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Abstract—t is, by now, well known that MclIntyre’s localized arises from randomness in the coupled avalanching process of
carrier-multiplication theory cannot explain the suppression of ex- - the very electrons and holes that give rise to the gain in the first
cess noise factor observed in avalanche photodiodes (APDs) thatmace [2]. It has recently been demonstrated that the use of thin

make use of thin multiplication regions. We demonstrate that a | th APD ltiolicati . i d
carrier multiplication model that incorporates the effects of dead (less than Jum) multiplication regions serves 1o reduce

space, as developed earlier by Hayait al. provides excellent agree- €Xcess noise [3], [4]. When operated in appropriate configura-
ment with the impact-ionization and noise characteristics of thin tions, such as resonant-cavity enhanced (RCE) devices, these
INP, Ing 52Al0.48As, GaAs, and Ab.2Gao.sAs APDs, with multi-  APDs can achieve high quantum efficiency 0.7) and large
p!lcatlon regions of different WIthS. W_e o_utllne a gen_e_ral tech- gain-bandwidth product{ 290 GHz) [5], [6].

nique that facilitates the calculation of ionization coefficients for o ] ) .

carriers that have traveled a distance exceeding the dead space APD noise is most readily characterized by a quantity called
(enabled carriers), directly from experimental excess-noise-factor the excess noise factér [1], [2]. McIntyre [7] first obtained a

data. These coefficients depend on the electric field in exponential mathematical form for this function in a classic paper published
fashion and are independent of multiplication width, as expected 1966. He showed that the excess noise factor depends only

on physical grounds. The procedure for obtaining the ionization . . .
coefficients is used in conjunction with the dead-space-multiplica- on the mean gaifx) and on the ratid: of the ionization co-

tion theory (DSMT) to predict excess noise factor versus mean-gain €fficients for holes and electrons. Mcintyre’s formula rests on
curves that are in excellent accord with experimental data for thin  two assumptions: 1) that the avalanche multiplication region is
lI-V APDs, for all multiplication-region widths. uniform and 2) that the ability of electrons and holes to effect
Index Terms—AIGaAs, dead space, excess noise factor, GaAs,an impact-ionization does not depend on their past history. The
gair), impact-ionization, InAIAs, InP, ionization .coefficients, ion- Mclintyre formula has been successfully used for many years
ization threshold energy, thin avalanche photodiodes. to characterize the multiplication noise of conventional thick
APDs.

I. INTRODUCTION If either (or both) of the above conditions are not satisfied,
ECENT advances in the design and fabrication J}owever, a more general theory is required for calculating the
xcess noise factor. Nonuniform multiplication regions can be

avalanche photodiodes (APDs) have allowed the§ i . .
devices to achieve levels of gain-bandwidth product and ars nstructed using arbitrary multilayer APD structures created

configurability that make them excellent choices for use i th the help of bandgap engineering. Multiquantum-well

current 10 Gb/s receivers operating in the silica-fiber windodt" 2S [8: [9] are designed such that the carrier multiplication

Within an operational frequency range corresponding to that/J°C€SS takes placc_e only at certain preferred_ locations in the
iaterlal, as determined by the externally engineered superlat-

current lightwave systems, APDs provide an advantage o8 Lo : . . ;
p-i-n detectors because of the internal gain that they provil&®: The uncertainty in the carrier birth locations is thereby
uced, and a theory admitting nonuniform multiplication

1]. Thi inis, h ied b ise t
[1] 'S gain IS, NOWEVer, accompanied by excess noise If% ] is required to describe the noise of these devices. The

