code can be parallelized efficiently and the code is also scalable up to at least 64 
processors on an SGI Origin 2000 machine [8]. The rest of the paper is organized as 
follows. 
 
The numerical formulation and basic structure of the corresponding sequential code will 
be discussed in section 2. MPI parallelization of the code is presented in section 3. 
Section 4 will cover the parallelization process using OpenMP. Experimental results, 
observation, and comparisons will be given in section 5. We conclude our paper in 
section 6. 
 
 
 
 
 

2 Numerical Formulations and Structure of Sequential Code 
 
To describe the computations involved in obtaining the power spectral density of APDs, 
we first provide a brief description of the mathematical model involved, drawing freely 
from the formulation developed in [3].  We begin by recalling key definitions involved in 
the dead-space multiplication theory developed in [3,5]. We will then recall the basic 
equations developed in [3], which characterise the first and second-order statistics of the 
APD’s impulse response function. The parallel computing technique reported in this 
paper is developed precisely for the purpose of solving these integral equations. 
 
2.1.  The dead-space multiplication model (DSMT) 
Consider an electron-injected APD with a multiplication region of width w. Let Ze(t,x)  be 
the total number of electrons resulting from an initial parent electron born at location x, t 
units of time after its birth. Similarly, let Zh(t,x) be the total number of holes resulting 
from an initial parent electron, at location x, t units of time after its birth. The random 
impulse response, which is a stochastic process, can be related to the functions Ze and Zh 
through the relation I(t) = (q/w) [veZe(t,0) + vh Zh(t,0)], where ve and ve, are, respectively, 
the electron and hole saturation velocities in the APD’s depletion region. Our goal is to 
mathematically characterize the first and second-order moments of I(t), which is 
accomplished when the statistics of  Ze(t,0) and veZh(t,0) are determined. 
 
As discussed in [3], it turns out that it is necessary to first characterize the statistics of 
Ze(t,x) and Zh(t,x) for all x and then specialize the results to x=0. We also need to 
introduce auxiliary quantities representing cases when a hole initiates the multiplication. 
In particular, let Ye(t,x)  be the total number of electrons resulting from a parent hole born 



at location x, t units of time after its birth, and let Yh(t,x) be defined similarly to Ye(t,x) but 
with the number of generated electrons replaced with the number of generated holes. 
Using the above definitions, recurrence equations (integral equations) characterizing the 
mean of Ze(t,x), Zh(t,x), Ye(t,x) and Yh(t,x) have been derived in [5].  For example, if we 
define the mean quantities ze(t,x), zh(t,x), ye(t,x) and yh(t,x), then the functions ze(t,x) and  
ye(t,x) are related by the following integral equation: 
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where He(x) is the indefinite integral of he(x), which is a known probability density 
function whose form is given in [3], and u(x) is the unit step function. A similar integral 
equation exits for ye(t,x) (also involving ye(t,x) and ze(t,x)). Hence, to determine the mean 
quantities ze(t,x) and ye(t,x), we must solve two coupled integral equations of the type 
shown in (1.1). Similarly, two more coupled integral equations are available and must be 
solved to compute yh(t,x) and zh(t,x). This completes the description of computing the 
first-order statistics of the impulse response. 
 
We now state the equations that characterize the autocorrelation function of the stochastic 
process I(t), defined by RI(t1 ,t2) = E[I(t1) I(t2)]. Following [3], the autocorrelation can be 
expressed in terms of certain count auto and cross correlations as follows:  
 
RI(t1 ,t2) = (q/w)2 [ve

2 CZe(t1 ,t2,0) + vh
2 CZh(t1 ,t2,0) + ve vh Cz(t1 ,t2,0) + ve vh Cz(t2 ,t1,0)], 

 
where the count autocorrelations are defined as: CZe(t1 ,t2,x) = E[Ze(t1,x)Ze(t2,x)] and 
CZh(t1,t2,x) = E[Zh(t1,x)Zh(t2,x)], and the count cross correlation is defined by Cz(t1,t2,x)  = 
E[Ze(t1,x)Zh(t2,x)]. In [3], it is shown that these auto and cross correlations satisfy certain 
linear and pairwise-coupled (integral) equations. For example, CZe(t1,t2,x) and CYe(t1 ,t2,x) 
satisfy the following equation: 
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A similar equation exists for CYe(t1 ,t2,x), also in terms of CZe(t1 ,t2,x) and CYe(t1 ,t2,x), 
resulting in a pair of coupled equations. The two coupled equations must be solved to 



