Demonstration of Bias Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) Mid-infrared Detectors

Woo-Yong Jang, Majeed M. Hayat, Senior Member, IEEE, J. Scott Tyo, Senior Member, IEEE, Ram S. Attaluri, Thomas E. Vandervelde, Member, IEEE, Yagya D. Sharma, Member, IEEE, Rajeev Shenoi, Andreas Stintz, Elizabeth R. Cantwell, Steven C. Bender, Sang Jun Lee, Sam Kyu Noh, and Sanjay Krishna, Senior Member, IEEE

Abstract—The quantum-confined Stark effect in inter-sublevel transitions present in quantum-dots-in-a-well (DWELL) detectors gives rise to a mid-infrared spectral response that is dependent upon the detector’s operational bias. The spectral responses resulting from different biases exhibit spectral shifts, albeit with significant spectral overlap. A post-processing algorithm was developed by Sakoglu et al. [Applied Optics, vol. 45, pp. 7224-7234, 2006] that exploited this bias-dependent spectral diversity to predict the continuous and arbitrary tunability of the DWELL detector within certain limits. This paper focuses on the experimental demonstration of the DWELL-based spectral tuning algorithm. It is shown experimentally that it is possible to reconstruct the spectral content of a target electronically without using any dispersive optical elements for tuning, thereby demonstrating a DWELL-based algorithmic spectrometer. The effects of dark current, detector temperature, and bias selection on the tuning capability are also investigated experimentally.

Index Terms—Algorithmic spectrometer, Quantum-dots-in-a-well (DWELL) detectors, Spectral tuning, Spectral sensors.

I. INTRODUCTION

Infrared (IR) spectral imaging continues to attract more and more interest as it offers a powerful solution to a wide range of challenging problems in remote sensing. These include unveiling concealed objects or targets, identifying and classifying chemical or biological compounds, and monitoring environmental changes, only to name a few. In a conventional imaging spectrometer, the spectral information in a scene is captured by sensing a wide range of narrow segments of the IR spectrum at every pixel, with each segment constituting a spectral band. This is typically achieved by using dispersive optics (or possibly interferometric methods) that allow confinement of the spectral content of the signal prior to photodetection. Different types of detectors, each sensitive to a prescribed spectral range, may additionally be utilized to cover a wider spectral range.

In recent years, the long-wave infrared (LWIR: 8 – 12 μm) region of the electromagnetic spectrum has been particularly of great interest to remote sensing. Targets close to room temperature are dominated by emitted radiation over reflected radiation in the LWIR region, and they can be sensed by their apparent temperatures and spectral signatures in the LWIR. Currently, there are three main material technologies for photonic IR photo-detectors in the LWIR region. The HgCdTe (MCT) detector is the current state of the art due to its high responsivity and detectivity; however, there are well-known problems with this material, especially those pertaining to its epitaxial growth. The presence of large interface instabilities and etch-pit and void-defect densities cause large uncertainties and pixel-to-pixel fluctuations in detectivity [1]. A second possible approach for LWIR detection is to apply type-II strained-layer-superlattice (SLS) with material combinations like InAsSb-InSb or InGaSb-InAs [2,3]. The epitaxial growth technique for the antimonides (Sb) is also not very mature due to group V intermixing during growth. Surface passivation in processing is another concern for Sb-based devices. Nonetheless, SLS seems to be a promising technology for LWIR detection.

The third approach for IR detection is to exploit inter-sublevel transitions in quantum-confined heterostructures such as quantum well infrared photodetectors (QWIPs) using III-V compounds [4-6]. Potential advantages of QWIP focal plane arrays (FPAs) include a lower uncorrected-response nonuniformity (typically 1-3%) coupled with a higher operability (above 99.9%) compared to MCT detectors [7], and more mature growth and manufacturing III-V technology. In the past few years, normal-incidence mid IR detection has been demonstrated with inter-sublevel transitions in self-organized quantum dots (QDs) [8,9]. Longer inter-sublevel relaxation time in the dots could also produce a significant increase in

Manuscript received February xx, 2008.

W-Y. Jang, M. M. Hayat, R. S. Attaluri, T. E. Vandervelde, Y. D. Sharma, R. Shenoi, A. Stintz and S. Krishna are with the Department of Electrical and Computer Engineering and the Center for High Technology Materials at the University of New Mexico, Albuquerque, NM 87131-1356 USA (E-Mail: wjang@ece.unm.edu; hayat@ece.unm.edu; skrishna@chtm.unm.edu). (R. S. Attaluri has subsequently joined Lehigh University. T. E. Vandervelde will be joining Tufts University.)