expression for the excess noise factor will then depend not only
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Gain fluctuations, and therefore APD noise, are typicallwas independent of the multiplication-region width. The for-
lowered when the multiplication region is tailored to a nonunmulation in [4] utilized only knowledge of the electric field,
form profile, and when carrier history is taken into accounthe ionization threshold energies for each carrier, and noise-
since both of these features generally reduce randomne&ssus-gain experimental data. In particular, for each carrier and
Although neither is accommodated by the Mclintyre theory [7§ach material, a single electric-field-dependent model for the
[24], it is often used anyway, with the result that the devicenization coefficient was developed that was suitable for de-
characteristics are not properly understood. In the early 1990&es of all thicknesses (100 nm—-1600 nm for the particular data
Hayatet al. [14]-[16] formulated a dead-space-multiplicatiorsets examined). In essence, the paper by Satieh [4], pub-
theory (DSMT) that permitted the gain, excess noise factdished in 2000, provided a methodology, as well as a practical
and gain probability distribution to be determined in therocedure, for calculating the material-specific ionization coef-
presence of dead space. Because the DSMT developed in fidgnts for carriers that have traveled a distance greater than the
incorporates a nonuniform electric field, it can accommodati=ad spacedirectly from gain and noise measurements. This
arbitrary history-dependent ionization coefficients. The resulisature distinguishes their approach [4] from other variations
presented in [15] and [16] clearly illustrated that dead spaf®], [20], [22] of the original DSMT implementation [15].
reduces the excess noise factor, and that this reduction becomé&¥hen this width-independent model for carrier ionization
more significant as the ratio of the dead space to the multipliras used in conjunction with the DSMT to calculate the excess
cation-region width increases. noise factor, good agreement with experimental results were

In subsequent years, experiments and Monte Carlo (MC) sinbtained [4]. The fits, however, were found to be sensitive
ulations revealed that the excess noise factor does indeedtdethe selection of the electron and hole ionization threshold
crease as the multiplication-region width is reduced [25]-[2%nergies, which are key parameters in the DSMT. Unfortu-
Moreover, it has recently been shown [4], [20], [21] that in thimately, accurate theoretical estimates of the ionization threshold
APDs, the dead space represents a significant fraction of #mgergies have been reported only for a limited number of
multiplication-region width (up to 25% for devices with widthsmaterials, specifically for electrons in GaAs and InP [33], and
< 100 nm) and that dead space does indeed play an imptbre threshold energies reported elsewhere are of questionable
tant role in reducing the excess noise factor. It is principally faccuracy. By virtue of the free parameter in their approach,
this reason that there has been a great deal of interest of latédwever, the predictions obtained by Yuen al. [3], [22]
thin-multiplication-region APDs. were superior. A way had to be found to adjust the theoretical

Even with the success of the DSMT in mathematically chaienization threshold energies, resulting effectivethreshold
acterizing the effect of dead space on avalanche multiplicati@nergies, to better accommodate the presence of dead space
its utility in predicting experimental results remained limitedand the underlying physics into the model.
primarily due to the absence of a suitable way of determiningIn this paper, we do precisely that. In optimizing the fit of
the ionization coefficients in the presence of dead space. In ptireory to data, the ionization-threshold energies are permitted
ticular, ionization coefficients extracted from the Mcintyre multo deviate from the theoretical values reported in the literature.
tiplication theory are not applicable to devices in which deaFhis optimization process essentially extracts the effective ion-
space plays a role. The DSMT requires knowledge of the ioization threshold energies. The advantage of adjusting the ion-
ization coefficients of enabled carriers, i.e., those that have trazation threshold energy in APD noise prediction was originally
eled a distance exceeding the dead space. In the absenckigtilighted by Liet al. [20] in the context of their approach,

a proper theory for the ionization coefficients, &i al. [20] which differs in principle from ours [4], as discussed earlier.
used a mean-free-path formulation to estimate how the effec-The enhanced procedure reported here turns out to provide
tive ionization coefficients extracted with the help of the Mcinsubstantially improved agreement of the DSMT calculations
tyre theory (such as those reported in [30] and [31]) could lvéth experiment, while maintaining all of the underlying phys-
modified; they then proceeded to use these modified valuesi¢al principles attendant to the DSMT model [4], [15]. This is
the DSMT to predict the excess-noise characteristics of thitustrated by comparing the outcome provided by the new pro-
APDs. This approach is, however, approximate, as pointed @gidure outlined here with that used previously [4] for thin-mul-
by Spinelliet al.[32], and as recognized by kit al.[20]. tiplication-region GaAs and AlGaAs APDs. InP and InAlAs

Mclintyre [19] and Yuaret al. [3], [22] subsequently devel- APDs with various multiplication-region widths are also exam-
oped a modification of the DSMT and utilized it to study théned in detail. The agreement of the DSMT with experiment
excess noise factor for thin APDs. The formulation developedrns out to be excellent for all four materials, for all multipli-
in [19] uses a so-called history-dependent electric field to incaration-region widths examined.
porate nonlocal effects in the ionization coefficients. However,
the implementation of this approach, carried out in [3] and [22],
makes use of a free parameter (the width of the Gaussian corre-
lation function used in the formulation of the history-dependent For completeness, we begin by reviewing some germane
electric field) to facilitate achieving agreement between theoagpects of the double-carrier multiplication DSMT [15]. Dead
and experiment. space is a feature of the avalanche-multiplication process