yield CZe(t1 ,t2,x) and CYe(t1 ,t2,x). Note that in the above equation, the first-order 
quantities ye(t,x) and ze(t,x) are assumed known and must be solved using the equations 
described earlier in this Section. Similarly, two coupled integral equations are also 
available characterizing CZh(t1 ,t2,x) and CYh(t1 ,t2,x), and finally, two more are available 
for CZ(t1 ,t2,x) and CY(t1 ,t2,x). In summary, to compute the autocorrelation function 
RI(t1,t2), three pairs of pairwise coupled integral equations (characterizing the second-
order statistics) and two pairwise coupled integral equations (characterizing the first-
order statistics) must be solved.  
 
The above mentioned equations are solved numerically using a simple iteration 
technique. For example, for each pair of coupled integral equations (in two unknown 
functions), the unknown functions (e.g., CZe(t1 ,t2,x) and CYe(t1 ,t2,x)) are initially assumed 
to be identically zero. The initial values are then substituted in the integral equations to 
yield the first-order iterates, and so on. The iteration process is terminated when the 
relative change from one iteration to the other drops below a prescribed level (10-8 in the 
calculations in [3]). The iteration procedure was encoded with FORTRAN. 
 
 
 
 
2.2. Key subroutines used in the computations 
Subroutine mean_ze numerically implements the integral equation given by (1.1). It 
consists of three nested loops: two loops to exhaust the variables t and x, and a loop that 
implements the integration. (The functions He and he are computed outside the subroutine 
and are passed to the subroutine whenever it is called.) The t and x variables are 
discretized using a mesh size nt by ns. Moreover, for each t and x, equation (1.1) is carried 
out using the same mesh size used for x. The loops in the subroutine have the following 
general structure: 
 

do i=1,ns 
  do j=1,nt 
    “compute the first term on the right-hand side of (1.1)” 
    do k=j,ns 
      “compute and update the integrand in (1.1)” 

 
Similarly-structured subroutines exist to implement the remaining three integral 
equations for the first-order statistics ye(t,x), yh(t,x), and zh(t,x): these subroutines are 
named mean_ye, mean_yh, mean_zh, respectively. 
 
The subroutines used to compute the second-order statistics have an added loop to handle 
the extra time variable t2. For example, subroutine auto_Cze numerically implements 
the integral equation given by (1.2). In addition to the three loops handling t1, t2 and x, 
there is a loop that carries out the integration. Again, the t1, t2 and x variables are 
discretized using a mesh size nt by nt by ns, respectively. The loops in the subroutine have 
the following general structure: 
 

do i=1,ns 



  do j=1,nt 
    do k=1,nt 
      “compute the first term on the right-hand side of (1.2)” 
      do m=j,ns 
        “compute and update the integrand in (1.2)” 

 
Similarly structured subroutines exist to implement the remaining five integral equations 
for the first-order statistics CYe(t1 ,t2,x), CZh(t1 ,t2,x) and CYh(t1 ,t2,x), CZ(t1 ,t2,x) and 
CY(t1,t2,x),: these are named auto_Cye, auto_Czh, auto_Cyh, cross_Cz , 
and cross_Cy, respectively. 
 
With the above subroutines defined, the sequential program structure is shown below.  
 
        Program np3 
        . . . 
   do 10 kk=1, 300 (maximum allowed number of iterations) 
          call mean_ye 
          call mean_ze 
          call mean_yh 
          call mean_zh 

    “check condition for terminating the iterations” 
 
          . . . 
10      continue 
        . . . 
        do 11 kk=1,300 
          call cross_Cz 
          call cross_Cy 
           “check condition for terminating the iterations” 
 
          . . . 
11      continue 
        . . . 
        do 101 kk=1, 300 
                    call auto_Cye 
          call auto_Czy 
          call auto_Cyh 
          call auto_Czh 
     “check condition for terminating the iterations” 
          . . . 
101     continue 
        . . . 
 