J. S. Tyo is with the College of Optical Sciences, University of Arizona, Tucson, AZ 85721 USA.

E. R. Cantwell and S. Bender are with Los Alamos National Laboratory, Los Alamos, NM 87545 USA.

S. J. Lee and S. K. Noh are with Korea Research Institute of Standards and Science, 1 Doryongdong, Yusong-gu, Daejeon 305-600, Korea.
device detectivity [10]. Additionally, since the ground state is lowered with respect to GaAs band edge in device structure, we expect lower dark-current levels in QD detector as compared to earlier quantum-well (QW) detectors. This reduced thermionic emission can lead to higher operating temperatures, therefore reducing the complexity of associated cryo-coolers. Furthermore, InAs/InGaAs quantum dots-in-a-well (DWELL) photo-detectors [11] have also been developed in order to optimize the performance of the aforementioned QD detector.

In our group at the Center for High Technology Materials (CHTM) at the University of New Mexico, the DWELL detector has been designed and fabricated for both its potential for high sensitivity and its bias-controlled tunability [12]. (The DWELL detector is also inherently sensitive to normally incident photons.) Structurally, the active region of the DWELL detector is composed of a combination of InAs quantum dots (QDs) and less strained InGaAs-GaAs-AlGaAs quantum wells. A key feature of the DWELL detector is that its responsivity can be altered by varying the well width and material systems, which change the inter-sublevel transitions between energy levels (i.e., dot-to-dot, dot-to-well and dot-continuum (barrier) transitions) in a DWELL structure [11]. More importantly to the present paper, the quantum-confined Stark effect (QCSE), resulting from dots in an asymmetric well, allow the spectral response of DWELL sensor to change continuously as the applied bias voltage is varied incrementally [13]. (It is to be noted that the QCSE in interband transitions and electro-absorption in quantum-well structures have been studied by Miller et al. [17] and Aivaliotis et al. [18].) Hence, a single DWELL detector can serve as multiple detectors with different spectral responses. For example, a DWELL-based FPA was recently fabricated at CHTM successfully demonstrating two-color or multi-color operation in mid-wave infrared (MWIR, 3–5 μm) and LWIR regions [14-16].

DWELL structures have been grown that exhibit a continuous shift in their spectral response as the applied bias is varied, albeit with significant spectral overlap. To exploit this bias-controlled spectral diversity offered by the DWELL detector, a theoretical effort was launched by our group to develop an algorithmic, continuous spectral-tuning strategy [19,20]. This approach combines the electrically yet broadly tunable DWELL detector with a signal-processing technique to allow both the center wavelength (so-called tuning wavelength) and the spectral resolution to be independently selected in MWIR and LWIR regions. In this paper we report on the experimental demonstration of the concept of DWELL-based algorithmic tuning and further develop an algorithmic spectrometer. The performance DWELL-based algorithmic spectrometer (DAS) is examined taking into account issues such as sensitivity to bias selection, dark current and temperature.

II. THE DWELL DETECTOR

A. Device description and principle of operation

A DWELL detector is basically a hybrid of conventional QW and QD detectors. In a representative DWELL heterostructure, InAs QDs are embedded in InGaAs-GaAs multiple QW structures and electrons in the ground state of QD are promoted to a set of bound states within the QW by photo-excitation. Altering the QW thickness of the DWELL detector alters the nature of the allowable energy transitions (bound-to-bound, bound-to-quasi-bound and bound-to-continuum), thereby altering the DWELL’s operating wavelengths. These energy transitions enable the detection of photons from MWIR to VLWIR within a single detector. Moreover, a bias-dependent spectral response is also observed in DWELL detectors due to the QCSE. The asymmetric geometry of the electronic potential, due to the shape of the dot and the different thicknesses of QW above and below the dot, results in variation of the local potential as a function of the applied bias. From these measurements, one can observe the multi-color capability of the DWELL detector structure.

The DWELL structures considered in this paper were grown by molecular-beam epitaxy (MBE) and fabricated using standard lithography technique in a class 100 clean-room environment. Details of these structures are found in [11].
The detector identified here as DWELL-1780 was fabricated based on the growth and device processing techniques described above. This detector was designed to be bias-tunable and operate in the LWIR region. By optimizing the device structure of DWELL-1780, an optimized DWELL, termed DWELL-1781, was designed and fabricated for operation at longer wavelengths. The modification in DWELL-1781, compared to DWELL-1780, included change in the shoulder width of GaAs well from 15Å to 30Å, which led to a lowering of the quantum well state and introduce a red shift in the spectral response. The growth conditions of both detectors are described in the corresponding device schematics, shown in Fig. 1. Device characterization results are depicted and discussed in the next section. Both DWELL-1780 and DWELL-1781 detectors are later employed by the proposed algorithmic spectrometer.

