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What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-
plane array sensors has been developed. The technique is based on the inverse covariance form of the
Kalman filter �KF�, which has been reported previously and used in estimating the gain and bias of each
detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are
assumed constant within a given sequence of frames, corresponding to a certain time and operational
conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time
Gauss–Markov process. The inverse covariance form filter estimates the gain and the bias of each
detector in the focal-plane array and optimally updates them as they drift in time. The estimation is
performed with considerably higher computational efficiency than the equivalent KF. The ability of the
algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational
complexity is demonstrated by use of both simulated and real data. © 2003 Optical Society of America

OCIS codes: 100.2550, 040.1520, 110.3080, 100.3010, 100.3020.
1. Introduction

Focal-plane array �FPA� sensors are frequently used
in a variety of visible and infrared imaging applica-
tions.1 It is well known, however, that the perfor-
mance of charge-coupled device infrared FPA sensors
is seriously affected by the random spatial variation
in the response of the array elements. The spatial
nonuniformity in the array output, also referred to as
fixed-pattern noise �FPN�, is generally due to �1� the
minute detector-to-detector variations in the opto-
electronic characteristics of the detectors and �2� fac-
tors related to the array’s readout circuitry and
architecture. FPN is present even in the most ad-
vanced mid-wavelength and long-wavelength infra-
red sensors, and as one expects, it causes the
broadening of the modulation transfer function and
reduces the temperature-resolving capability of ther-
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mal imaging systems.2 Moreover, FPN can compro-
mise the effectiveness of multi-sensor systems as it
reduces the accuracy of the motion-estimation algo-
rithms used by such systems. It is also known that
FPN is not totally stationary but instead it varies
slowly in time. Clearly, this drift in FPN makes a
one-time laboratory calibration ineffective. Of
course, one can calibrate frequently �e.g., by using a
uniform black-body radiation source as a target�,
which would unfortunately require halting normal
imaging operation during each calibration process.

In contrast to calibration-based nonuniformity cor-
rection �NUC�, scene-based NUC is the process of
FPN compensation by use of the very scenes or ob-
jects that are being imaged. However, the nondis-
ruptive nature of scene-based NUC comes at the
expense of compromising radiometric accuracy,
which may be required in certain applications such as
spectral sensing but may be less critical in other ap-
plications such as thermal imaging. Scene-based
NUC methods normally employ an image sequence
and rely on motion �or changes in the actual scene� to
provide diversity in the scene temperature per detec-
tor. This temperature diversity, in turn, provides a
statistical reference point, common to all detectors,
according to which the nonuniformity in the detec-
tors’ responses can be equalized.

To date, numerous scene-based NUC techniques
have been reported in the literature.3–13 Our group,



in particular, has been active in the development of
novel scene-based algorithms for NUC based on sta-
tistical estimation theory.14–17 We have lately de-
veloped a Gauss–Markov dynamical model to capture
the slow variation in the FPN and utilized the model
to adaptively estimate the nonuniformity in the gain
and bias by use of a Kalman filter �KF�.16,17 The
input to the KF is taken as a sequence of fixed-length
vectors of readout values representing a block of
frames over which no significant drift occurs in the
detectors’ gains and biases. As drift occurs and as a
new vector of observations �block of frames� arrives,
the KF updates the estimates of the gain and the bias
of each detector. In this way, the valuable informa-
tion contained in the old estimates is preserved and
efficiently used in forming the current state of non-
uniformity.

In this paper, we develop what is to our knowledge
a new version of our earlier KF–based NUC tech-
nique17 that is based on the inverse covariance form
�ICF� of the KF. The ICF technique is computation-
ally far more efficient than the original KF, especially
when the dimension of the measurements is much
greater than the dimension of the state vector �com-
prising the gain and bias�. For example, in the ICF
approach we require the inversion of a diagonal ma-
trix with dimensions dictated by the length of the
observation vector �e.g., �100� while in the original
KF,17 the inverse of a non-diagonal matrix of the
same dimension is required. In addition to its su-
perior computational efficiency, the ICF technique is
better suited than its KF–based predecessor for sit-
uations where no reliable knowledge of the initial
state of the gain and bias for each detector is avail-
able.18

This paper is organized as follows. In Section 2
the original KF–based NUC technique is reviewed.
The ICF-based NUC technique is developed in Sec-
tion 3. In Section 4 the ICF-based NUC technique is
tested with sequences of infrared data with simu-
lated nonuniformity and drift and its equivalence to
the KF–based technique is empirically shown. In
Section 5 the technique is applied to six sequences of
real infrared data. The conclusions of the paper are
summarized in Section 6.