More recently, Salelet al. [4] directly applied the DSMT because band-to-band impact-ionization can take place only
to published experimental data for GaAs and AlGaAs APDafter an electron or hole has acquired sufficient kinetic energy
[28] and developed a model for the ionization coefficients th& collide with the lattice and ionize another electron—hole

Il. DEAD-SPACE MULTIPLICATION THEORY
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pair. The smallest value of the ionizing-particle kinetic energyistance greater than the dead space, a plausible model for the
that can accommodate this process is termed the ionizatavove pdfs is given by [15]

threshold energy, denotédd. andE};, for the electron and hole,

respectively. The minimum distance that a newly generated he(w) =ae 4 y(z — d,) (5)
carrier must travel in order to acquire this threshold energy is hu() =Be™ Py (z — dy) (6)
termed the carrier dead space [12], and is dendtednd d;,

for electrons and holes, respectively. Assuming the absencentiferew(x) is the unit step functiom{(x) = 1if z > 0, and
phonon scattering, the presence of a uniform electric field  «(x) = 0 otherwise]. These pdfs correspond to a fixed (hard-
the multiplication region gives rise to a constant force so thtitreshold) dead space, for which the ionization coefficient of a
[12] carrier is zero for carriers that have traveled a distance shorter
than the dead space and is constant for carriers that have traveled

de :Eie (1) alonger distance.
q€ This model is the spatial analog of the fixed nonparalyzable
i, :Eih ) dead-time-modified Poisson process [35]-[37]; the underlying
g€ Poisson character of this process is responsible for the ex-

ponential behavior of the inter-event intervals in (5) and (6)
é%_distances greater than the dead space. In some physical
processes the dead space is stochastic, rather than fixed, which

tering would likely result in larger estimates of the effectiv se to th bl vzable dead-ti dified
ionization threshold energies than those returned by theoreti jes nse fo the vanable nonparalyzable dead-time-modifie
isson process [38]. In other circumstances, carriers can be

estimates, which do not involve phononscattering effects. A S .
radually, rather than abruptly, enabled, resulting in relative

modeling phononscattering loss is a difficult enterprise. How- L .
ever, it h%g been argued b)g/, Anderson and Crowelll?34], for e soft-threshold) dead space, which is the spatial analog of the

ample, that the relative value of the phononscattering loss is sk c_I:—’tal\rngomﬂed Zo'sfsgn pc;oces_sl;[t39]i l\{]C scljmuéatlon ShOV\{Sk
nificantly smaller than the ionization threshold energy. Thus a carriers do indeed exhibit relative dead space (sic

has been customary to assume zero phononscattering loss ﬁ%jge);”th.e lonization probabllltyd!stlow fog%W'rEtE'rth hanq K
[20], [21], and we continue in this tradition. gradually increases over some distance [23]. ough sic

The gain statistics for double-carrier multiplication APDs>Pace provides a superior representation of physical reality
in the presence of dead space and a uniform or a nonunifoWr"im does dead space, _the fixed dead-space mo.del adequgtely
aptures the essential history dependence of the impact-ioniza-

electric field, have been developed and reported in [15], [16]. dd thout th ity of tulati
The theory involves recurrence equations ofcertainintermedié 1 process and does so without the necessity of postuiating

random variableg/(z) andY (z). The quantityZ(z) (Y (x)) is an_adhocrecovery functipn. And, it ha_s the salutary feature of
defined as the overall electron and hole progeny generated ny amenable to far S|mpler an_aIyS|s.
a single parent electron (hole) at the positiom the multipli- sing (5) af.‘d (6) to obtain solutions to (3) and (4), then, leads
cation region, which is assumed to extend from= 0 toward to a mean gain
x = W. The electric field within the multiplication region is

- z(0)+1
assumed to be pointing from = W to z = 0. In the case of (G) = 5 (7)
electron injection at the edge of the multiplication region, the ) )
random gain of the APD is simply(Z(0) 4+ Y (0))/2, which and an excess noise factor given by
can be further reduced @ = (Z(0) + 1)/2 sinceY (0) = 1.

