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Photon-counting integral imaging has been introduced recently, and its applications in three-dimensional (3D)
object sensing, visualization, recognition, and classification under photon-starved conditions have been demon-
strated. This paper sheds light on the underlying information-theoretic foundation behind the ability of photon-
counting integral imaging in performing complex tasks with far fewer photons than conventional imaging systems.
A metric for photon-information content is formulated in the context of 3D photon-counting imaging, and its
properties are investigated. It is shown that there is an inherent trade-off between imaging fidelity, measured
by the entropy-normalized mutual information associated with a given imaging system, and the amount of infor-
mation in each photon used in the imaging process, as represented by the photon-number–normalized mutual
information. The dependence of this trade-off on photon statistics, correlation in the 3D image, and the
signal-to-noise ratio of the photon-detection system is also investigated. © 2012 Optical Society of America

OCIS codes: 110.3055, 110.0110, 030.5260, 110.3000.

1. INTRODUCTION
Passive three-dimensional (3D) sensing and visualization by
3D computational integral imaging is a method based on
the digital implementation of the concept of integral photogra-
phy [1]. In integral imaging, a series of two-dimensional (2D)
elemental images (2D projections) from different perspectives
of the 3D scene are recorded. This can be accomplished in a
number of ways, such as using a single camera and lenslet
array, a camera array, or a single camera on a moving platform
[2–14]. Reconstruction may be performed numerically as the
reverse of the pickup process by projecting the elemental ima-
ging through a virtual lens array. The advantage of integral
imaging over holography or LADAR is that integral imaging
can capture 3D color images under ambient or incoherent
light illumination. Unlike stereo 3D displays, the 3D integral
image can be optically observed without the need for addi-
tional viewing devices (or glasses) providing a full parallax
autostereoscopic display, which is considered for next-
generation 3D TV/display [14]. Thus, an important benefit
of integral imaging is the use of mature 2D image capture/
display technologies that provide a low-cost implementation
with rapid advances in these technologies. Integral imaging
has the added advantage of reducing the effects of partial oc-
clusion in the reconstructed scene due to multiple perspec-
tives available during the image capture [14]. In addition, it
is possible to relax the constraints on the image pickup stage.
That is, the position of image sensors can be randomly distrib-
uted in space generating an incoherent synthetic aperture by
the distributed sensors. This allows large surveillance scenar-
ios with inexpensive sensors [14].

It has been shown that 3D integral imaging, and, in
particular, 3D object recognition with integral imaging under

photon-starved conditions can be performed reliably by
means of photon-counting integral imaging (PCII) [15–21].
Photon-counting imaging occurs naturally in applications
such as astronomy, low-light level imaging, and other electro-
nic systems [22,23]. It could also be used in a variety of pattern
recognition systems [24,25].

One of the key benefits of the PCII approach, compared to
conventional 3D imaging systems, is that it offers substantial
reduction in the number of nonzero pixels required for task-
specific sensing and processing. While it is known that sensing
based upon detecting individual photons yields the most sen-
sitive photonic imaging possible, what is not presently known
is what is the underlying scientific and theoretical foundation
of the observed phenomenon with PCII. That is, why imaging
with so few photons can perform the complex tasks seen in
our PCII experiments. This knowledge can facilitate our un-
derstanding of the intricacies of the PCII approach and its per-
formance limits, and help generate a systematic methodology
for its optimization. Indeed, the inherent compression in the
required photons and captured pixels offered by the PCII ap-
proach renders a substantial advantage over conventional
methods, making PCII a natural fit to data-intensive 3D appli-
cations such as medical imaging, computational imaging,
low-light level imaging, homeland security, multi- and hyper-
spectral imaging, imaging in scattering medium, real-time
computation, astronomy, and astrophysics.