B. DWELL device characterizations

Spectral responses of the two DWELL devices were measured by using a Nicolet 870 FTIR spectrometer and a Keithley 428 current-amplifier, which is used to control the bias applied to the detectors. Photocurrents and corresponding dark-currents at different biases were also obtained using a HP oscilloscope. Bias-dependent spectral responses of the DWELL-1780 are shown in Fig. 2 illustrating the multi-color attribute of the DWELL in the LWIR range. Figure 2 also demonstrates photocurrent characteristic measured from a DWELL detector at different biases. The spectral measurements of the optimized DWELL-1781 are illustrated in Fig.3. There are two distinct peaks at LWIR region observed, one in about 9.5 μm and the other in 10.5 μm. Improvement in the performance was evident showing shifts in the operating wavelengths. The peak operating wavelengths for negative biases shift from 8.5 μm (in DWELL-1780) to 9.5 μm (in DWELL-1781) and for positive biases they shift from 10 μm (in DWELL-1780) to 10.5 μm (in DWELL-1781). This red shift is due to the lowering of the quantum well state in the heterostructure.

The limitation of the DWELL’s operating temperature was observed due to higher dark current levels at higher device temperatures. Figure 4 shows the bias-dependent spectral responses for various device operating temperatures. It is to be noted that the performance of DWELL-1781 begins to degrade dramatically as device operating temperature exceeds 60K. At 77K, noise dominates the spectral measurements and almost no spectral variation is observed for any bias.

More structural adjustments were made to improve the operating temperature of DWELL-1781, yielding DWELL-2299. Notable differences between these two devices are the incremental change in the shoulder size of the GaAs well (from 30Å in DWELL-1781 to 40Å in DWELL-2299) and the presence of shoulders on both sides of the InGaAs layer giving rise to a double DWELL (D-DWELL) design [21]. Figure 5 describes the performance of DWELL-2299 demonstrating the bias-dependent spectral responses at 77K, which is much higher than the maximum operating temperature of DWELL-1781.
Inter-sublevel transitions in conduction band diagram are depicted in Fig.6. Based on band offsets from the photo-luminescence (PL) measurements of DWELL-2299, two MWIR peaks each at 5.25 μm and 6.5 μm are due to a bound-to-bound transition between the ground state of the QD and the states within the GaAs QW. The LWIR peak at 8.35 μm is due to a transition between the ground state of the QD and the state within the InGaAs QW [22].

III. ALGORITHMIC SPECTROMETER

We begin by providing a brief, qualitative description of the algorithmic spectrometer. A mathematical description is given in Subsection A, followed by the experimental verification of the algorithmic spectrometer in Subsection B.

We will assume that an unknown target is probed repeatedly by the DWELL detector, each time using a different operating bias, resulting in a set of bias-dependent photocurrents. The idea of an algorithmic spectrometer is to utilize these bias-dependent photocurrents to construct an approximation of the spectrum of the object-of-interest without using any physical spectrometer or optics. The algorithmic spectrometer is implemented as follows. First, a hypothetical narrowband tuning filter is selected with a specified center (tuning) wavelength and a specified full-wave-at-half-maximum (FWHM) linewidth. Next, a set of weights, one for each operating bias, is obtained through the use of the projection algorithm reported in [20]. These weights have the property that once used to form a weighted linear superposition of the DWELL’s bias-dependent spectral responses, the resulting superposition spectral response best approximates the hypothetical tuning filter [20]. Next, the bias-dependent photocurrents are linearly combined using the same weights, yielding an approximation of target’s spectrum at the prescribed tuning wavelength. The reconstruction of the target’s spectrum is completed by repeating the above procedure for other tuning wavelengths.

A. Review of the spectral-tuning algorithm

We begin by reviewing germane aspects of the spectral-tuning algorithm [19,20] to be used with the DWELL detector in producing the DAS. Consider an arbitrary object-of-interest whose transmittance in the LWIR range is represented by the function \(f(\lambda) \). We assume that the object is illuminated by a black-body source. Suppose that a DWELL detector is used to probe the illuminated object using various biases, \(v_1, ..., v_K \), yielding a set of bias-dependent photocurrents, \(I_1, ..., I_K \), respectively. Let the detector’s spectral response at the \(i \)th applied bias be denoted by \(R_i(\lambda) \).

Our approach for achieving an algorithmic spectrometer can be described as follows. Imagine an ideal (and hypothetical) narrowband LWIR tuning filter centered at wavelength \(\lambda_n \) and with transmittance function \(r(\lambda; \lambda_n) \). (In a conventional spectrometer, as schematically shown in Fig.7(a), such a filter would be used with a broadband detector to estimate the spectrum of the object-of-interest at wavelength \(\lambda_n \).) Our earlier theoretical work [20] provides a method for calculating a set of

Fig. 5. Bias-dependent spectral responses of DWELL-2299 at 77K (top,left) and photocurrent characteristic (top,right), the growth schematic of a device (bottom).