whereq is the electronic charge.
The use of these equations in the presence of phonon s

2
According to [15, egs. (14) and (15)], the average& ¢f) and F= (G g = »(0) + 22(0)2+ 1, (8)
Y (x), denoted byz(x) and y(z), respectively, obey the fol- (G) [2(0) +1]
lowing set of coupled integral equations: Here, z(z) = (Z2(x)) andys(z) = (Y2(z)) are the second
[ W moments o () andY (z), respectively. According to [15, egs.
2(x)=|1 —/ he(g)dgl (18) and (19)], these quantities are, in turn, governed by the
L 0 following set of coupled integral equations:

1 A GEVO [N

v =|1- [ m(&)d&}

+ [ Ry + A bl — e, (@)

z(x) =

W—x
1- /0 he@)dsl

+ [ 22O +1(©) + 4:(00(E) + 2226
X he(g - .’L’)dS, (9)

Here, he(x) and hu,(z) are the probability density functions y,(z) = {1 — /w hh(ﬁ)dﬁ}

(pdfs) of the random free-path lengths and Xj, of the elec- 0

tron and hole, respectively. /m 9 4 902
Defining o and 3, respectively, as the ionization coefficients + 0 [ y2(8) + 22(8) +42(Ey(6) + 2y (5)]

of enabledelectrons and holes, i.e., those that have traveled a X hy(x — &)dE. (10)
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The recurrence equations (3), (4), (9), and (10) can be solved is carried out by inserting initial values for the ion-
to estimate{(G) and F' by using a simple iterative numerical ization coefficients in the recurrence equations and
recipe (Picard iterations), as outlined in [15]. Given the electric subsequently varying these values until the DSMT
field and ionization threshold energies, one can search for the mean gain and excess noise agree with the measured
values ofa and 3 that yield a specified mean gain and excess values.
noise factor. Step 3) The previous step is repeated, spanning all measure-

Hole-injection APDs are analyzed by interchanging the elec- ments of the experimental mean gain and excess
tron and hole ionization coefficients, the electron and hole dead noise factor at different values of the electric field
spaces, and thes andys. and for multiplication regions of different widths.

The dependence of the electron and hole ionization coeffi-Step 4) When all excess-noise-factor data points are ex-
cients on the electric field, «(£) and 5(€), respectively, is ploited, each resulting ionization coefficient is used
often modeled by the standard equation [40], [41] in the standard exponential model [given by (11)]

m to determine the parameters of this model using a
a(€),B(€) = Aexp [_ <§) } (11) least-square-error fit. These four steps are essen-
£ tially identical to those outlined in [4]. The models

for the electron and hole ionization coefficients are

whereA, ., andm are parameters chosen by fitting measured . ;
used to predict the dependence of the excess noise

excess-noise-factor data [30], [42]. We adopt the same equation |
to model the ionization coefficients ehabledcarriers, which factor on the mean gain.

are determined as follows: After calculating a unique pair of However, the fit to excgss-nmse-factgr curves can be substan-
electron and hole ionization coefficients for a mean-gain and dig!ly énhanced by carrying out an additional step. o
cess-noise-factor experimental pair corresponding to a specifict€P 9) The first four steps are repeated while adjusting
electric field€, we obtain the parameters &., andm for both the electron and hole ionization thresholds over
electrons and holes over a range of electric-field values and mul- a narrow range until the best excess noise factor
tiplication-region widths by fitting the ionization coefficientsto _ Versus mean-gain prediction is obtained. ,
the model provided in (11). In Section Ill, a search algorithm 1hiS procedure is warranted on physical grounds, as dis-

is outlined that exploits this scheme to estimate the ionizatiGHSS€d €arlier. This procedural modification of implementing
coefficients of enabled carriers. the DSMT model is the principal contribution of this paper. Its

efficacy will be demonstrated in Section IV.