2. Nonuniformity Model and the Kalman Filter

In this paper we adopt the linear-detector response
assumption for which the detector output is approx-
imately modeled with a temperature-independent
gain and bias.16,17 For a single detector in the FPA,
vectors of readout data are considered corresponding
to a series of blocks of frames for which no significant
drift in the gain and the bias occurs within each
block. For the kth block of frames, the linear input–
output relation of the ijth detector in the nth frame is
approximated by1,17

Yk
ij�n� � Ak

ijTk
ij�n� � Bk

ij � Vk
ij�n�, (1)

where Ak
ij and Bk

ij are the ijth detector’s gain and
bias, respectively, at the kth block of frames. Tk

ij�n�

represents the average number of photons that are
detected by the ijth detector during the integration
time associated with the nth frame of the kth block.
Vk

ij�n� is the additive readout �temporal� noise asso-
ciated to the ijth detector for the nth frame during the
kth block of frames. In addition, the vector Yk

ij �
�Yk

ij�1� Yk
ij�2� . . . Yk

ij�lk��T is an lk dimensional vector
of readout values for the ijth element of the FPA
associated with the kth block. For simplicity of no-
tation, the pixel superscripts ij will be omitted with
the understanding that all operations are performed
on a pixel-by-pixel basis.

According to the Gauss–Markov model that we in-
troduced in our prior work,17 we model the slow drift
in the gain and the bias from one block of frames to
another by

�Ak�1

Bk�1
� � ��k 0

0 	k
��Ak

Bk
� � �1 0

0 1��Wk
�1�

Wk
�2�� , (2)

which we can write compactly as

Xk�1 � �kXk � GkWk. (3)

Here Xk is the state vector comprising the gain Ak and
the bias Bk at the kth block time and 
k is the 2 � 2
transition diagonal matrix between the states at k
and k � 1, and its diagonal elements are the param-
eters �k and 	k representing the level of drift in the
gain and bias, respectively, between consecutive
blocks. Gk is a 2 � 2 noise identity matrix that
randomly relates the driving �or process� noise vector
Wk to the state vector Xk. The components of Wk are
Wk

�1� and Wk
�2�, the random driving noise for the gain

and the bias, respectively, at the kth block time. A
key requirement that we will impose on Eq. �2� is that
the state vector must be a stationary random process
because, in practice, drift in the gain and the bias
randomly changes the FPN but it should not alter its
severity. All others assumptions are shown and jus-
tified in detail elsewhere.17

The observation model for a given block of frames is
an extension of the linear model �1� and it can be cast
as

�
Yk�1�

···
Yk�lk�

� � �
Tk�1� 1

···
···

Tk�lk� 1
	�Ak

Bk
� � �

Vk�1�
···

Vk�lk�
� (4)

or

Yk � HkXk � Vk, (5)

where Hk is the observation matrix of dimension lk �
2 and Vk is the additive lk-dimensional temporal
noise vector. The main assumption in the observa-
tion model �4� is that the input Tk�n� in the kth block
in any detector is an independent sequence of
uniformly-distributed random variables in the range
�Tk

min, Tk
max� common to all detectors in each block of

frames.17

The KF–based NUC algorithm developed earlier17

will be briefly visited here for completeness and com-
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parison with the ICF technique. The algorithm is
based on the following iterations17:

X̂k � �k�1X̂k�1 � Mk�1
T, (6)

Pk � �k�1Pk�1�k�1
T � Gk�1Qk�1Gk�1

T, (7)

Kk � PkHk
T�HkPkHk

T � Sk�
�1, (8)

Sk � Rk � 
Tk

2�
A0

2 � A0�Ilk,lk, (9)

X̂k � X̂k � Kk�Yk � HkX̂k�, (10)

Pk � �I2,2 � KkHk�Pk, (11)

with the initial conditions

X̂0 � E�X0� � �A0

B0
� , P0 � � � �
A0

2 0
0 
B0

2� .