Fig. 6. Energy transition levels in the conduction band (top) and the corresponding peak wavelengths at the spectral responses of DWELL-2299 (bottom) at 77K.
imaginary tuning filter $r(\lambda;\lambda_n)$ in the sense of minimizing the wavelength-integrated MSE. Now, if we repeat the above procedure while sweeping the center wavelength λ_n of the narrowband tuning filter r in a specified range of interest, we will obtain, for each center wavelength, an estimate of the spectrum of the source transmittance. Hence, as we sweep across the center wavelength λ_n of our “hypothetical” tuning filter r and apply the superposition procedure described earlier, we will reproduce the transmittance function f, albeit, within the confines of the approximation.

The above concept of an algorithmic spectrometer is schematically shown in Fig.7(b). After several repetitions for desired tuning centers, $\lambda_1,\ldots,\lambda_m$, say, the set of synthesized outputs $I_{\lambda_1},\ldots,I_{\lambda_m}$ is generated and regarded as the approximate reconstruction of the spectrum of the target-of-interest within the prescribed wavelength range. We reiterate that these synthesized outputs approximate those obtained by using an ideal IR detector in conjunction with an actual tunable spectral filter shown schematically in Fig.7(a). Thus, the algorithmic spectrometer shown in Fig.7(b), which uses no physical spectral filters, is functionally equivalent to the actual spectrometer schematically shown in Fig.7(a).

Before we proceed with the experimental verification of the DAS, we will show a representative example of the superposition tuning filter $\hat{r}(\lambda;\lambda_n)$ that approximates a desired triangular tuning filter with center wavelength of 8.5 μm and a FWHM width of 0.5 μm. The results corresponding to DWELL-1780 are shown in Fig.8 using the bias-dependent spectral responses shown in Fig.2. Note that the initial choice of $\alpha = 0$ (no regularization), shown in Fig.8(a), yielded a somewhat fluctuating reconstruction, which can be avoided.
of the desired tuning filter. However due to the effect of weak spectral responses from DWELL-1780 in the MWIR region (along with atmospheric absorptions), poor approximations in the range 2.55 \(\mu \)m to 7 \(\mu \)m are observed. Also the limitation of tuning filter approximation was evident beyond 11.5 \(\mu \)m because of the lack of spectral responses (contents) by DWELL-1780 in Fig. 2 (left). As a result, we anticipate that the DAS with DWELL-1780 can potentially perform well over the range 8 – 10.5 \(\mu \)m.

B. Experimental demonstration of DAS

For the experiments presented here, we considered four different LWIR targets, \(f_1(\lambda), \ldots, f_4(\lambda) \), as depicted in Fig.10 (solid curves), with different center wavelengths in the range 8-10 \(\mu \)m and different spectral bandwidths, \(\Delta \lambda = 1.0 - 3.5 \mu \)m. The spectral response of the DWELL-1780 detector was measured at detector operating temperature of 30K for 82 bias voltages between -5V and 5V by using an FTIR spectrometer and a black-body source. Next, for every applied bias the photocurrent and associated dark current were measured for each one of the four targets illuminated by the global source. It is to be noted that in the experiment, the same detector was sequentially biased to generate the bias-dependent spectral response of the DWELL detector.

The SNR at each bias was estimated by utilizing a standard Poisson approximation to model the dark current [23,24] in conjunction with our experimental data for the variance of the dark current. Each quantity SNR\(_k\) (corresponding to the \(k \)th bias) was calculated using

\[
\text{SNR}_k = \frac{y_{p,k}}{\sigma_{N,k}},
\]

where \(y_{p,k} \) is the experimentally averaged photocurrent (over 100 realizations) and \(\sigma_{N,k} \) is the standard deviation of the dark current, also calculated empirically from the dark-current realizations. This step allows us to determine the noise-equivalent matrix \(\Phi \), as shown by (3) in the Appendix.

Next, the algorithmic tuning procedure described earlier in Subsection III.A was followed to calculate the synthesized superposition photocurrents, one for each desired tuning wavelength. We used 195 ideal triangular tuning filters representing \(r(\lambda;\lambda_n) \) (with FWHM of 0.5 \(\mu \)m, similar to the one shown in Fig.8), whose center wavelengths range from 2.55 \(\mu \)m to 12.5 \(\mu \)m in steps of 0.05 \(\mu \)m, and calculated the corresponding weight vectors for each center wavelength according to (3) in the Appendix. As a result, 195 synthesized photocurrents are calculated according to (2) in the Appendix yielding a reconstruction of each target spectrum. The best regularization parameter of \(\alpha = 12 \), was obtained by trial and error and used.