Since Step 2 is critical in implementing the DSMT model,
we review the procedures involved in carrying it out for the
case of electron-edge injection [4]. To save computational time,

To demonstrate the applicability of the DSMT to APDs withye injtially use trial values for the electron ionization coeffi-
thin multiplication regions of various widths, we analyze expetjent and the hole-to-electron ionization ratio determined from
imental excess-noise-factor data for InP, InAlAs, GaAs, and Ahe conventional Mclntyre theory which has the merit of simple
GaAs separate-absorption-multiplication (SAM) homojunctiogiosed-form expressions. These initial values are densted
devices [3]. The devices consist of four INP APDs with multia, andk = &, and are computed by fitting the experimental
plication-region widths of 281 nm, 317 nm, 582 nm, and 111@ean gain and excess noise factor for each device (with spec-

nm; four Iny 52Al ¢ 4sAS APDs with widths of 190 nm, 363 nm, ified width) to the conventional expressions for the mean gain
566 nm, and 799 nm; four GaAs APDs W|th WIdthS Of 100 nnhnd excess noise factor [7]

200 nm, 500 nm, and 800 nm; and threg AGa; sAs APDs

I1l. DEAD-SPACE MULTIPLICATION THEORY AND THE EXCESS
NOISE FACTOR

with widths of 200 nm, 400 nm, and 800 nm. Portions of these 1—Fko

data have been published previously [3], [28]. DSMT analyses (&) :exp [—1(1 — ko)aoW] — ko 12)
of some of thgse data have been carried out by_\énam [22], F =kolG) + (1 — ko) (2 _ (G)‘l) ) (13)
using the particular DSMT approach presented in [19], and also

by Salehet al. [4].

We seek the unique paife, k) that yields a specified ex-
perimental pair({(G}, F). This is possible by virtue of the
one-to-one correspondence between the pgi®, F) and
(a, k) in the DSMT, as discussed in [4]. To illustrate the pro-
The width-independent (universal) ionization coefficients agdure, consider the sample experimental data(géiyo, Fo)
determined as follows: marked by the symbok in Fig. 1. We substitute the initial
Step 1) Given knowledge of the electric field and the widtlialues ofaa = «9 andk = kg in (3), (4), (9), and (10)
of the multiplication region, along with the ioniza-and numerically solve these equations. This allows a trial
tion threshold energies, the electron and hole deadlue for the DSMT mean gain and excess noise factor to be
spaces are computed using (1) and (2). calculated using (7) and (8) In this illustration the resulting
Step 2) For each experimental mean-gain and excess-nojs@¥ ((G), F'), shown as encircled point 1 in Fig. 1, is seen to
factor pair, appropriate values farandj3 are deter- underestimate the measured values. We would then increase
mined from the recurrence equations that lead to the until the calculated mean gain match&S), (shown as
DSMT mean gain and excess noise factor. This stemcircled point 2 in Fig. 1). From this point forwark,and

A. Procedure for Determining the Universal Model for the
lonization Coefficients of Enabled Carriers
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10 . TABLE |
k=1 PARAMETERS OF THEWIDTH-INDEPENDENT (UNIVERSAL)
= (=5 EXPONENTIAL-|ONIZATION-COEFFICIENT MODELS FORINP, Iy 52Alg.45AS,
W - k=1 GAAs, AND Al 2Gay sAs APDs
o
2 =05 ) ‘
5 ) Units InP In0,52A10,43AS GaAs Al(]‘zGa(),sAS
E a A cm! 301x10° 417x10® 6.01x10% 5.39x10°
W
»10'F k= £ V/jem 245x10° 209x10° 239x10° 2.71 x 10°
o) («G)/F)
P4 m 1.08 1.20 0.90 0.94
0
quJ) B8 A cm™! 429x10° 265x10° 3.59x10° 1.28 x 10°
Q =005 £ V/em 208x10° 279x10° 226x105 2.06 x 10°
i
k=0.01 m 1.12 1.07 0.92 0.95
100 0 I1 2
10 10 10 TABLE I
MEAN GAIN (G) RELATIVE WIDTH OF DEAD SPACE FORFOUR THIN INP APDs OF DIFFERENT
MULTIPLICATION-REGION WIDTHS, PRODUCING COMPARABLE MEAN GAIN.
Fig. 1. General characteristics of the excess noise fa&tpversus the mean THE LOWER AND UPPERLIMITS OF THE ELECTRIC-FIELD STRENGTH
gain({G)) parameterized by the hole-to-electron ionization ratiaccording PRODUCE THELOWER AND UPPERLIMITS OF THE MEAN GAIN AND THE
to the conventional Mcintyre theory [7]. The encircled points 1, 2, and 3 are RELATIVE DEAD SPACE
samples of thé(G), F') values generated in the process of finding the ionizatior
coefficients of enabled carriers using the dead-space theory.
g P y InP £Field  Mean dJW  du/W
Multiplication Width {nm) (x10° V/em) Gain (%) (%)
are concomitantly adjusted to increase the excess noise fac 281 6.7-73 4-20 14-15 15-16
bringing it _closer toEO, Whllebmalntalnlng t_h(e]I Lnean %aln at 317 5665 4-18 13-15 14-15
_(G)O. Any increase int must be accompanied by a reductior 582 59-57 4-14 79-82 8891
in « (and vice versa) to maintain the calculated mean ga
1110 5.0-5.3 3-14 44-46 49-50