(12)

In the above, X̂k� and X̂k are respectively the a priori
and the current state estimates, Pk and Pk are re-
spectively the a priori and the current error covari-
ance matrices, and Kk is the Kalman gain matrix.
The quantities Qk and Rk are the auto and cross
covariance functions of the driving noise and the ad-
ditive noise, respectively, Hk is the mean of the ob-
servation matrix, Mk is a vector containing the mean
of the driver noise,16,17 
Tk

2 is the variance of the
input infrared signal, and finally, A0 �B0� and 
A0

2

�
B0

2� are the mean and variance of the initial condi-
tion for the gain �bias�, respectively. The symbols
I2,2 and Ilk,lk

represent identity matrices of designated
dimensions. Note that the matrices Rk and Sk are
diagonal, square, and lk dimensional. Also, note
that Eqs. �6� and �7� are the KF updates, Eq. �8� yields
the Kalman gain, and Eqs. �10� and �11� are the mea-
surement updates.17

The foregoing Gauss–Markov model for the gain and
bias is stable �i.e., it has bounded moments� since the
drift parameters �k and 	k are taken to be strictly less
than unity. Moreover, the estimation algorithm is
also stable in that the error covariance matrix is con-
vergent.18,19 In our prior work, the convergence of the
KF was tested with simulated data by showing that
the error covariance matrix Pk converges to a deter-
ministic matrix.17,20 Finally, according to our experi-
ence, we have never observed any instabilities when
applying the algorithm to real infrared imagery.

With the above KF at hand, we proceed to develop
the ICF of the filter.

3. Inverse Covariance Form of the Kalman Filter

The KF–based technique described in Section 2 nor-
mally estimates the nonuniformity parameters by
use of a very large number of readout data. To ac-
commodate such large data efficiently, the KF may be
replaced by an equivalent ICF filter, which is an al-
ternate form of the filter that produces the same state
estimates but leads to substantial savings in comput-
ing operations and also provides improved numerical
stability.18 In this paper the ICF is derived follow-

ing the standard procedures given in Minkler and
Minkler,18 which consist of three main steps: �1�
definition of the new equivalent state variables to be
estimated, �2� application of the matrix inversion
lemma to the Kalman-filter recursions to obtain the
dual relationship for X̂k� , Pk� , Kk, X̂k, and Pk, and �3�
determining the new initial conditions by use of the
definition given in step 1.

A. Definition of the New Equivalent State Variables

The ICF is an alternative form of the KF for which the
inverse of the error covariance matrix, Pk

�1, is prop-
agated in each iteration of the filter. Therefore, the
ICF inherits the convergence properties of its equiv-
alent KF. Following Minkler and Minkler,18 the
new equivalent variable to estimate, âk, is defined as

âk – Pk
�1X̂k, (13)

where âk is transmitted from one iteration of the
filter to another instead of transmitting the error
covariance matrix Pk� and the estimate X̂k.

B. ICF Algorithm

We begin by recasting the first result of the matrix
inversion lemma, which states that for any non-
singular matrices L, M, and N, �L � MNT��1 � L�1 �
L�1M�I � NTL�1M��1NTL�1. We now apply this
result to Eqs. �7�, �8�, and �11� to obtain expressions
for �Pk ��1 and Pk

�1 in terms of the system parame-
ters Hk, Qk�1, Sk�1, and �k�1.

Next, we invoke the second result of the matrix
inversion lemma, which asserts that �L �
MNT��1M � L�1M�I � NTL�1M�. Now by applying
this result and using the definition in �13�, we can
rewrite Eqs. �6� and �10� to get a recursive expression
for âk� and âk in terms of âk�1. With the above cal-
culations, the algorithm for the ICF of the KF is
obtained and the recursions involved are listed below:

âk� � �I2,2 � Dk�1Gk�1
T���k�1

�1âk�1 � Ck�1Mk�1
T�,

(14)

�Pk�
�1 � �I2,2 � Dk�1Gk�1

T�Ck�1, (15)

Ck�1 – �k�1
�TPk�1

�1�k�1
�1, (16)

Dk�1 – Ck�1Gk�1�Qk�1
�1 � Gk�1

TCk�1Gk�1�
�1, (17)

âk � âk � Hk
TSk

�1Yk, (18)

Pk
�1 � �Pk�

�1 � Hk
TSk

�1Hk. (19)

Equations �14� and �15� are the time updates of the
ICF and the measurement update equations are
given by Eqs. �18� and �19�.