Figure 10 shows the experimentally reconstructed spectra from the DWELL-1780 detector (dotted curves) along with the actual spectra of the targets (solid curves). The figure demonstrates two key points. First, the experimental reconstructions of the target spectra are good approximations of their true spectra, validating our approach. Secondly, the limitation of the proposed approach is also evident. For example, the DWELL-1780 detector does not accurately reconstructed the long wavelength edge of target \(f_2(\lambda) \) (Fig. 10(b)). This is due to the lack of response of the DWELL beyond 11.5 \(\mu \)m.

We observe that in general, the algorithmic spectrometer works well for tuning wavelengths in the spectral range (8 ~ 12 \(\mu \)m) for which the DWELL’s response is strong, as shown in Fig. 2. However, as the tuning wavelength is extended beyond 3 \(\mu \)m (toward near IR) or beyond 12 \(\mu \)m (toward very long wavelength IR), the tuning algorithm can no longer reconstruct the tuning filter properly, as seen from Fig. 9. This is primarily attributable to the weak response of the DWELL at these extreme wavelengths, as seen in Fig. 2. Consequently, we expect the performance of the algorithmic spectrometer to be poor too at these extreme wavelengths. Moreover, the
sensitivity to extreme wavelengths is particularly accentuated in cases for which the SNR of the photocurrent is low (<10 dB). Thus, there is a tradeoff between the SNR and the spectral range of the algorithmic spectrometer. We therefore expect DAS to exhibit higher sensitivity to SNR at extreme wavelengths, which, in turn, would require lower operating temperatures. Additional theoretical analysis on tuning limitation is described in [19,20].

IV. EXPERIMENTAL PERFORMANCE ANALYSIS

In previous section, we demonstrated the capability of the proposed DAS (with DWELL-1780) in the spectral sensing various LWIR targets. In this section we study the performance of the DAS (using DWELL-1781) as a function of signal-to-noise ratio, detector’s temperature variation and bias diversity. Here, we use the DWELL-1781, instead of using DWELL-1780 and DWELL-2299, due to its higher operating temperature, its spectral response at longer wavelengths, and its superior tunability.

We begin by examining the dependence of the DAS performance on the photocurrent’s signal-to-noise ratio. The spectrum-reconstruction procedure used to generate Fig.10(c) for the LWIR target $f_3(\lambda)$ was repeated for various levels of the photocurrent’s signal-to-noise ratio. For each level of the signal-to-noise ratio, a scaling factor, ρ, is used to modify the average photocurrent, $y_{p,k}$ uniformly in k, which, in turn, amplifies the photocurrent’s signal-to-noise ratio according to (1). (The noise variance in (1) is held fixed.) This analysis is useful, for instance, in examining the effect of changing the quantum efficiency of the QDIP on the performance of the algorithmic spectrometer. The results are shown in Fig.11; they show that at high signal-to-noise levels ($\rho > 1000$), the reconstruction of the spectrum $f_3(\lambda)$ is improved compared to the case shown in Fig.10(c). In particular, the approximation of the pass-band region is improved while the response in the stop-band region is lowered. As ρ is lowered below a critical value of approximately 100, some spurious peaks emerge in the stop-band region ($3 \mu m < \lambda < 6.5 \mu m$). The performance degrades slightly as ρ is lowered below 100 down to 0.1. Finally, for very poor signal-to-noise ratios, i.e., $\rho < 0.1$, the performance becomes poor in that the pass-band region becomes almost flat and the spurious peaks in the stop-band region become amplified. Thus, the incorrect peak around 3 ~ 4 μm for a target in 8 ~ 9 μm is due to an artifact by the algorithm.

Next, we investigate the dependence of the performance of the algorithmic spectrometer on the DWELL’s operating temperature. Here, the procedure used to generate Fig. 10(c) for the LWIR target $f_3(\lambda)$ was repeated for various operating temperatures of the DWELL detector and the results are depicted in Fig.12 (dark solid curves) along with the actual spectra of the target filter (thin solid curves). As expected, the performance of the algorithmic spectrometer is degraded as the detector’s temperature increases. This is a result of the increase in the dark current with temperature, which reduces the signal-to-noise ratio, as well as the reduction in the overlap in the DWELL’s spectral responses as the temperature increases (as it was pointed out in Subsection II.B). While accurate reconstruction is observed at 30K (see Fig.10(c)), as the DWELL temperature increases the reconstructed target spectra deteriorates in the pass-band region. For example, the performance is poor at 77K. Thus, the algorithmic spectrometer at higher device temperatures cannot properly reconstruct the target peak even at 8 ~ 9 μm because at low SNRs the peak of the DWELL detector is buried in the DWELL’s noise floor [20].