To understand the theoretical foundations of PCII 3D ima-
ging systems, there is a need to quantify and understand the
concept of information per photon. First of all, let us look into
the information-theoretic framework of the imaging system.
The object to be imaged is viewed as an information source
in the context of information theory whose alphabet is
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modeled by a probability distribution function and entropy.
The imaging process is modeled as a “communication chan-
nel” in which the source alphabet is transformed, in a stochas-
tic fashion, to a formed imaged (output) whose probability
distribution is described by the channel conditionally on the
input. Now considering the quantum limit of conventional
photonic imaging, there is a well-known trade-off between op-
tical energy used to represent a signal, namely the average
number of photons per gray level, and the accuracy in the re-
presentation of the gray levels. The higher the required fidelity
in representing a signal optically, the less informative each in-
dividual photon is. The accuracy of an imaging system can be
measured by image fidelity of the output image processed
through the imaging system. The fidelity of an imaging system
should tell us how well the information in an image is pre-
served by the imaging system. To quantify image fidelity using
information theory, we proposed in [19] the fidelity metric, ρ,
which is defined as the amount of information we get from an
imaging system, normalized by the entropy of the image
source. In this paper we further quantify the information car-
ried by each photon in the imaging process by formally intro-
ducing here the photon-information contentmetric, Ip, which
we define as the mutual information normalized by the num-
ber of photons, with the units of bits per photon (bpp).

As a simple example, consider the problem of representing
a single pixel with m photons. With m photons, we can repre-
sent m� 1 gray levels, and for the case when the gray levels
are evenly spaced and equally likely distributed, we have
log2�m� 1� bits of information [26]. Assuming ideal condi-
tions, without any quantum noise and readout noise, we
find that the amount of information we get per photon is
Ip � 2m−1 log2�m� 1�, since there are m ∕ 2 photons on an
average. Withm taking values 1, 2, 3, . . . . . , the metric Ip forms
the sequence 2, 1.58, 1.33, 1.16, . . . . . , and it is easy to check
that the maximum value of Ip as a function of m is 2 bpp, at-
tained atm � 1. But with just one photon, we will not be able
to represent the pixel perfectly. To represent the pixel’s true
gray level, we would need more photons. Hence, we see a
trade-off between the image fidelity and image compression
that is inherent in all the imaging systems.

To summarize, in this paper we extend our earlier work [19]
so that information per photon is rigorously quantified using
information theory and use this concept to quantitatively
show the trade-off between imaging quality and information
per photon. Moreover, the present paper extends the frame-
work presented in our earlier work to 3D imaging. The remain-
der of this paper is organized as follows. In Section 2 we give a
brief review of the integral imaging system considered in this
paper. In Section 3 we present mathematical analysis and de-
rivation of the properties of the photon-information-content
metric and provide fundamental upper bounds on this quan-
tity. In Section 4 we study the trade-off between the fidelity
metric and the photon-information-content metric and inves-
tigate the roles of photon statistics and image correlation on
this trade-off. Application of the theory to simulated PCII sys-
tems are included in Section 5, and the conclusions are given
in Section 6.

2. REVIEW OF INTEGRAL IMAGING
As pointed out earlier, the 3D image can be visualized by re-
cording and processing 2D multiview elemental images that

are different perspectives of the 3D object. The elemental
images can be captured by a lens array, as depicted in
Fig. 1(a), or by moving a single camera with uniform pitch (p).
The elemental-image formation step is typically performed by
an incoherent optical system and is typically described by a
cascade of linear systems, representing degradation factors
such as diffraction blur, motion blur, atmospheric turbulence,
distortion, etc. However, in this work we assume an ideal ima-
ging system in which the overall impulse response function is
approximated as a delta function (namely, the spatial band-
width of the scene to be imaged is assumed to be much less
than the optical bandwidth of the imaging system.) As such,
nonoverlapping image samples in each elemental image are
assumed independent. (If the finite size of the detector is con-
sidered, then the independence assumption remains valid pro-
vided that the samples are separated sufficiently so that they
image disjoint regions of the object, in which case the samples
would be independent.) Moreover, we assume a photon-
counting ideal sensor, which counts the photons in each sam-
ple (pixel) in the elemental image with detection efficiency η.
Noise can also be considered (as in the results in Subsec-
tion 3.B), resulting in an error in the photon count.