Initial Conditions. The initial conditions for the
ICF of the filter can be derived by use of the definition
in Eq. �13� as follows. In particular, we have

P0
�1 – ��1, (20)

a� 0 – ��1X0. (21)
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For estimation problems where no a priori knowledge
of the initial system state is available, this algorithm
is less susceptible to saturation problems within the
equations, and in that sense, the algorithm may pro-
vide a numerically more stable approach.18 In par-
ticular the ICF can be utilized with the initial
condition P0

�1 � 0, corresponding to an infinite P0.
Note that in the traditional KF, this situation leads to
saturation problems that consequently lead to signif-
icant �and possibly catastrophic� loss in numerical
accuracy.

C. Comments on Computational Efficiency

We proceed to theoretically compare the number of
operations per pixel and per block of frames between
the ICF and the traditional KF assuming that the
temporal readout noise and that the range of the
input irradiance �Tk

max, Tk
min� are both common to

all detectors on the FPA, but they may vary from
block to block. Under the above assumptions, for
each iteration k, the KF involves the inversion of the
lk � lk matrix �HkPk�Hk

T � Sk��1. However, the ICF
involves the inversion of the lk dimension diagonal
matrix �Sk��1.

Table 1 shows the number of operations, per pixel
and per block of frames at the kth iteration, required
for the KF and the ICF. Note that for the KF, the
relationship obtained between lk and the number of
operations is a third-order polynomial, while in the
case of the ICF filter it is a second-order polynomial.
Thus, a great reduction in computational load can be
achieved. For example, with a block length of 500
frames, the KF needs 126,505,038 additions and
126,020,040 multiplications, while the ICF calculates
1,247,562 additions and 1,004,100 multiplications.
Last, note that in Table 1 are detailed the nonstand-
ard operations �in the context of a traditional KF with
a deterministic observation matrix� that the NUC
problem introduced in both the KF and the ICF fil-
ter.17 �These refer to the operations in which the
statistics of the random observation matrix H are
involved.�

4. Applications to Simulated Infrared Data

In this Section the performance of the ICF filter is
studied and compared with the performance of the
traditional KF16,17 by applying the algorithms to 8-bit
infrared image sequences corrupted by simulated
nonuniformity and drift. In all simulations, the
gain and the bias are considered as mutually uncor-

related Gaussian random variables with mean values
of unity and zero, respectively. Different levels of
nonuniformity are introduced by varying the stan-
dard deviation of the gain and the bias. Different
levels of drift in these parameters are also considered
by modifying the inter-block correlation parameters
�k and 	k. Temporal noise is simulated by use of a
zero-mean Gaussian random variable that is uncor-
related to both gain and bias. The standard devia-
tion of temporal noise is considered fixed at
unity.11,14,15,17,21 One hundred trials of each case
were generated, and each trial included ten blocks,
each containing 500 frames. NUC is performed by
subtracting the estimated bias from the readout data
and dividing the outcome by the estimated gain.

The performance of the ICF is evaluated by means
of five metrics. To assess the estimation process, we
compute the mean-square error �MSE� per block by
averaging the square of the differences between the
true and the estimated gain and bias over the entire
array and all frames within each sequence. NUC
capability is examined in terms of the root-mean-
square error �RMSE�, the correctability index, c, and
the roughness parameter, �. The RMSE is defined
as the square root of the average �over the entire
array and block of frames� of the square of the differ-
ence between the true and the estimated collected
photons in each pixel. The correctability parameter
is computed with simulated flat-field data as the
square root of the ratio between the FPN and the
temporal readout noise.1,14,21 The roughness pa-
rameter � is computed for any image f by use of14