Finally, we examine the dependence of the performance on the diversity of the available operating biases of the DWELL-1781 detector. The bias selection is pursued to find the number of biases required to achieve acceptable target reconstruction. As a benchmark, all 82 bias-dependent spectra...
(i.e., 41 each at negative and positive biases from -5V to -1V in 0.1V step, and from 1V to 5V in 0.1V step) of the DWELL-1781 detector were considered to generate the LWIR target \(f_1(\lambda) \). Then the reconstruction procedure was repeated for the sub-sampled biases as follows: 40, 20 and 10. Figure 13 describes the reconstruction results for different bias selections. It was observed that a good target estimation was achieved even with many fewer number of biases (for the case of 10 biases) showing the clear cutoff and strong response at the pass-band region. For consistency, the performances of DAS on the diversity of operating bias were further tested with the other three LWIR filter targets \(f_2(\lambda) \), \(f_3(\lambda) \) and \(f_4(\lambda) \) in Fig. 10. After applying DAS with sub-sampled biases, target-spectrum reconstruction was achieved for these LWIR targets with an accuracy similar to that for \(f_1(\lambda) \). Thus, the spectral information of original target is well-maintained and preserved even with a reduced number of biases. This is due to the existence of strong DWELL spectral responses at the particular bias selections. However, the selection of weak DWELL spectral responses at biases from -1.5V to 1.5V leads to the poor reconstructions (results not shown).

V. CONCLUSIONS

In this paper we demonstrated an algorithmic spectrometer consisting of a DWELL detector with bias-dependent spectral response, which is due to the quantum confined Stark effect, and a post-processing tuning algorithm. The implementation of the algorithmic spectrometer consists of two key stages and it requires that a target is probed repeatedly by the DWELL detector at different operating bias conditions, yielding a collection of bias-dependent photocurrents. In the first stage, sets of weights are calculated using the projection algorithm reported in [20]; in particular, one set of weights is calculated for each wavelength of interest. In the second stage and for each wavelength of interest, the photocurrents are linearly combined using the very weights associated with the specific wavelength, yielding a reconstruction of the target spectrum at that wavelength. Successful algorithmic reconstructions were obtained of the spectra of four LWIR target filters validating our approach for an algorithmic spectrometer. The performance was further examined in terms of the dependences on the photocurrent’s signal-to-noise ratio, the DWELL’s operating temperature and the diversity of the available operating biases. As expected and depending upon the DWELL’s operating temperature, the performance of the algorithmic spectrometer is degraded by the increase in the dark current as the detector’s temperature increases above 50K (which, in turn, reduces the signal-to-noise ratio), and the lack of the overlap in the DWELL’s spectral responses at high temperatures. The best reconstruction result was observed at 30K. Notably, good reconstruction can be achieved even by using only 10 appropriately placed biases for which strong, overlapping DWELL spectral response exist.

VI. ACKNOWLEDGEMENTS

The authors acknowledge support from NSF grants ECS-0401154, IIS-0434102, LANL Grant 57461-001-07, AFRL Grant FA9453-07-C-0171, and the Korea Foundation for International Cooperation of Science and Technology (KICOS) through a grant provided by the Korean Ministry of Education, Science and Technology (No. 2007-00011).

APPENDIX

Mathematical concepts behind the algorithmic spectrometer are further described here for completeness.

Each reconstructed value \(\hat{I}(\lambda_n) \) of the spectrum of the target-of-interest, at a desired tuning wavelength \(\lambda_n \), is mathematically expressed as

\[
\hat{I}(\lambda_n) = \sum_{i=1}^{K} w_n,i I_i, \tag{2}
\]

The set of weights, \(w_{n,i} \) for center wavelength \(\lambda_n \), which we compactly write as \(w_n = [w_{n,1}, \ldots, w_{n,K}]^T \), is given by the formula (Eq. (18) in [20])

\[
w_n = \left[A^T A + \Phi + \alpha Q^T A^T Q \right]^{-1} \left[A^T R_{\lambda_n} \right], \tag{3}
\]

where \(A = [R_1, \ldots, R_K] \) and \(R_k = [R(\lambda_{min}), \ldots, R(\lambda_{max})]^T \) for \(k=1, \ldots, K \), while \(R_{\lambda_n} = [r(\lambda_{min}; \lambda_n), \ldots, r(\lambda_{max}; \lambda_n)]^T \). Here, the wavelengths at which the spectrum is sampled range from a minimum value of \(\lambda_{min} \) to a maximum value of \(\lambda_{max} \).