The 3D images can be reconstructed by a variety of com-
putational reconstruction algorithms [14]. The procedure for
computational reconstruction is shown in Fig. 1(b). Each ele-
mental image is projected by magnification M � z ∕ f , where z
is the distance from the image sensor to the 3D object and f is
the focal length of the image sensor, respectively. In order
to simplify the computation, we assume that the number of
pixels for projected elemental images is the same as the num-
ber of pixels for each elemental image. The 3D reconstructed
image consists of the sample mean of superimposed pixels.
The computational reconstruction algorithm is described as
follows:

R�x; y; z� � 1
O�x; y�

XK−1

k�0

XL−1
k�0

Ikl�x − kSx; y − lSy�; (1)

with

Sx � Nxpf
cxd

and Sy � Nypf

cyd
; (2)

where x, y are the index of pixels in the x and y directions,
respectively; Nx and Ny are the number of pixels for each ele-
mental image in x and y directions, respectively; p is the mov-
ing pitch between image sensors; cx and cy are the size of the
image sensor in the x and y directions, respectively; Sx and Sy

are the number of shifted pixels for superposition in x and y
directions, respectively; Ikl is the intensity of the kth column
and lth row elemental image; O�x; y� is the overlapping num-
ber matrix; and R�x; y; z� is the intensity of the reconstructed
3D image.

3. INFORMATION-THEORETIC MODEL FOR
3D PHOTON-COUNTING IMAGING
Any imaging system, and in particular a photon-counting ima-
ging system, can be viewed as a communication-theoretic
system, as shown in Fig. 2. Following our recent foundational
work [19] on 2D photon-counting imaging systems, the
“source” or “input” is the ensemble of all possible (true)
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intensity images of interest; the “channel” represents a sto-
chastic transformation that maps each intensity image to a
stochastic spatio-temporal point process representing the
often-weak photon stream, followed by a photon-counting
system; and the “output” is the array of photon-counts that
constitutes the reconstructed image. Under Poisson photon
statistics, conditioned on the irradiance image, the output
is characterized by the received photon-flux density and
the photon-detection system. The stochastic photon streams
considered in a PCII system typically undergo severe random
deletions (or thinning) of photons due to absorption and scat-
tering in the transmission medium. The total photon count in
the photon-counting array represents a degraded version of
the source image.

Mathematically, consider a stochastic column vector X
whose entries, Xi, i � 1; :::::; n, are discrete random variables
in the interval [0, 1] representing the reflectance of some un-
known object or an unknown digital image. Note that we are
considering Xi to be a discrete random variable as opposed to
a continuous one to simplify our calculations of entropy and
mutual information. The ith element of the detector array
gives a measurement of the number of photons, Yi, detected
during integration time τ. For a Poisson photon statistics and
conditional on a particular realization of the true intensity Xi,
say Xi � xi, the count Yi is a Poisson random variable with
mean value xiϵNp, where Np � ηλτ is the mean number of
photons per pixel and per unit integration time τ, η is the

quantum efficiency of the detector, λ is the photon flux of
the unattenuated light, and ϵ is the probability that a source
photon is not scattered as it is transmitted. Therefore, the con-
ditional probability mass function of Yi given that Xi � xi
can be written as

PYijXi
�yijxi� �

�Npxiϵ�yi e−Npxiϵ

yi!
; yi � 0; 1; 2;…: (3)

We define the photon-count image, Y, as a stochastic array
whose entries are the integer-valued random variables Yi; this
stochastic array represents the photon-count array (2D or
3D). Under the assumption that the output pixels are indepen-
dent conditional on the input X, the conditional probability
mass function of the output Y is given by PYjX�yjx� �
Πn

i�1PYijXi
�yijxi�, and the probability mass function of the out-

put is PY�y� �
P

xPYjX�yjx�PX�x�, where PX�·� is the probabil-
ity mass function of the source image X, and the summation is
over all realizations x of X [19].

In [19] we introduced the normalized mutual informa-
tion metric, or image-fidelity metric denoted by ρ, as ρ �
I�Y;X� ∕H�X�, where H�X� � −E�log2�PX�X��� �

P
xlog2

�1 ∕PX�x��PX�x� is the entropy of the input image and
I�Y; X� � E�log2�PYjX�YjX� ∕PY�Y��� �

P
x;ylog2�PYjX�yjx� ∕

PY�y��PX;Y�x; y� is the mutual information between the output
and input images, PX;Y�x; y� � PYjX�yjx�PX�x�, and E�·� is the

Fig. 1. (Color online) 3D integral imaging. (a) Pickup (image capture) stage (passive sensing), (b) computational image reconstruction.