�� f � –

h1*f 
1 � 
h2*f 
1


 f 
1
, (22)

where h1�i, j� � �i�1, j � �i, j and h2�i, j� � �i, j�1 � �i, j,
respectively, �ij is the Kronecker delta, 
 f 
1 is the
�1-norm of f, and * represents discrete convolution.
Note that � is zero for a uniform image, and it in-
creases with the pixel-to-pixel variation in the image.
Finally, an image-quality index that was recently in-
troduced by Wang and Bovik22 is modified and used
here to further assess NUC capability. The pro-
posed index is designed to regard any image distor-
tion as a combination of two factors: luminance
distortion and contrast distortion. Mathematically,

Table 1. Number of Operations �per Pixel and per Block of Frames�a

Kalman Filter Inverse Covariance Form

Additions lk
2 � 3lk

2p � lk�2p2 � p� � 3p3 � p2�m � 2� �
p�m2 � 2m � 1�

lk
2�2p � 1� � lk�p2 � p � 1� � 4p3 � p2�4m � 1� �
p�2m2 � 3m � 1� � m3

Multiplications lk
3 � 2lk

2p � lk�5p2 � 4p� � 3p3 � p2�m � 2�
� p�m2 � m�

2lk
2p � lk�p2 � p � 2� � 4p3 � p2�4m � 3� � 2pm2

� m3

aNumber that the Kalman filter and the inverse covariance form filter require for the kth iteration. p represents the dimension of the
system state variables �which is 2 in our case� and lk is the length of the observation vector. m represents the dimension of the random
driving noise �also 2 in our case�.
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the modified universal image quality index Q is de-
fined by22

Q �
4I�1I�2
I1


I2

�I�1
2 � I�2

2��
I1

2 � 
I2

2�
, (23)

where I�1�
I1

2� and I�2�
I2

2� are the spatial sample
mean �spatial sample variance� of the true image and
of the corrupted or compensated image, respectively.
The dynamical range of the index Q is ��1, 1� with 1
representing the best performance.

A. Performance of the ICF and Its Numerical Equivalence
to the Kalman Filter

In this Subsection the performance of the ICF filter in
estimating the gain and the bias and its numerical
equivalence to the KF are studied. We examined
cases where the simulated nonuniformity and drift
are added to blocks of both spatially-diverse and flat-
field frames. The first case uses a collection of
blocks of frames corrupted by simulated nonunifor-
mity generated mainly by the gain. The bias non-
uniformity was simulated by use of a Gaussian
random variable with a fixed standard deviation of
10, while the standard deviation of the gain nonuni-
formity was varied from 1% to 20%. Low, moderate,
and high levels of drift in the gain and the bias were
considered by setting the correlation parameters �k �
	k to 0.95, 0.7, and 0.3, respectively. Figures 1 and
2 show a sample of a true infrared image and the
corresponding artificially corrupted image �taken
from the fifth block�.

Consistent with our earlier work,17 the empirical
MSE in the estimated gain �MSEA� and bias �MSEB�,
the RMSE, the roughness parameter �, and the index
Q are all independent of k. Table 2 shows the em-
pirical performance parameters calculated for the
fifth block �k � 5� for low, moderate, and high levels
of drift. The equivalence between the NUC capabil-
ity of ICF and KF is clear from the performance met-

rics shown in the table. For example, both filters
behave similarly in that the MSEA and MSEB de-
crease with the decrease in the drift.17 However,
note that the only discrepancy is found when high
simulated drift is assumed ��k � 	k � 0.3� and the
error is attributable to numerical precision. In such
a case, the MSEB associated the ICF is eight times
greater than that for the KF. However, it can be
seen through the performance parameters RMSE, �,
and Q that the quality of the NUC achieved is almost
the same for both filters independently of the level of
drift between the blocks of frames. Furthermore,
examination of the index Q shows that the discrep-
ancy between the compensated and the true frames is
in both luminance and contrast. In particular, we
observe an approximate loss of 13% in both the lumi-
nance and contrast in the corrected frames.

The dependence of the empirical MSE on the level
of nonuniformity and drift is shown in Fig. 3. Note
that when the standard deviation of the simulated
gain nonuniformity is greater than 10%, the MSE
increases with the increase in the level of nonunifor-
mity. However, Fig. 4 shows that such MSE in-
crease is not reflected in the image quality
parameters Q and �, nor is it detected by the naked
eye. Figures 5 and 6 depict the corrected versions of
the image in Fig. 2 obtained by the KF and ICF,
respectively.