As we can see from the serial code, the major work is done in the subroutines 
mean_ye, mean_ze, mean_yh, mean_zh, cross_Cz, cross_Cy, 
auto_Cye, auto_Czy, auto_Cyh and auto_Czh. Recall that all of these 
subroutines involve nested loops (three or four). In particular, the correlation subroutines 
are extremely memory and time intensive, since they involve three dimensional arrays 
and four nested loops. Clearly, if we can parallelize these loops efficiently, then we can 
reduce the computation time drastically. In the following sections, we will describe the 
parallelization process in more detail. 



 

3 MPI Parallelization 
MPI is a library specification for a message-passing scheme, proposed as a standard by a 
broadly based committee of vendors, implementers, and users [9]. The main advantages 
of establishing a message-passing standard are portability and ease-of-use. In a 
distributed memory communication environment in which the higher level routines 
and/or abstractions are built upon lower level message passing routines, the benefits of 
standardization are particularly apparent. Furthermore, the definition of a message 
passing standard provides vendors with a clearly defined base set of routines that they can 
implement efficiently, or in some cases provide hardware support for, thereby enhancing 
scalability.  
An important decision for an MPI implementation is to decide how to partition arrays in a 
distributed memory environment. An inspection of the original NP3 serial code did not 
appear to exhibit the characteristics of a code that would yield a favourable level of 
performance when executed using a distributed memory parallel system. For example, 
although there were a number of multi-dimensional arrays and nested loops, there 
appeared to be a high communication cost that would be associated with data movement 
due to the typical way in which the data was being accessed. As an illustration Figure 1 
below shows a fragment of the NP3 code. 
 
        Program np3 
        . . . 
        call mean_ye 
        call mean_ze 
        call mean_yh 
        call mean_zh 
        . . . 
 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy=0. 
            do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1 
              s=1+int(k-lh*(n-i)) 
              sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
  23        continue 
            c(k,n)=hh(k,n)+(sumy*dx) 
  22      continue 
21 continue 

. . . 
 
        subroutine mean_zh 
        . . . 
        do 31 k=1,nt+1 
          do 32 n=1,ns 
            sumz=0. 
            do 33 i=n+1,min0(ns+1,n+int(((k-1.)/le)+1)) 



              s=1+int(k-le*(i-n)) 
              sumz=sumz+(2*a(s,i)+c(s,i))*(ge(i-n+1)) 
  33        continue 
            d(k,n)=sumz*dx 
  32      continue 
  31    continue 
        . . . 
 
FIGURE 1. Typical data accesses for arrays in mean-based routines 
 
From this case alone there are at least two different scenarios that can be explored.  
 
1. The arrays a, b and c are not partitioned. This in turn causes the routines to be 

executed in serial as each processor will compute information for all iterations of all 
loops. Although there are very few changes required for some of the routines, this is 
not ideal and will have a significant impact on the performance of the parallel version 
of the code. 

 
2. Arrays a, b and c could ideally be partitioned in index 2 (or using the n loop index). 

However, this has two undesirable effects  
 

i. arrays a and b in routine mean_yh are accessed in index 2 using the i index 
(this is the innermost loop of the triple nest of loops). This conflicts with the 
requirement to use the n loop to define the masked statements in the parallel 
implementation. As a result the a and b arrays need to be broadcast to all 
processors prior to their use in routine mean_yh.  

 
ii. for similar reasons, array c will also require to be broadcast prior to its usage 

in routine mean_zh. This conflict of data accesses is prevalent in much of the 
NP3 code affecting many two and three dimensional arrays. 