Fig. 2. (Color online) Information-theoretic representation of a photon-counting imaging system. Photons from the input scene pass through the
medium, resulting in a photon-starved stochastic photon stream in time and space. Photons are detected by a photon-counting array yielding output
image with M gray levels. At extremely low photon numbers, as is typically the case with the PCII approach, the output image is a very sparse,
binary image.
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usual notation for the expected value of a random variable/
vector. Note that 0 ≤ ρ ≤ 1 since the mutual information is al-
ways upper bounded by the entropy, with equality to unity
when the inputX can be retrieved exactly (without ambiguity)
from the output Y , while ρ is zero when X and Y are statisti-
cally independent [26]. We next extend the framework to in-
clude depth dimension, which, in turn, enables us to extend
the fidelity metric to 3D and also define the 3D photon-
information-content metric.

Consider the sequence of input 2D images, X�1�; :::::;X�L�,
corresponding to the depths z1; :::::; zL, and let Y�1�; :::::;Y�L�

denote the photon-count images at the output resulting from
processing the elemental images according to the PCII
method [15]. Using the convenient expectation notation, the
entropy of the 3D input image is defined as

H�X�L�;…X�1��≜ − E�log2�PX�L� ;…X�1� �X�L�;…;X�1����; (4)

and the mutual information between the 3D input and
output is

I�Y�L�;…;Y�1�;X�L�;…;X�1��

≜E
�
log2

�
PY�L� ;…;Y�1� jX�L� ;…;X�1� �Y�L�;…;Y�1�jX�L�;…;X�1��

PY�L�;…;Y�1� �Y�L�;…;Y�1��

��
:

(5)

Now the 3D fidelity metric is then defined as the ratio

ρ≜
I�Y�L�;…Y�1�;X�L�;…;X�1��

H�X�L�;…;X�1�� ; (6)

so that the fidelity metric, ρ, is upper bounded by unity. Next,
with the mutual information of a 3D image at hand, the
photon-information-content metric, Ip, can be defined as

Ip � I�Y�L�;…;Y�1�;X�L�;…;X�1�� ∕m; (7)

where m is the mean number of photons per image.

A. Fundamental Bounds on the Photon-Information-
Content Metric
As we have seen in Section 1 for a binary single-pixel image
and assuming ideal imaging, the photon-information metric is
at its maximum value of 2 bpp when we use a single photon to
represent “1” and no photons to represent “0”with equal prob-
ability. By extending the single-pixel model, we will be able to
find bounds on the photon-information-content metric, Ip, for
any ideal imaging system and for several classes of photon-
starved images. If we include quantum noise and readout
noise, as done in Subsection 3.B, the photon-information me-
tric is lowered accordingly.

Under ideal conditions, the random vector Y is simply the
source X (or more precisely, Y would be a 1-1 deterministic
transformation of X). As such, the mutual information I�Y;X�
is simply the entropy H�X�. First, consider the class of binary
n-pixel (2D or 3D) images that have at most only one nonzero
pixel. Assuming ideal imaging conditions, we would need
only one photon to represent such an image. Since we can
have a total of n� 1 possible images (including the all-zero
image), the maximum entropy of the image (when all n� 1

possibilities occur with equal probability) is log2�n� 1�.
Now the average number of photons in any one of the n� 1
images is n ∕ �n� 1�; therefore, the maximum of the photon-
information-content metric in this case is simply Ip �
�1� n−1�log2�n� 1� bpp. As expected, when in the single-
pixel case (n � 1), Ip � 2 bpp.

Next, consider the class of binary n-pixels images that have
zero entries at all sites except at exactly k nonzero sites
(k � 1; :::::; n) with at most one photon per pixel. Here, there
are �nk� � 1 equally likely possible images, including the all-zero
image. Note that in this case the average number of photons is
nk � k ∕ �1� �nk�−1�. Therefore, the photon-information-content
metric is given by

Ip �
log2

��
n
k

�
� 1

�

nk
≤

log2

��
n� 1
k

��

nk

� log2�n� 1� � � � � � log2�n − k� 2� − log2�k!�
nk

≤

�
1�

�
n
k

�
−1
�
log2�n� 1�; (8)

which shows that Ip is at a maximum value of �1� n−1�
log2�n� 1� when k � 1.