Similar results were obtained when the FPN was
generated primarily by the bias. For brevity, we
only comment on parts of the results. The parame-
ters RMSE and �, computed for the corrected and raw
sequences of frames �with a medium drift�, reveal a
reduction in the nonuniformity by 48% and 51%, re-
spectively for each parameter; whereas, the Q index
increases by 39%.

Last, we applied the ICF and the KF filters to
blocks of 500 frames of noisy flat-field data. Various

Fig. 1. Infrared imagery from the fifth block. Fig. 2. Image of Fig. 1 corrupted with simulated nonuniformity
generated with standard deviations of 0.10 and 10 for the gain and
the bias, respectively.
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levels of temporal noise were considered, and each
block of frames contained different levels of ampli-
tudes in the gray-scale range of 60–240.17 The re-
sults indicated that the correctability in the corrected
block is approximately unity for both the ICF and the
KF. In fact, we have found that the so-called
temporal-noise threshold, which is the standard de-
viation of the temporal noise that yields a unity cor-
rectability parameter, is 0.75, which is a number
valid for blocks of frames represented in the specified
gray-scale range.17,21

B. Dependence on the Initial Condition

To evaluate the sensitivity of the ICF filter on inac-
curacies in the initial condition of the error covari-
ance matrix P0, simulated nonuniformity was added
to a sequence of blocks of infrared data and initial
conditions in which varying errors were considered.
Specifically, the diagonal elements of P0 were as-

sumed 106, 1, and 10�3, representing high, medium,
and small errors, respectively. It was observed that
with block lengths greater than 500 frames, and re-
gardless of the level of nonuniformity and drift, no
tangible change was observed in the MSE, RMSE, �,
and the Q index as the initial condition was varied.
For example, using the same simulation parameters as
in Subsection 4.A �e.g., a standard deviation in the gain
nonuniformity equivalent to 20% of the mean gain
under a high-drift condition�, we found that � and Q
were respectively 0.190 and 0.856 for the large initial
error and 0.120 and 0.843 for the small initial error.

Moreover, we found that the MSE computed using
the parameters estimated by the KF exhibits a small
increase �approximately 10%� with the increase in
the initial error from P0 � 10�3 to P0 � 106. How-
ever, such increase in the MSE is almost not seen on
the corrected frames by the RMSE, �, Q, and the
naked eye.

Fig. 3. MSE of the gain and the bias as a function of the level of
nonuniformity generated mainly by the gain. The standard de-
viation for the bias is 5 �relative to an 8-bit scale�. Open circles
represent low drift ��k � 	k � 0.95�, open squares represent mod-
erate drift ��k � 	k � 0.7�, and the asterisks represent high drift
��k � 	k � 0.3�.

Fig. 4. Roughness parameter, �, and the Q index as a function of
the level of gain-dominated nonuniformity. The bias standard
deviation is fixed at 5. Open circles represent low drift ��k � 	k �
0.95�, open squares represent moderate drift ��k � 	k � 0.7�, and
the asterisks represent high drift ��k � 	k � 0.3�. Open diamonds
represent the corresponding parameters for the uncorrected block.

Table 2. Performance Parameters MSE, RMSE, �, and Q at the k � 5 blocka

�k � 	k � 0.95 �k � 	k � 0.70 �k � 	k � 0.30

Parameter ICF KF Parameter ICF KF Parameter ICF KF

RMSEu 0.173 0.173 RMSEu 0.244 0.244 RMSEu 0.301 0.301
RMSEc 0.147 0.147 RMSEc 0.147 0.149 RMSEc 0.153 0.149
MSEA 0.021 0.021 MSEA 0.024 0.024 MSEA 0.027 0.024
MSEB 1.055 0.999 MSEB 1.630 0.999 MSEB 8.824 0.999
�u 0.317 0.317 �u 0.317 0.317 �u 0.318 0.318
�c 0.180 0.180 �c 0.180 0.180 �c 0.182 0.180
Qu 0.649 0.649 Qu 0.651 0.651 Qu 0.651 0.651
Qc 0.878 0.878 Qc 0.876 0.876 Qc 0.873 0.874

aAs a function of the simulated level of drift between blocks. The subscripts u and c indicate whether the parameters were computed
for the uncorrected and the corrected blocks, respectively. The nonuniformity is generated with standard deviations for the gain and the
bias of 0.10 and 5, respectively.
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C. Computational Efficiency