Moreover, \(\Phi \) is a diagonal noise-equivalent matrix whose \(k \)th diagonal entry is \(R_{k,i} / \text{SNR}_k \), where \(\text{SNR}_k \) is the signal-to-noise ratio of the photocurrent at the \(k \)th bias \(\nu_k \). The regularization term, \(\alpha Q^T A^T Q \), penalizes spurious fluctuations in the approximation [20]. In this work, the matrix \(Q \) is taken as a Laplacian operator and \(\alpha \) is the corresponding regularization.
weight, which is selected by the user [20]. This completes the description of the algorithmic spectrometer.

REFERENCES

Woo-Yong Jang received his B.E in Electrical Engineering, at the University of Canterbury, New Zealand in April 2001 and his M.S in Electrical Engineering at the University of Southern California, Los Angeles, CA in May 2004 and is presently working on his Ph.D. degree in Electrical and Computer Engineering from the University of New Mexico in Albuquerque, New Mexico. He is presently a graduate student at the Center for High Technology Materials at the University of New Mexico.

Majeed M. Hayat (S89-M92-SM00) was born in Kuwait in 1963. He received his B.S. degree (summa cum laude) in 1985 in electrical engineering from the University of the Pacific, Stockton, CA. He received his M.S. and Ph.D. degrees in electrical and computer engineering, respectively in 1988 and 1992, from the University of Wisconsin-Madison. From 1993 to 1996 he worked at the University of Wisconsin-Madison as a Research Associate and co-principal investigator of a project on statistical minifield modeling and detection, which was funded by the Office of Naval Research. In 1996, he joined the faculty of the Electro-Optics Graduate Program and the Department of Electrical and Computer Engineering at the University of Dayton. He is currently a Professor in the Department of Electrical and Computer Engineering at the University of New Mexico. His research contributions cover a broad range of topics in statistical communication theory, optoelectronics, signal/image processing, remote sensing and applied probability theory including avalanche photodiodes, optical communication systems, image restoration and enhancement, and queueing models for distributed computing systems and networks. Dr. Hayat is a recipient of a 1998 National Science Foundation Early Faculty Career Award. He is a senior member of IEEE and a member of SPIE and OSA.

J. Scott Tyo is an Associate Professor in the College of Optical Sciences at the University of Arizona. He received the BSE, MSE, and Ph.D. degrees in electrical engineering from the University of Pennsylvania in 1994, 1996, and 1997, respectively. From 1994 – 2001 he was an officer in the US Air Force, serving at the Air Force Research Laboratory in Albuquerque, NM, and at the US Naval Postgraduate School in Monterey, CA. In 2001 he joined the faculty of the ECE Department at the University of New Mexico, and in 2006 he joined the University of Arizona. Prof. Tyo’s research program investigates many aspects of advanced microwave and optical remote sensing, including spectral, polarimetric, and thermal imaging, as well as imaging and non-imaging active laser and radar systems. He is a senior member of the IEEE and a fellow of SPIE, as well as a member of OSA and URSI Commissions B & E.

Ram S. Attaluri received a BS in computer engineering from University of Madras. He also received his MS and Ph.D. in Electrical Engineering from University of New Mexico in 2001 and 2007, respectively. His dissertation title is “Growth and optimization of InAs/InGaAs quantum dots-in-a-well infrared photodetectors.” He is presently working as a postdoctoral research associate in the center for optical technologies at Lehigh University.
Thomas E Vanderwelde (M’03) earned two B.S. degrees from the University of Massachusetts, Amherst, one in physics and the other in astronomy, both in 1999, his M.A. and Ph.D. degrees in Physics at the University of Virginia, Charlottesville, in 2001 and 2004, respectively. He presently holds the John A. and Dorothy M. Adams Endowed-Chair Professorship as an Assistant Professor in The Electrical and Computer Engineering Department at Tufts University. Prior to his present employment, he was a Research Assistant Professor of Electrical and Computer Engineering at the Center for High Technology Materials at the University of New Mexico in 2007-8 and he was a Post-Doctoral Fellow at University of New Mexico with Sanjay Krishna in 2007, University of Illinois Urbana-Champaign with Milton Feng in 2005-6, and University of Virginia with Michael Skrutskie in 2004-5. Additionally, he also was a Visiting Assistant Professor of Physics at Washington and Lee University in 2004-5. He has authored/co-authored over 20 peer-reviewed journal articles, over 30 conference presentations, and has one provisional patent. His current and previous research interests are group IV and III-V materials for photodetectors, photovoltaics/thermophotovoltaics, nanophysics/devices, terahertz electronics, and hetero-integrated circuits. Dr. Vanderwelde was on the executive committee for the Albuquerque IEEE LEOS chapter from 2007-8. In addition to IEEE, he is a member of APS, SPS, AAS, Sigma Xi, MRS, TMS, AVS, AAAS and Eta Kappa Nu.