Generalizing the above reasoning (ignoring the all-zero case
for simplicity), any photon-count image with m total photons
in k pixels can be thought as distributing m photons in k bins
taken from n bins (assuming k ≤ n). Since there are �nk�ways to
select the k bins and since for each arrangement of the k bins
we can distribute them photons in �m−1

k−1 �ways so that no bin is

left empty (assuming k ≤ m), there are �nk��m−1
k−1 � such distribu-

tions or images. Thus, Ip � m−1 log2��nk��m−1
k−1 ��, which can be

shown to be upper bounded by log2�n� whenever m ≤ n
and k ≤ n ∕ 2, namely when the image has a low number of
photons.

In summary, for any n-pixel, photon-starved count image,
where n is large, Ip is upper bounded approximately by
log2�n�, and the highest value occurs when only one photon
per image is utilized.

B. Trade-off Between Photon-Information Content and
Fidelity Metric: Single-Pixel Case
When uncertainty in the imaging system is present, then in-
creasing the number of photons can improve the photon-
information content as it works to combat the degrading
effects brought about by uncertainty. However, there will
be a point of diminishing returns when the increase in the mu-
tual information (as in the fidelity metric) plateaus, and adding
more photons can be redundant and therefore wasteful. The
results shown in this subsection establish this trade-off for a
single pixel.

Consider a binary photon-counting system (M � 2) for a
single pixel, depicted in Fig. 3. There are three sources of
uncertainty in this example: (1) quantum noise (statistical
uncertainty in the actual number of detected photons corre-
sponding to gray levels), (2) additive dark current and readout
noise from the detector that can also contribute to false
counts, and (3) nonideal quantum efficiency of the detector,
which results in random misses in the counting process. The
channel probabilities are calculated as follows. We assume
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that the equally likely gray levels of 0 and 1 result in photon
numbers 0 andm, respectively, wherem is used as a free para-
meter representing the intensity of the “1” level. A decision
threshold of ηm ∕ 2 is then used to convert the counts to binary
gray levels, where as before, η is the detector’s quantum effi-
ciency. (Note that the effects of scattering of photons can be
lumped with the quantum efficiency.) In the absence of dark/
readout noise, a Poisson model is used and the calculated
transition probabilities are p00 � 1, p01 � 0, p10 � e−ηm, and
p11 � 1 − p10. On the other hand, when dark/readout noise
is present, a Gaussian approximation is used to calculate the

error probabilities. The results are p00 � 0.5
�
1� erf

�
ηm

2
��
2

p
σ

��

and p10 � 0.5
�
1 − erf

�
ηm

2
����������������
2�ηm�σ2�

p
��

, where σ2 is the variance

of the noise and erf�x� � 2��
π

p
R
x
0 e−t

2
dt.

We have calculated the photon-information-content metric,
Ip, and obtained the graph in Fig. 4. In particular, in the quan-
tum-noise limit (σ � 0, η � 1), Ip assumes its peak value of
about 1.44 bpp in the limit as m → 0, which is about 72% of
the maximum value in the ideal case (recall that Ip �
2 bpp in the ideal single-pixel case); this reduction is due
to quantum noise. The 10e noise example shown corresponds
to the state-of-the-art p-i-n detector. It is interesting to see the
trend in these graphs. Namely, depending on the imaging-sys-
tem parameters [represented by the system’s signal-to-noise
ratio (SNR)], there is an optimal value for the average number
of photons per gray level required in the transmission process
for which the metric Ip is maximized. This maximizing aver-
age photon number corresponds to a fair balance in reducing
the role of uncertainty (due to the finite SNR associated with

the photon-counting imaging process) without wasting
photons. However, maximizing the photon-information con-
tent alone by making the photons rare may not be desirable,
despite the fact that photons are efficient. This is because the
information conveyed by the rare photons, measured by the
fidelity metric, can be small as shown in Fig. 5, which shows
the calculated fidelity metric, ρ. The fidelity metric increases
monotonically with m, and in particular and in the quantum-
noise limit, ρ approaches its peak value of 1 in the limit
as m → ∞.