A theoretical estimate of the CPU time employed by
both versions of the filter can be obtained if we con-
veniently assume, for instance, that a floating-point
addition takes a unit of time and the floating-point
multiplication takes two units of time.23 In real
computer systems, however, memory hierarchy, op-
erating system planning, and many other practical
factors must be taken into account and a theoretical
evaluation is not enough. Figure 7 shows the actual
CPU time consumed by the KF and the ICF filters
versus the block length. Reductions of 55% in time
is obtained for block lengths in excess of 1000 frames.
These tests were made with a Pentium IV �1.6 GHz�
processor and a 768-MB RAM in conjunction with
Matlab’s cputime function.

5. Applications to Real Data

In this section the ICF algorithm is applied to six
blocks of terrestrial mid-wave infrared �3–5 �m� im-
agery that were collected with a 128 � 128 InSb FPA
cooled camera �Amber Model AE-4128�. Five blocks
of imagery were collected at different hours of the
same day �6:30 AM, 8 AM, 9:30 AM, 11 AM, and 1
PM�, and each block originally contained 4200 frames
captured at a rate of 30 frames per second �fps�. The
sixth set of data, collected much earlier in the day,
contains 1200 frames. The blocks will be labeled as
k � 1, . . . , 6, corresponding to 6:30 AM, 8 AM, 9:30
AM, 11 AM, 1 PM, and the last block, respectively.

Owing to the fact that the camera readout output
was quantized to 16-bit integers, we conveniently
took the range of the average infrared photon num-
bers collected by each detector as �Tk

min, Tk
max� � �0,

216 � 1�, where k � 1, . . . , 6. In addition, the initial
inverse of the error covariance matrix P0

�1 is se-
lected to be near zero �which implies severe inaccu-
racy in the assumed initial condition�. The initial
state vector X0 was selected within the practical
range �16-bit representation� for the gain and the bias
values for the above infrared FPA camera.17 More-
over, the following set of initial conditions �common to
all detectors� were assumed for the gain and bias:
A0 � 1.0, B0 � 0, 
A0

2 � 0.1 and 
B0

2 � 5000. These
values were chosen heuristically as follows: Unity
and zero mean values for the gain and the bias, re-
spectively, were chosen to maintain the dynamical
range of the output. On the other hand, the initial
standard deviations of the gain and bias were arbi-
trarily chosen within 10% of the assumed mean val-
ues. Last, because the true drift in the gain and the
bias are unknown, the ICF filter was repeatedly ap-

Fig. 5. Frame of Fig. 1 corrected by use of the traditional KF.

Fig. 6. Frame of Fig. 1 corrected by use of the ICF Filter.

Fig. 7. CPU time consumed by the traditional KF and the ICF
filter as a function of the block index k. Open circles and crosses
represent the CPU time consumed by the traditional Kalman and
the ICF filters, respectively. The dotted curve represents a frame
size of 32 � 32 pixels, the solid curve represents the case of 64 �
64 pixels, and the dashed-dotted curve represents the case of 128 �
128 pixels.
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plied while the drift parameters � and 	 were allowed
to vary from 0.05 to 0.95 in steps of 0.15.

Throughout the calculations, we limited the num-
ber of frames used in the algorithm to only 500 con-
secutive frames per block �i.e., lk � 500, k � 1, . . . , 6�.
The tests performed demonstrated that for �k � 	k �
0.95, which represents a weak drift between the
blocks, a very good NUC was achieved for blocks 2
through 5. For example, Figs. 8 and 9 show a raw
frame and the corresponding corrected frame for the
block at k � 5. Note that the ICF filter also com-
pensates for the dead pixels that appears in the raw
imagery, as they are interpreted by the algorithm as
cases of extremely low gain. The computed mean of
� shows a reduction in the nonuniformity of 58% at
k � 2, 39% at k � 3, 36% at k � 4, and 19% at k � 5.

