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Abstract—The effect of dead space on the statistics of the gain
in a double-carrier-multiplication avalanche photodiode (APD)
is determined using a recurrence method. The dead space is the
minimum distance that a newly generated carrier must travel
in order to acquire sufficient energy to become capable of caus-
ing an impact ionization. We derive recurrence equations for
the first moment, second moment, and the probability distri-
bution function of two random variables that are related, in a
deterministic way, to the random gain of the APD. These equa-
tions are solved numerically to produce the mean gain and the
excess noise factor. The presence of dead space reduces both
the mean gain and the excess noise factor of the device. This
may have a beneficial effect on the performance of the detector
when used in optical receivers with photon noise and circuit
noise.

I. INTRODUCTION

VALANCHE photodiodes (APD’s) with a variety of

structures have been used as detectors in fiber-optic
communication systems. The performance of such sys-
tems is strongly dependent on the mean gain and the ran-
dom fluctuations of the APD, measured by the excess
noise factor. A fundamental assumption implicit ip most
models of noise of conventional APD’s [1]-[9] is that the
probability of impact ionization by a carrier is indepen-
dent of its ionization history, so that the ionization rate is
the same at all times, including the instant following the
carrier’s own generation. From a physical point of view,
however, a newly generated carrier must travel some dis-
tance in order to build up sufficient energy to enable it to
initiate an ionization [10], [11]. To take this effect into
account, a model is formulated in which the ionization
probability of a carrier is set to zero for a certain distance,
called the dead space, immediately following its genera-
tion. More realistically, the ionization probability would
be expected to increase gradually, beginning from zero
and reaching a steady-state value after some distance
called the ‘‘sick space.”’ :
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Using a sick-space ionization model, LaViolette [12],
and LaViolette and Stapelbroek [13] developed a numer-
ical technique for evaluating the mean, excess noise fac-
tor, and probability distribution function for the gain.
Saleh, Hayat, and Teich [14] treated the dead-space model
using the theory of age-dependent branching processes.
They obtained analytical expressions for the mean gain
and the excess noise factor, and determined numerically
the mean and standard deviation of the impulse response
function of the APD as a function of time following a
photoexcitation. Their theory is also applicable to the sick-
space model. Both of these theories have been limited to
APD’s with only single-carrier multiplication (SCM).

The problem is more complex in the case of double-
carrier multiplication (DCM). Okuto and Crowell [10],
[11] calculated numerically the mean gain for the DCM
dead-space model. Marsland [15] attempted to extend the
classical MclIntyre theory [1] for the mean gain and excess
noise factor for a conventional APD to an APD with dead
space. However, the formulation is incomplete; it takes
into account the dead space associated only with the ini-
tial carrier pair and does not extend it to the subsequent
carriers. Consequently, Marsland’s results for the special
case of SCM disagree with the complete theory [14].

In this paper, we develop a theory for the gain statistics
of a DCM APD assuming a sick-space model. Recurrence
equations are derived for the probability distribution func-
tion, and the first and second moments, of the numbers of
electrons and holes. These random variables are related
to the random gain in a deterministic way. As a special
case, the dead-space model is applied to these recurrence
equations and numerical solutions are obtained for the
mean gain and the excess noise factor.

Dead space in APD’s tends to reduce both the mean
gain and the excess noise factor in a manner which has a
beneficial effect on the performance of the optical re-
ceiver. The magnitude of this effect depends on the rela-
tive magnitudes of the photon noise, which depends on
the mean photon flux, and the noise in the receiver circuit,
which depends on the design of the preamplifier.

II. MobEL

Under consideration is a single-carrier injection dou-
ble-carrier multiplication APD. An electron injected at
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x = 0 travels in the x direction with a fixed velocity v,
under the effect of the electric field. After a random dis-
tance X, (called the electron lifespan) an impact ionization
occurs. Upon ionization, an electron-hole pair is gener-
ated, so that the original electron is replaced by two elec-
trons and a hole. The two electrons behave in a statisti-
cally identical and independent manner. The hole, on the
other hand, travels in the —x direction with a fixed veloc-
ity v, and ionizes after traveling a random distance X,
(called the hole lifespan), resulting in two holes and an
electron. The electrons and holes repeat the process as
they travel through the multiplication region, and so on.
The multiplication region extends fromx = O to x = W.
When an electron reaches the right edge of the multipli-
cation region its role ends. Similarly, a hole ceases to ion-
ize when it reaches the left edge. If the process termi-
nates, it does so when all possible carriers have reached
the edges of the multiplication region.

The random variables X, and X, are assumed to be sta-
tistically independent and have probability density func-
tions h,(x,) and A, (x;), respectively. In the dead-space
model, for example,

0, x, < d,
he(x) = {M R
and
0, x, < dy
hh(x") = {Be ’5(le*dh)’ X, = dh (1b)

where d, and dj, are the electron and hole dead spaces,
respectively, and « and § are the ionization rates for elec-
trons and holes that have traveled beyond the dead space,
respectively.

The total number of electron-hole pairs generated
within the device, including the original electron which
initiated the entire multiplication process, is a random
number G that constitutes the gain of the device. Our ob-
jective is to determine the statistics of G.