The results shown in this section show the trade-off
between the metrics Ip and ρ. The generalization of these
results to 3D images is considered next.

4. TRADE-OFF BETWEEN FIDELITY METRIC
AND PHOTON-INFORMATION-CONTENT
METRIC IN 3D IMAGES
We begin by examining the dependence of each of the fidelity
and photon-information-content metrics on the number of
photons per pixel in 3D images. To do so, we generate ensem-
bles of 3D images, X, using a 3D Markov-random field (MRF)
distribution and simulate the photon-counting imaging system
to produce the photon-count images Y for various scenarios
of the mean photon number per image. Once the pair of the
source image X and the photon-count image Y are available,
we estimate H�X� and I�Y;X� for the neighborhood of every
pixel [27], which is known to be proportional to H�X� and
I�Y;X� for the image. These estimates are then improved
by averaging over multiple realizations of X and Y. The me-
trics Ip and ρ are then computed from the estimates of
H�X� and I�Y;X�.

Here, we use a 3D version of the model used in [19] to gen-
erate ensembles of 3D images with controlled correlation
properties. A generalized 3D Ising MRFmodel is characterized
by its 3D-clique potential function. A collection of sites is said
to be a clique if every two sites in it are considered neighbors
based on some predefined association rule; hence, all one-site
sets are automatically cliques. The 3D Ising potential function
has the following form:

Vc�X�

�
�βc if the pixel values of Xat the sites incare the same

−βc otherwise;
(9)

Fig. 3. Binary asymmetric channel representing the transformation
of a gray level to a maximum-likelihood decision based upon photon
numbers in quantum and dark/readout noise.
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where βc is a real number dependent on the clique and it con-
trols the 3D correlation in the image. In our simulations, we
have used the following notion of site neighborhood: two sites
are neighbors if they are adjacent in horizontal, vertical, or
depth directions. The specification of the parameter βc is gi-
ven as follows: for any one-site clique c, βc � 1; for any two-
site clique, βc � β, a constant. Finally, for all three-site cliques
and higher, βc � 0. We followed the Metropolis sampling algo-
rithm [28] to generate 3 bit (8 gray levels) 3D images of size
128 × 128 × 8 with β varied at will to control the 3D correla-
tion. (As in [19], the temperature parameter in the Ising model
was set to 3.) The algorithm is run for 1000 iterations for each
image generated; an example is shown in Fig. 6.

Figures 7 and 8 show the dependence of the metrics Ip and
ρ on the mean number of photons per pixel for three cases of
correlation: (1) images with no correlation in any dimension,
(2) images with only spatial correlation (in two dimensions)
for each depth while the 2D images from different depths are
uncorrelated, and (3) images with full 3D correlation. In simu-
lating images for case 1, the pixel values are assumed indepen-
dent. For case 3, the 3D MRF described above was used with

Fig. 6. 2D slice of the a 3D Ising MRF realization exhibiting strong
correlation. The correlation structure is symmetric in x, y, and z di-
rections. The 3D MRF described in the text was used to generate the
3D images assuming βc � 0.6.
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Fig. 7. Fidelity metric as a function of the average number of
photons per pixel for three scenarios of correlation: no correlation
(case 1), only 2D correlation in the x − y plane (case 2), and full
3D correlation (case 3).
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Fig. 8. Photon-information-content metric as a function of the aver-
age number of photons per pixel for three scenarios of correlation: no
correlation (case 1), only 2D correlation in the x − y plane (case 2),
and full 3D correlation (case 3).
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Fig. 9. Fidelity metric as a function of the average number of
photons per pixel for three different photon statistics: Poisson, geo-
metric, and binomial.
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Fig. 10. Photon-information-content metric as a function of the aver-
age number of photons per pixel for three different photon statistics:
Poisson, geometric, and binomial.
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βc � 0.6. To simulate images with only 2D correlation similar
to the correlation present in the 3D image, as in case 2, we
formed a 3D image by taking a depth slice from different rea-
lizations of the 3D MRF image. In this fashion the spatial cor-
relation in the x − y plane of the 3D MRF realization is kept
intact, but the depth correlation (along the z axis) is de-
stroyed. It is seen that the highest fidelity metric is obtained
when 3D correlation is present, as in case 3. In contrast, the