Yagya D. Sharma is a Member (M) of IEEE & LEOS since 2001. He was born in India and received the Master of Philosophy in Material Science from I.I.T Roorkee, Roorkee and his PhD in Electronics on Phase change optical memory materials from the University of Delhi in 2003. He spent two years in the University of Osaka in the Electronics Engineering department under the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japanese Government Research Fellowship from April 2004 to March 2006. During this period, he was working on integrated semiconductor lasers. After that he has joined the Center for high technology Materials, UNM and currently he is working as a research scientist. His areas of interest are on strain layer superlattice & quantum dot in a well infrared detectors. He has published about 40 papers in peer reviewed journals as well as conferences proceedings. His current and previous research interests are group IV and III-V materials for photodetectors, nanophysics/devices, and hetero-integrated circuits. He is presently on the executive committee for the local IEEE LEOS Chapter. In addition to IEEE and IEEE-LEOS, he is a member of SPIE, OSA, and MRS as well as a life member of the Semiconductor Society of India.

Sanjay Krishna is an Associate Professor of Electrical and Computer Engineering at the Center for High Technology Materials at University of New Mexico. Sanjay received his Masters in Physics from the Indian Institute of Technology, Madras in 1996, MS in Electrical Engineering in 1999 and PhD in Applied Physics in 2001 from the University of Michigan, Ann Arbor. He joined the University of New Mexico as a tenure track faculty member in 2001. His recent research interests include growth, fabrication and characterization of self-assembled quantum dots and type II InAs/InGaSb strain layer superlattices for mid infrared detectors. Dr. Krishna received the Gold Medal from IIT, Madras in 1996. He received the best student paper award at the 16th NAMBE Conference in Banff in 1999, the 2002 Ralph E Powe Junior Faculty Award from Oak Ridge Associated Universities, the 2003 IEEE Outstanding Engineering Award, 2004 Outstanding Researcher Award from the ICFE Department, the 2005 School of Engineering Junior Faculty Teaching Excellence Award, 2007 North American Molecular Beam Epitaxy Young Investigator Award, 2007 NCNM-DIA Chief Scientist Award for Excellence and 2008 Early Career Achievement Award from SPIE and IEEE-Nanotechnology Council. Dr. Krishna has authored/co-authored more than 70 peer-reviewed journal articles, over 40 conference presentations, two book chapters and has two issued and five pending patents.

Steven C. Bender is with the Space and Remote Sensing Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. His research areas include remote sensing, sensor modeling, and system integration and performance.

Sang Jun Lee received the B.S., M.S., and Ph.D. degrees in physics from the Kyunghee University, Suwon, Korea, in 1995, 1997, and 2004, respectively. From 1997 to 2002, he was a Researcher at the Center for Electro-Optics, Korea Advanced Institute of Science and Technology, Daejeon. In 2002, he joined the Korea Research Institute of Standards and Science at Daejeon, where he is currently a Senior Research Scientist in the Center for Advanced Measurement and Instrumentation. In 2005-2006 and 2008, he worked as the visiting scientist of the Prof. S. Krishna group at University of New Mexico, Albuquerque. His research interests include the epitaxial growth of the self-assembled quantum dots (SAQD) and type II strained layer superlattices (SLS) with MBE, Fabrication of Infrared focal plane array using SAQD and SLS structures and hybrid bonding technology.

Sam Kyu Noh is a Principal Research Scientist of Korea Research Institute of Standards and Science (KRISS). He received his degrees of MSc in 1980 and PhD in 1986 from Yonsei University (Seoul, Korea) in the field of semiconductor physics. He worked as a post-doctoral researcher at Brown University (Providence, USA) and Frontier Research Laboratory of RIKEN (Wako, Japan) during 1987-1989, and joined KRISS as a group leader in 1989. He was a visiting researcher at Electrical and Computer Engineering Department of University of Michigan (Ann Arbor, USA) in 2000 and University of California at Los Angeles in 2007. Dr. Noh is now PI of the Global Research Laboratory (GRL) on Quantum Detector Technology that is collaborating with Prof. S. Krishna, University of New Mexico (Albuquerque, USA). His present research interest includes growth and fabrication of nanoscale structures and devices, especially for quantum-dot and superlattice based far-infrared/terahertz detectors. Dr. Noh was awarded the Presidential Medal of Merit (Korean Government) in 2003 and the Academic Achievement Prize (Korean Physical Society) in 2004 in recognition of works on quantum semiconductors. He has published and presented more than 100 research papers each in journals and conferences.

Sanjay Krishna is a Principal Research Scientist of the Threat Reduction Directorate at the Los Alamos National Laboratory, Los Alamos, NM 87545, USA. His research areas include remote sensing, sensor modeling, and system integration and performance.