The sequence in the first block �corresponding to
6:30 AM� contains less diversity in the collected irra-
diance than the blocks at k � 2, . . . , 5. The motion
was limited in the first block, and the irradiance range
was also limited as most of the objects in the scenes
were cold. Figures 10 and 11 show the raw frame and
the corresponding ICF corrected frame, respectively.
Note that the quality of the compensation is much
poorer than the one obtained in the fifth block �corre-
sponding to 1 PM�. This poor performance is partially
due to the fact that in the calculation of the gain and
bias in the first block, no past knowledge of these pa-
rameters is being used. Now, Fig. 12 depicts the cor-
rected version of the frame in Fig. 10 when the block at
6:30 is moved from k � 1 to k � 5. The improvement
in the correction is due to the fact that the ICF filter

Fig. 8. Infrared imagery from block 5.

Fig. 9. Frame of Fig. 8 corrected by use of 500 consecutive frames
per block with the drift factors taken as �5 � 	5 � 0.95.

Fig. 10. Imagery from the first block �corresponding to 6:30 AM�.

Fig. 11. Frame of Fig. 10 corrected by use of 500 consecutive
frames per block and correlation factors �1 � 	1 � 0.95.
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now uses the information gained in the previous blocks
�first block through fourth block� for estimating the
gain and the bias for k � 5.

Finally, the sixth block was captured before sun-
rise and only one target �a jet aircraft� is seen. Cor-
rection obtained for the sixth block was somewhat
satisfactory, but ghosting artifacts appeared over the
corrected images. Ghosting occurs because most of
the objects in the fifth block are not present in the
sixth block, and moreover, the sixth block is poor in
motion and also lacks spatial diversity in the infrared
scenes. For example, Figs. 13 and 14 depict the raw
frame and its correction, respectively. The ghosting
artifacts can be seen as shadows around the target.
We have observed that such ghosting artifacts can be

reduced using more frames and assuming higher lev-
els of drift between the blocks. Figure 15 shows the
corrected version of Fig. 13 by use of more frames and
higher drift than the correction shown in Fig. 14.

Last, the drift in the estimated gain and the bias
between blocks 2 and 3, 3 and 4, and 4 and 5 are
respectively found to be 5%, 0.5%, and 10% for the
gain and 40%, 27%, and 29% for the bias. This
shows that the drift in the gain is smaller than the
drift in the bias, which is consistent with the two-
point calibration results performed earlier.16,17

6. Conclusions

In this paper we used the inverse covariance form to
develop an equivalent but computationally efficient

Fig. 12. Frame of Fig. 10 corrected by use of 500 consecutive
frames per block, for which we stipulate that the first block arrives
after the fourth block �in place of the existing fifth block�. The
drift factors are taken as �5 � 	5 � 0.95.

Fig. 13. Imagery from the sixth block.

Fig. 14. Frame of Fig. 13 corrected by use of 500 consecutive
frames per block and correlation factors �6 � 	6 � 0.95.

Fig. 15. Frame of Fig. 13 corrected by use of 800 consecutive
frames per block and correlation factors �6 � 	6 � 0.8.
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version of the previously reported Kalman filter tech-
nique for nonuniformity correction in FPAs. More-
over, our simulations and real data evaluations have
tested practically that the ICF of the KF is better
suited for problems where no reliable estimate of the
initial condition is available. This feature is in ac-
cord with the theoretically expected robustness of the
ICF to erroneous initial conditions.18 The theoreti-
cal evaluation demonstrates that the number of
floating-point additions and multiplications per pixel
and per block of frames in every iteration is a function
of the block length lk. For the original Kalman filter,
the relationship obtained between lk and the number
of operations is a third-order polynomial while in the
case of the inverse covariance form filter it is a
second-order polynomial. Empirical results have
shown that the CPU time consumed by the inverse
covariance filter is considerably less than the CPU
time employed by the Kalman filter, and that time is
independent of the frame size. For example, for a
block length of 1000 frames reductions of 45%, 41%,
and 50% in the CPU time were obtained for frame
sizes of 128 � 128, 64 � 64, and 32 � 32 pixels,
respectively. The performance of the inverse-
covariance-form version of the Kalman filter is dem-
onstrated by use of simulated and real infrared
imagery showing the ability of the technique in up-
dating the estimates of the gain and bias nonunifor-
mity as new data arrives. Possible extensions of the
technique include developing an adaptive method for
the estimation of the drift parameters from blocks of
infrared scene data.
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