independent-pixel case exhibits the lowest value of ρ. The
connection between correlation and the image-fidelity metric
was made first in 2D images [19]: the presence of spatial cor-
relation leads to higher values of the fidelity metric. Here, we
see that the added correlation in the depth dimension causes
further increase in the fidelity metric. As for the dependence
of the fidelity metric on the average number of photons per
pixel, Np, we see that ρ increases with Np up to a point, after
which it drops monotonically, as seen in Fig. 7. The initial in-
crease in ρ is expected as higher Np results in less uncertainty
in the photon-count image as the role of quantum noise and
scattering is reduced. However, the eventual decrease is due
to gray-level truncation; namely, the photon-count image gray
levels are limited to 0 and 1 in these simulations, where all
nonzero counts are lumped together as a generic “1” count.
To see the reason behind such drop in the fidelity metric, note
that for any fixed level of truncation (or quantization) of the
output count, the fidelity metric converges to zero as the mean
number of photons per pixel, Np, tends to infinity. More pre-
cisely, for a given level of thresholding, as Np increases the
probability mass function of the truncated output becomes
concentrated at the highest quantized level (approaching a
delta function). Hence, the entropy of the truncated output
will converge to zero as Np tends to infinity, and so does
the mutual information since it is upper bounded by the en-
tropy of the truncated output.

As for the information content per photon, we see a similar
trend in terms of correlation. In general, Ip is higher in 3D
images that have a high degree of correlation, especially cor-
relation in the depth direction, as seen in Fig. 8. Moreover, Ip
decreases with Np as the benefit in having more photons (in
reducing uncertainty in the photon-count image) is out-
weighed by the redundancy of having more photons.

A. Role of Photon Statistics
Next, we investigate the effect of photon statistics on the me-
trics ρ and Ip. Figure 9 shows the fidelity metric ρ when the
photon statistics follow binomial and Boltzmann (geometric)
distributions. In the former case, the probability mass function
of Yi conditional on Xi is binomial, and in the latter case the
probability mass function is geometric; more details on these
distributions in the context of photon-counting imaging are
available in [19]. The binomial model is suitable in modeling
photon statistics of nonclassical light when the probing light is
maximally amplitude squeezed [29]. An amplitude-squeezed
state can result in narrowing the distribution of the photon

Fig. 11. (Color online) Input 500 × 500 image (a) and one slice [at
370 mm] of the 3D reconstruction (b) using the PCII system. The cal-
culated fidelity metric is ρ � 0.2438 and Ip � 0.86 bpp. The mutual
information and entropy are estimated as in [19].

Fig. 12. (Color online) (a) Input (true) 1664 × 2496 image used to generate 100 elemental images (with an average of 10 000 photons in each
elemental image) and 3D reconstruction based on PCII and (b) one slice at 95 mm.
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number, viz., reducing the photon-number uncertainty and
hence reducing quantum noise below the classical shot-noise
limit (associated with light with Poisson photon statistics).
The geometric distribution is suitable for modeling, for exam-
ple, the photon statistics of thermal light, and it has higher
photon-number uncertainty compared to Poissonian light
[30]. For comparison, the results corresponding to the Poisson
statistics are also overlayed. For consistency, we have as-
sumed the same mean value for all three distributions. We find

that for small values of the mean photon number per pixel
(Np < 4), Poisson photon statistics yield a higher fidelity me-
tric than that for the Boltzmann photon statistics but lower
than that for the binomial distribution. This is because uncer-
tainty in the photon number is higher in the Boltzmann photon
statistics than that for Poisson statistics, and the opposite is
true for the binomial photon statistics. A reduced (increased)
quantum noise compared to the Poisson-statistics case im-
plies that the photon count resembles the image more closely
(remotely), in turn implying higher (lower) correlation be-
tween the source image and the photon-counting output im-
age. For Ip, it is seen from Fig. 10 that for low photon counts
Np, the binomial photon statistics yield smaller Ip than those
for the Poisson and Boltzmann statistics; this is because the
binomial distribution has less photon-number uncertainty and
hence less net mutual information, unless normalized by the
entropy as in the case of ρ, where we found that ρ was higher
for the binomial statistics than those for the other two.