 
 
Therefore at a first glance, one would not expect to obtain a good quality parallelization. 
Scenario (2) has the greater scope for improvement if one can re-structure the existing 
code such that the data accessing of the arrays better reflects their alignment with their 
defined distribution [10]. One possible solution is to attempt the separation of the 
computation in routine mean_yh so that both the i index and the n index can be used to 
exploit the distribution in index 2. Figure 2 shows how this can be achieved for routine 
mean_yh at the expense of an increase in the program memory requirement. 
 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1 
              s=1+int(k-lh*(n-i)) 
              sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
   23       continue 



   22     continue 
   21   continue 
 
        do k=1,nt+1 
          do n=2,ns+1 
            c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 

 
FIGURE 2. Loop split to exploit parallelism in serial code 

 
The loop split transformation [10] is a standard modification to loop structures that can 
only be applied if there is no violation in the order in which the computation is 
performed. In this case it can only be applied if the scalar sumy is expanded to a two 
dimensional array, thereby removing the data dependence for sumy between iterations of 
the i loop. All distributed accumulations of sumy are made in the first triple nest of loops, 
this is  followed by a double nested loop that uses the array sumy to update the array c.  
The parallelism exploited here is now both at the i loop in the first nest and also at the n 
loop in the second nest. For correct parallel execution it is also necessary to complete the 
reduction operation by accumulating all local contributions into a single global 
summation. This would require communicating data of the order ns+1 instead of the 
broadcast cost of (nt+1)*(ns+1) for each individual array. 
 
The Computer Aided Parallelization toolkit [6] was used to attempt to perform the 
parallelization using the strategy described above and to generate a Single Program 
Multiple Data (SPMD) version of the NP3 code. There are a number of stages that the 
user needs to go through with the tools to generate the parallel code. These are shown 
schematically in Figure 3. 
 

Serial FORTRAN code 

Dependence Analysis 

Data Partitioning 

Execution Control

Communication 

Parallel code generation
 
FIGURE 3. Overview of the message passing based parallelization stages 
performed by the tools 
 



Serial Fortran code: The serial FORTRAN version of the code is parsed and stored in an 
internal form by the toolkit.  
Dependence Analysis: the toolkit performs a detailed interprocedural, symbolic, value-
based, dependence analysis. The dependence analysis defines the core of the toolkit and 
helps to identify the potential parallelism in the code. The user can then use the available 
transformation tools to re-structure all the necessary routines by performing a loop split 
as described in Figure 2. As part of this transformation process, the toolkit also check the 
legality of any transformation to ensure that the transformed code is valid. In addition, the 
user is given the opportunity to preview any transformed code and makes a decision to 
either accept or reject the suggested code changes. 
 
Data Partitioning: The data partitioning of all relevant arrays is then also carried out by 
the toolkit. This process requires the user to suggest an initial starting point to the 
partitioner, for example, the user can specify index 2 of array a in routine mean_yh. The 
partitioner then uses this information and identifies all other arrays that can be defined to 
have similar data distributions throughout the entire code. The strategy uses a 1D domain 
decomposition. Due to the data dependency in the other loops a 2D decomposition is not 
feasible in this case. 
 
Execution Control Masking: The re-structuring of the serial code to execute in parallel 
using an SPMD paradigm begins with attempting to identify and place execution control 
masks for all relevant statements. These masks define which processor(s) at run-time will 
execute any given statement. Ideally, one would like a uniform set of masks that are 
applied to as many statements as possible in the code. The use of masks that reflect the 
processor “ownership” or assignment area of the arrays is also desirable. So for example, 
if each processor at run-time has defined low and high assignment range limits then it 
would be more efficient to generate masks for routine mean_yh as shown in Figure 4. 
These masks exploit the parallelism at both the i loop and also the n loop by executing 
the statements (in italics) in parallel. 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max(max1(1.,n-(((k-1.)/lh)+1)),low),min(n-1,high) 
              s=1+int(k-lh*(n-i)) 
              sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
   23       continue 
   22     continue 
   21   continue 
 
        do k=1,nt+1 
          do n=max(2,low),min(ns+1,high) 
            c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 
 