at (). For example, in Fig. 1, encircled point 2 lies below
({G)o, Fp) so thatk must be increased which, in turn, causes

F to increase, whilev is adjusted downward to a lower value lect ted to attain the threshold
to maintain the mean gain &t7),. The results is encircled electrons are expected to attain the threshold energy hecessary

point 3 in Fig. 1, wherd" is now slightly overestimated. Thesefor Impact-ionization in a single free path, andturns out to

adjustments are repeated with progressively finer changeﬁbﬁlz' S_tlr)ce lthe gt::ac':rlc—ﬂeldl \:jalut(;stf(t)rr] thuE)APDst_aiem;g/plcally
a andk until ((G), F) = ({G)o, Fu). (The relative tolerance arge, 1t 1s plausib’e 1o conciude that the observatiomaiear

used in our calculation for establishing convergence is 0.0f.?'ty accords with the notion that the mean-free-path for ion-
This completes the procedure involved in Step 2. 1zing collisions is much smaller than that for phonon collisions,

and this suggests that the latter can be neglected. To confirm the
validity of the values ofn deduced from our fitting procedure,
we carried out a series of model-fitting calculations in which the
For each of the four materials (InPglg: Al g 4sAS, GaAs, and parametern was forced to unity. The results revealed that the
Alg 2Gay gAs) we were able to find a single set of parameters, = 1 curves were inferior to those in which was used as
(4, &, andm) that satisfied the exponential model provided fitting parameter. Indeedh turns out to be the most sensitive
in (11)independentf the multiplication-region width. This en- parameter of the three in the exponential model.
abled us to estimate the electron and hole ionization coefficientsThe electron and hole ionization coefficients for InP are
a(€) and B(€), respectively. Since the impact-ionization ratelisplayed in Figs. 2 and 3, respectively, whereas those for
for holes in InP is greater than that for electrons, the carridrg 52Al g 4sAS are presented in Figs. 4 and 5, respectively. It
were reversed in the recurrence equations, as discussed earfi@vident from Figs. 2-5 that for each material, the calculated
The optimized sets of width-independent parametker§,. and electron and hole ionization coefficients of enabled carriers
m that yielded the best fit in the universal exponential modek, and 3, respectively, (symbols), are in excellent agreement
for both electrong«) and holes(/3) are provided in Table I. with the single exponential model, for all multiplication-region
The improved fitting procedure used in this paper causes botidths. This is in accord with expectation since physical
the GaAs and AJ 2Ga sAs values to differ slightly from those principles dictate that the ionization coefficients of an enabled
presented in Tables | and Il of [4]. carrier should be material specific but independent of multipli-
The values ofr. are quite close to unity. Theoretically, theycation-region width. Similar results were obtained for the GaAs
are known to depend on the approximation used for the elesid Al »Gay sAs APDs; the DSMT fitting procedure enhance-
tron distribution function [41]. In factn is predicted to be ex- ment set forth in this paper provides significant improvement
actly unity if the mean-free-path for ionizing collisions is muclover the results previously reported in [4, Figs. 2-5]. As in our
smaller than that for phonon collisions. This approximation iarlier work [4], we observe that the DSMT-derived ionization
clearly most suitable at larger values of the electric field. For lovoefficients for GaAs, AlGaAs, and InP are higher than those
values of the electric field, on the other hand, only a few “luckyderived for bulk material [30], [42], [43] (the conventional

IV. RESULTS
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theory was used in deriving the ionization coefficient from the
bulk experimental data). The authors are not aware of reported

ionization coefficients for bulk InAlAs.

cation-region width, is presented in Tables Il and lll, for InF
and Iny 52Al9.4sAs multiplication regions of different widths,

respectively. Since a thin device requires a higher electric fie
than a thick device to provide the same mean gain, the de
space associated with a thin device is smaller than that for
thick device. Nevertheless, as is evident in Tables Il and IlI, tr
relativedead space increases as the multiplication-region wid

is reduced. This behavior is in accord with the results reportc

by Li et al.[20] and Onget al.[21], and underlies the salutary

TABLE Il

electric field. Plot symbols are the same as in Fig. 4.