5. APPLICATION TO SIMULATED 3D PCII
IMAGERY
To put the results of Section 4 in the context of PCII, we have
generated simulations of the 3D reconstruction of a real 3D
object using the PCII approach and empirically calculated
the metrics Ip and ρ. We begin by considering Ip for a repre-
sentative quantum-noise limited example shown in Fig. 11(a).
We have calculated Ip � 0.86 bpp and ρ � 0.2438 for the 8 bit
2D projection, shown in Fig. 11(b), of the 3D reconstruction
by means of the PCII method [21]. The reconstruction
is obtained from a set of 100 elemental images (with resolu-
tion 500 × 500 pixel), with 21 618 photons in total in all the
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Fig. 13. Fidelity metric and photon-information content versus num-
ber of depth slices used (256 gray levels). The reconstruction was per-
formed using 100 elemental images with each elemental image having,
on average, Np × 1664 × 2496 photons.

Fig. 14. Fidelity metric and photon-information content versus number of photons per pixel for different number of depths included in the 3D
image (256 gray levels).
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elemental images. (The entropy and mutual information were
estimated using the Ising MRF method used in [19].)

We also determined the effect of using more depth informa-
tion on Ip and ρ in 3D reconstructions from a fixed number of
elemental images. In this case, ρ and Ip were calculated from a
multidimensional histogram with up to seven dimensions (one
per depth) and the photon counts in all 10 000 1664 × 2496 ele-
mental images. In the PCII, data volume depths ranged from
90 to 120 mm and the average number of photons per elemen-
tal image, Np × 1664 × 2496, varied between 1000 and 10 000
photons per elemental image. The true object that was imaged
is shown in Fig. 12(a) and a slice of its 3D reconstruction is
shown in Fig. 12(b). We investigated the role of including
depth information progressively as we consider more and
more depth layers. As expected and as seen in Fig. 13, as we
include more slices of the 3D volume, the cumulative bpp in-
creases. This will eventually converge to the Ip for the entire
3D image cube. To see the trade-off between Ip and ρ in a 3D
setting, we plot these metrics in Fig. 14 as a function of Np for
different sizes of the reconstructed 3D image, namely for the
cases when 3, 5, and 7 depths are used. The trade-off in Ip and
ρ is clear.

Finally, we make the observation that as seen in Table 1, the
photon-information content is very high for elemental images
whereas the fidelity is very low. In contrast, for the recon-
structed images, the image fidelity is very high but the
photon-information content is low.

6. CONCLUSIONS
We have introduced an information-theoretic metric, termed
the photon-information content, that measures the amount of
Shannon’s information each photon provides in 3D photon-
counting imaging systems. This metric, in conjunction with
the entropy-normalized mutual information for image fidelity
in photon-counting imaging systems, together provide a
means of assessment and trade-off analysis between quality
of imaging and conservation in photon usage, or photon-
number compression. The trade-off between photon-number
compression and image quality was investigated in 3D images
both in the context of photon-counting imaging and PCII. The
role of 3D correlation (especially in the depth dimension) as
well as the photon statistics were investigated.

Not only is assessment and optimization of photon-
counting imaging and photon-counting integral imaging possi-
ble through these metrics, but they are also applicable to a
much larger realm of existing and potential information-
transmission driven systems. The limits of such systems in
terms of photon-number compression and fidelity play di-
rectly to the requirements placed upon these systems to con-
vey as much information as possible in a limited time and to
enable decisions at the earliest possible time from the avail-
able data. For example, in the context of automatic target

recognition, with maximal photon-number compression sub-
ject to a prescribed fidelity constraint, an ideal identification
image/object template can be realized optimally, thus stream-
lining the optical identification process. The performance
bounds of image identification can then be assessed indepen-
dently of the transmission channel and its noise with a more
thorough understanding of the information-degradation pro-
cess involved in the imaging process. Extension is possible
to other 3D passive sensing paradigms, multiview photon-
counting imaging, multidata (hyperspectral or gamma ray)
imaging, or even sparse-sensor arrangements.
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