FIGURE 4. Execution control masks to define parallel execution 



 
Communication Generation: In order to ensure parallel execution similar to that for the 
serial code, the final step in the parallelization process is to identify and place 
communication calls into the modified code. The aim is to try and identify a minimum set 
of communication requirements to reflect the changes already made to the code. There 
are many requests for data to be communicated based on the distribution of the data 
across the processors. The toolkit identifies these requests and then attempts to migrate 
them higher up in the call graph. Further movement of the communication requests is 
prevented when they encounter a barrier and this is usually an assignment of the variable 
requested for communication. At this point an attempt is made to merge any similar 
requests for the same variable, finally culminating in a communication call to a message 
passing library routine. In this code most of the communication calls were based on 
reduction operations that were generated as a result of the loop split shown in Figure 2. 
The final parallel version of routine mean_yh is shown in Figure 5. 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max(max1(1.,n-(((k-1.)/lh)+1)),low),min(n-1,high) 
              s=1+int(k-lh*(n-i)) 
              sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
   23       continue 
   22     continue 
   21   continue 
        call cap_mcommutative(sumy(1,1),(nt+1)*(ns+1),2,cap_mradd) 
        do k=1,nt+1 
          do n=max(2,low),min(ns+1,high) 
            c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 
 
FIGURE 5. High level communication call representing an array global 
summation 
 
Parallel code generation: The final code generation to a file (or files) can be defined in 
one of two ways depending on the user’s requirements. Currently, the two options are: 
 
1. To generate parallel code that still retains the original array declarations. Therefore, 

every processor will contain a full copy of the all the arrays in the code. 
 
2. To generate parallel code that re-defines the array declarations to be a function of the 

minimum number of processors used during program execution (generally this must 
be greater than 1). This will take into account whenever possible, the reduced 
memory requirement for each processor as a result of the distribution of the arrays. 
This approach generally has a better scalability property than (1) and will allow larger 
problem sizes to be solved. This was the selected option for the experiments 
conducted below. 



 
 

4 OpenMP Parallelization 
 
OpenMP's programming model uses fork-join parallelism where master thread spawns a 
team of threads as needed [4]. Parallelism can be added incrementally i.e., the sequential 
program evolves into a parallel program. Hence, we do not have to parallelize the whole 
program at once. A user finds the most time consuming loops in the code, and for each 
loop, the iterations are divided up amongst the available threads. In this section we will 
give some simple examples to demonstrate the major features of OpenMP.  
When parallelizing a loop in OpenMP, we may also use the schedule clause to perform 
different scheduling policies to effect how loop iterations are mapped onto threads. There 
are four scheduling policies available in the OpenMP specification. The static scheduling 
method deals out blocks of iterations of size “chunk” to each thread. In the dynamic 
scheduling method, each thread grabs “chunk” iterations off a queue until all iterations 
have been handled. In the guided scheduling policy, threads dynamically grab blocks of 
iterations (the size of the block starts large and shrinks down to size “chunk” as the 
calculation proceeds). This helps to achieve a good load balance amongst the processors.  
Finally, in the runtime scheduling method, schedule  and chunk size can either be set 
using the OMP_SCHEDULE environment variable or can be defined in the code for each 
loop. In our study we condsidered both static and dynamic scheduling approaches with 
varying chunk sizes. 
 
The toolkit can also be used to generate OpenMP directive code for shared memory 
machines [7] and was used here to parallelize  the NP3 code. As with the message 
passing parallelization, there are a number of stages that the user needs to go through 
with the tools to generate the parallel code, but these are fewer (and somewhat easier) to 
perform. These are shown schematically in Figure 6. 
 
The serial FORTRAN code and Dependence analysis stages are the same as those 
described above for the message passing based process. 
 
Directives Generation: 
This involves the structured examination of the loops within the code. The classification 
of loop types makes it easier to identify critical loops and also loops that can be 
potentially made parallel. The GUI directives browser allows the user to see at a glance 
and to inspect the different types of serial and parallel loops that have been identified. In 
conjunction with the other tools browsers such as the dependence graph, variable 
definition and transformation browsers, the user is able to iteratively refine the 
identification and placement of OpenMP directives. The generation of the OpenMP code 
is then carried out automatically. These steps are illustrated in Figure 6. 
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FIGURE 6. Overview of the directive based parallelization stages 
performed by the tools 
 