RELATIVE WIDTH OF DEAD SPACE FORFOUR THIN Ing 52 Al 45AS
APDs OF DIFFERENT MULTIPLICATION-REGION WIDTHS, PRODUCING

COMPARABLE MEAN GAIN. THE LOWER AND UPPERLIMITS OF THE
The relative dead space extracted from the DSMT modd&iLECTRIC-FIELD STRENGTHPRODUCE THELOWER AND UPPERLIMITS OF THE
which is defined as the ratio of the dead space to the multipli-

MEAN GAIN AND THE RELATIVE DEAD SPACE

Ing s0Aly48As £ Field Mean  d./W dp /W
Multiplication Width (nm) (x10° V/em) Gain (%) (%)
190 5.6 - 6.2 4-20 15-16 18-19
363 52-58 3-20 11-12 13-14
566 45-4.9 3-20 66-70 83-86
799 39-44 4-20 54-57 63-66

reduction in excess noise factor as multiplication-region thick- The established values for the electron and hole ionization
ness is reduced [15]. Values for the relative dead space for Gakergies . and E;,, and the values returned for the best fit

and Al »Gay sAs APDs are close to those reported in [4].

of the DSMT to the gain-noise data, are provided in Table IV.
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TABLE IV
ELECTRON AND HOLE |ONIZATION THRESHOLD ENERGIES OFINP, — 190 nm DSMT
INg.52Al 5,45 AS, GAAS, AND Al »Gay s AS. INITIAL VALUES WERE OBTAINED --- 363 nm DSMT o
FROM THE SOURCESCITED. DSMT VALUES ARE DETERMINED FROM THE w7 566 nm DSMT L
BESTFIT TO GAIN-NOISE DATA FOR THIN APDs c |l 799 nm DSMT o .
O | © 190 nm experimental A
P P InAlAs  IsAlAs  CaAs  CaAs  AlGsAs  AlGads gs ¢ 363 nm experimental RS O
Initial [44] DSMT Initial [45] DSMT Initial [34] DSMT Initial [31] DSMT e v 566 nm experimental PR v
B, 184eV  205eV 1980eV 215eV L1706V 190eV 1846V  204eV s © 799 nm experimental | - .- ]
Es 164eV 2206V 2006V  230eV  140eV  155e¢V  194eV 2156V 9
P at
1 .
10 " o
— 281 nm DSMT gl e
--- 317 nm DSMT ] Pk
= 562 nm DSMT Ry g 52R10.4sAS
g —- 1110nm DSMT _ ol . . .
O o 281 nm experimental 5 10 15 20
.;'_';. ¢ 317 nm experimental MEAN GAIN (G)
Y 7l ¢ 582 nm experimental
w © 1110 nm experimental Fig. 7. Comparison of the DSMT-predicted and the experimental excess noise
o factorF' versusmean gair{G) for four thin Ing.52Al 545 As APDs with different
z st multiplication-region widths. Symbols represent experimental data and curves
% represent predictions using the DSMT.
i}
O 4t
& 16
3l | — 100 nm DSMT
o InP --- 200 nm DSMT
NS . T R 500 nm DSMT
5 10 15 20 o --- 800 nm DSMT
MEAN GAIN (G) O12f = 100 nm experimental Y
5 o 200 nm experimental PR .
Fig. 6. Comparison of the DSMT-predicted and the experimental excess E10 v 500 nm experimental -’9/ v "%
noise factorF’ versusmean gain(G) for four thin InP APDs with different u ° 800 nm experlmentalA ’"/__. - &
multiplication-region widths. Symbols represent experimental data and curves © 8l
represent predictions using the DSMT. 5;
%]
ol
It is clear that theeffectiveionization threshold energies esti- <
mated viathe DSMT are larger than the theoretically established = 4 g
values [31], [34], [44], [45] for both electrons and holes in all 0.6.% GaAs
N v
four materials. Based on these results one could speculate thas 2 5 10 15 20 25 30
the estimates returned by the DSMT include phononscattering MEAN GAIN (G)

energy loss, but this conclusion would be unfounded. The initial
values used in our calculations are quite removed from those thiat 8% CO}nparison of the _DZMI-prfedictﬁd ?323\ thspgperir;]ﬁec‘n;fal excess
emerge from the most complete theory that is currently avalfay 2500 Versusmean gain(z) for four thin GaAs APDs with different