The code segment shown in Figure 7 displays the corresponding subroutine mean_yh 
after inserting OpenMP directives for loop distribution. Clearly, in the code we would 
like to parallelize the k loop (the outmost loop) so that each thread has enough work to 
do, in doing so make the loop scheduling overhead less significant. Here, we do not use 
loop split since it may coarsen the granularity of the computation and result in poorer 
performance. 
 
        subroutine mean_yh 
        . . . 
  !$OMP DO 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy=0. 
            do 23 i=max1(1.,n-(((k-1.)/lh)+1)),n-1 
              s=1+int(k-lh*(n-i)) 
              sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
  23        continue 
            c(k,n)=hh(k,n)+(sumy*dx) 
22 continue 
21    continue 

  !$OMP END DO 
 
FIGURE 7. OpenMP Code Segment with Loop Distribution Directives. 
 
 
Figure 8 shows that the placement of directives, in particular the setting up of a 
PARALLEL region can be very significant to the overall parallel performance. This can 
lead to a smaller overhead in the setting up of regions if a single one can be used instead 
of a number of smaller regions each with its own start up and synchronization cost. In the 
example shown, a single region is used to cover the exploitation of parallelism in all 
mean_ routines by defining the region outside the calls rather than four individual ones – 
one inside each routine. 
 
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(jj,j) 



!$OMP&  SHARED(delta) 
REDUCTION(MAX:error_zh,error_yh,error_ze,error_ye) 
      call mean_ye 
      call mean_ze 
      call mean_yh 
      call mean_zh 
      . . . 
!$OMP END PARALLEL   
 
FIGURE 8. OpenMP Code Segment with careful placement of Directives. 
 

5 Experimental Results 
 
Two test sizes for a given test case were tried. Case 1 was defined by a 110x110x110 size 
problem and case 2 was defined by a 200x200x200 size problem. Results were run on an 
Origin 2000 populated with 64 300MHz processors and a total of 64Gb of memory. Each 
processor has a primary data cache of 32Kb, a primary instruction cache of 32Kb and a 
secondary unified data/instruction cache of 8Mb. 
 
Table 1 shows the execution times for problem size 110x110x110 with varying chunk 
size using a dynamic scheduling policy. The results shows that the default chunk size (of 
one iteration per thread) for the scheduling approach yields the most efficient solution. 
The reason is probably that since we parallelize the outer loop using OpenMP, each 
chunk has a large amount of work to do. Increasing the chunk size will make the load 
more unbalanced across the threads. The corresponding speedups are shown in Figure 9. 
 
 
# Threads Default Chunk Size Chunk Size = 2 Chunk Size =3 

1 9698 9698 9698 
2 5160 5102 5147 
4 2687 2717 2768 
8 1443 1478 1553 
16 672 845 935 
32 460 475 630 
64 274 287 395 

Table 1. Execution Times Using Dynamic Scheduling with Problem 
Size 110×110×110  

 
Table 2 shows the execution times for problem size 110x110x110 with varying chunk 
sizes using a static scheduling policy. The results shows again that the default chunk size 
for the scheduling approach yields the most efficient solution when the number of threads 
is large. When the number of threads used is small (2-8), then using a small chunk size 
outperforms default chunk size. However, as the number of thread increases the default 
chunk size yields a better performance. The corresponding speedups are shown in Figure 
10. 
 
 
 

 



# Threads Default Size Size = 1 Size = 2 Size =3 
1 9732 9732 9732 9732 
2 5219 5041 5102 5147 
4 2781 2753 2717 2768 
8 1511 1478 1478 1553 
16 796 796 845 935 
32 481 490 499 630 
64 291 298 310 395 

Table 2. Execution Times Using Static Scheduling with Problem Size 
110x110x110  
 
Table 3 summarizes the execution times of the OpenMP code using static or dynamic 
scheduling policies and the MPI code. There is little to choose between the ‘best’ 
dynamic and static scheduling approaches – the dynamic approach was slightly more 
efficient (speedup = 35 when the number of processors used is 64).  Figure 11 shows the 
corresponding speedups of the best performing OpenMP code using dynamic scheduling 
and the MPI code. 
 