. . ultiplication-region widths. Symbols represent experimental data and curves
able [33]. According to Bude and Hess [33], who are likely tpresent predictions using the DSMT. Though the data are identical to those

have the most accurate results, qualitative estimates of the efggsented in [4, Fig. 6], an improved fitting procedure has been used.

tron ionization threshold for GaAs and InP, with respect to the

bandgap energy, are expected to be in the vicinity of 1.9 eV amalues nonetheless justifies our use of (1) and (2) and suggests
2.3 eV, respectively. On the other hand, the DSMT electron iotirat the phonon scattering loss may indeed be ignored. Since
ization threshold values derived from experimental data turn dBtide and Hess [33] did not provide ionization threshold ener-
to be 1.9 eV and 2.1 eV, respectively, for these two materiajges for electrons in AlIGaAs and InAlAs, nor did they provide
[see Table I1]. Thus the electron ionization threshold obtainéohization threshold energies for holes in any material, it was
by Bude and Hess [33] is identical for GaAs and within 10%o0t possible to compare our results with theirs for all entries in
for InP compared to that derived by DSMT. (Clearly, fitting th&able IV. In any case, theffectivaonization threshold obtained
DSMT to the experimental data would have been facilitated h&wm the DSMT should be independent of the initial value used
we started with their value). Attempts to force the InP electrdor the computations.

ionization threshold energy to the Bude and Hess value of 2.3Finally, the excess noise factor versus mean gain is presented
eV failed to produce as good a fit to the experimental data msFigs. 6-9 for InP, 1§.52Al 9.4sAS, GaAs, and A 2Gay sAs

the 2.1 eV result reported in Table IV. However, it is not surAPDs, respectively. Symbols indicate experimental measure-
prising to find that the effective ionization threshold values amaents while curves correspond to predictions of the DSMT.
not identical to the theoretical values. The small deviation athe agreement is excellent in all cases. It is apparent that
counts for errors resulting from the approximations involved ioptimization over the ionization-threshold energy provides
the simple hard-threshold dead-space model. The proximityiofproved agreement of theory with experiment as is evident
these two theoretical and DSMT derived ionization thresholdy comparison of Figs. 8 and 9, for GaAs and), AGa, sAs,
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Fig. 9. Comparison of the DSMT-predicted and the experimental excess noise
factorF’ versusmean gai{G) for three thin A . Ga, s As APDs with different
multiplication-region widths. Symbols represent experimental data and curvesig
represent predictions using the DSMT. Though the data are identical to those
presented in [4, Fig. 7], an improved fitting procedure has been used.

(9]

respectively, with [4, Figs. 6 and 7]. The fits in [4] made use of
threshold energies taken directly from the literature [31], [34]. [10]

V. CONCLUSION (11

We have provided a technique for significantly improving [12
the usefulness of the DSMT [4], [15] for analyzing avalanche-
photodiode data and for determining material-specific ioniza-
tion coefficients of (enabled) carriers that have traveled a dist
tance greater than the dead space. The ionization coefficients
are calculatedlirectly from excess-noise-factor measurements[14]
without having to resort to simulation of any kind. This im-
provement is achieved by adjusting the theoretical estimates ¢fs;
the threshold energy reported in the literature to generate ef-
fective ionization threshold energies. The use of an effective
threshold energy compensates for the inaccuracies in the thL}—G]
oretical threshold-energy estimates and the limitations imposed
by the simple hard-threshold dead-space model. The estimatéd]
effective threshold energies are generally found to be higher
than the theoretical values reported in the literature. It is showp g
that the DSMT provides an excellent description of excess noise
factor versus mean-gain data for all four materials examined, fo[ﬁg]
all multiplication-region widths.

Finally, we point out that the frequency response and break-
down-voltage characteristics of thin APDs can be readily and?®!
accurately determined [46]—-[48] by making use of the ioniza-

tion coefficients obtained by the methods reported here.
[21]
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