Results for the message passing parallelization for this test case shows an interesting 
variation as the number of processors are increased. Between 2-16 processors the better 
cache usage and relatively small communications give exceptional performance over the 
serial run. From about 20 processors onwards the communication cost becomes more 
significant and begins to outweigh the computation being carried out. The majority of 
communications are reduction operations. The cost of a reduction operation 
(implemented as a hypercube) is significant as the number of processors is increased. 
This cost starts to outweigh the volume of computation and the cache benefits (better 
with a small number of processors) being performed in the MPI parallelization. 
 
Also notice that the MPI code outperforms the OpenMP code when the number of 
processors used is between 4 and 16. In fact, the MPI code displays superlinear speedups 
when the number of processors used is between 4 and 16. This is probably caused by 
much reduced cache misses in the code due to much less memory requirement on each 
processor when we use multiple number of processors instead of a single processor. On 
the other hand, the OpenMP code performs better than the MPI code when the number of 
processors used is really large (e.g., 64). Even when the number of processors is large, 
each processor still has enough work to do. On the other hand, the MPI code’s 
communication time dominates the total time since each processor has less work to do as 
the number of processors are increased. Also the need for dynamic load balancing seems 
to hit the MPI implementation harder than the OpenMP. OpenMP has more flexibility in 
its use with dynamic scheduling. Due to all the above reasons, the MPI code is less 
efficient than the OpenMP code when using larger numbers of processors. 

 
# Threads Default Dynamic Default Static MPI 

1 9698 9732 9811 
2 5160 5219 6368 
4 2687 2781 1626 
8 1443 1511 678 
16 672 796 522 
32 460 481 499 



64 274 291 590 
Table 3. Comparisons of OpenMP Executions and MPI Executions with 
Problem Size 110x110x110 
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Figure 9. Speedups Using Dynamic Scheduling with Problem Size 110x110x110 
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Figure 10. Speedups Using Static Scheduling with Problem Size 110x110x110 
 
 
Table 4 summarizes the execution times of the OpenMP code using the dynamic 
scheduling policy and the MPI code with problem size 200x200x200. The speedups of 
the corresponding runs are also shown in Figure 12. 



 
 
 

# Threads Default Dynamic MPI 
1 114541 114911 
2 59280 79681 
4 30765 38966 
8 16104 8368 
16 7701 3982 
32 4541 3290 
64 2822 3305 

 
Table 4. Comparisons of OpenMP Executions and MPI Executions with 
Problem Size 200x200x200  
 
For this case, the conclusions are very similar to that of the previous case. For the 
message passing parallelization, the trend is shifted to a higher number of processors and 
the performance of the code on 64 processors is now much closer to the OpenMP 
implementation. The speedup is improved from 17 (case 1) to 35 (case 2). Performance 
from the shared memory parallelization indicates a speedup of 41 when the number of 
processors used is 64. Clearly, the speedup is better in this case (case 2) than in the 
previous case (case 1) where the speedup is only 35 when using 64 processors. We expect 
that as the problem size increases, the scalability of both codes will become even better 
due to the change of ratio in computation workload on each processor vs. the 
communication overheads. 
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Figure 11. Speedups for Problem Size 110x110x110. 
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Figure 12. Speedups for Problem Size 200x200x200. 

6 Conclusions 
 
We have parallelized a sequential Fortran code, which is the major program for 
calculating gain-bandwidth characteristics for thin avalanche photodiodes, using both 
MPI and OpenMP. The code is parallelized with the aid of a toolkit which is capable of 
accurately analysing dependencies in serial codes and generating portable parallel source 
codes in a semi-automatic and interactive way. Using this approach, many designs can be 
implemented quickly, and decisions can be made efficiently. Despite the apparent lack of 
parallelism present when performing a distributed memory parallelisation, running the 
executable on an SGI Origin 2000 supercomputer indicates that both OpenMp and MPI 
codes are scalable up to 64 processors on the SGI machine - the OpenMP code is more 
efficient than the MPI code as the number of processors is increased. We predict that the 
OpenMP code will be more scalable and efficient when a bigger array size such as 
500×500×500 is used. Our study further shows that it is possible to parallelize many 
engineering programs efficiently and economically with much reduced porting costs 
when using such a toolkit. 
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