III. STATISTICS OF THE GAIN

Our approach is based on writing recurrence equations
for the totoal number of carriers generated by a single
carrier at an arbitrary location within the multiplication
region. These type of recurrence equations arise naturally
in branching processes [16], in which the occurrence of
an event independently replicates a statistically identical
process of event generation. In fact, a similar approach
underlies the original theory advanced by Mclntyre [1] for
conventional APD’s in the absence of dead space.

A. Recurrence Equations

Consider an electron and a hole at location x. Assume
that the electron is responsible for the production of a ran-
dom sum Z(x) of electrons and holes, including the ini-
tiating electron itself. Similarly, Y(x) is the random num-
ber of all electrons and holes produced by the hole and its

offsprings, including the hole itself. Thus
M) = 3 (Z®x) + Y) ¢

is the total number of carrier pairs generated as a result
of the original carrier pair at location x, including the
original pair. The theory developed by Mclntyre [1] is
based on developing a recurrence equation for the mean
m(x) = {(M(x)), where brackets denote an ensemble av-
erage. In a device in which there is a single electron-hole
pair at x = 0, the gain

G = M(0) = 5(Z(0) + Y(0)).

Clearly, Y(0) = 1 since a hole at x = 0 does not travel
into the device and cannot ionize, so that

G = 1(Z©0) + 1). ?3)

Once the statistical properties of Z(x) and Y(x) are deter-
mined, the statistics of M(x) and G can be inferred from
(2) and (3), respectively.

We now proceed to develop recurrence equations for
the random variables Z(x) and Y(x). Consider an electron
at location x and examine the events that occur as a result
of this electron, the pairs it generates, and their off-
springs. If the first ionization occurs at location x < & <
W, we have two electrons and a hole at location £. Let
Z, (%), Z, (%), and Y(£) denote the total number of carriers
produced by the first electron, the second electron, and
the hole, respectively. Since each of these carriers acts
independently, the random variables Z, (%), Z,(£), and
Y(£) are statistically independent. Clearly, Z, (¢) and Z, (§)
are identically distributed. Conditioning on the first ion-
ization occurring at location £, the total number of car-
riers produced by the original electron is

2(x|8) = Z,(§) + Z,(5) + Y(&). )

The conditioning can be removed by averaging over all
possible £ in the interval x < £ < W. Thus if we assume
that the original electron ionizes before reaching the edge
atx = W, then '

w
{Z(x)) S (Z(x)|&)) h (¢ — x) dE

w
S ([Z,(&) + Zy(®) + YO h(§ — x) dE.
(&)

It is also possible, however, that the original electron will
not ionize at all (i.e., Z(x) = 1). The probability of this
eventis 1 — H,(W — x), where

H,(x) = S_w h,(§) dg 6)

is the distribution function of the electron lifespan random .
variable X,. i
Similarly, for a single hole at x

Yxj) = Yi(§) + N + Z(&). O



548 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 39, NO. 3, MARCH 1992

If we assume that the original hole ionizes before reaching
the edge at x = O then by averaging over all possible £ in
the interval 0 < £ < x we obtain

X

(Yx)) = SO (Y(x|&)) hy(x — &) d

= SO (&) + L) + ZOD) h(x — §) dE.

®)

The probability that the holes does not ionize at all (i.e.,
Y(x) = 1)is 1 — H,(x), where

Hy () = S ha (8) dg ©)

is the distribution function for the hole lifespan random
variable X;,.

B. Mean Gain
In the light of the discussion in Section III-A, we take
the ensemble average of Z(x) and ¥(x) and obtain

) = [1 = H.(W — x)]

w
+ S [2z(§) + y®lh(§ — x)dE  (10)

X

and

X

yx) = [1 — H,(x)] + SO [2y() + 2O — §) dE

11

where z(x) = (Z(x)) and y(x) = (¥(x)) are the means of
Z(x) and Y(x), respectively. Equations (10) and (11) are
validonly for0 < x < W. Atx = W

W) =1 (12a)

andatx =0

y©0) = 1. (12b)

The coupled integral equations (10) and (11) are the
basic equations from which the mean gain (G) will be
determined by taking the ensemble average of both sides
of (3). Thus the mean multiplication

mx) = 3 @x) + yx) (13a)
and in particular, the mean gain is
(Gy = 3(0) + 1). (13b)

In our earlier work [14], which dealt with the SCM case,
we obtained a recurrence integral equation that is a special
case of (10) with A, (x) = 0, H,(x) = 0, and y(x) = 1.
The dead-space model can be applied by inserting the
expressions for the functions 4, (x) and A, (x), as given by

(1), into (10) and (11)
20 =1 — (1 — e eWx=dNyW — x - d,)]

W
+ S [22(8) + y(£) oe #7574

X

cu(t( - x —d,)dt (14)
and
yx) =11 - a - e‘ﬁ("‘dh))u(x ~ d)]
+ go [2y(¢) + z(§)]Be Pt~
culx — & — dy) dE (15)

where u(x) = 1 for x = 0, and O otherwise.

C. Excess Noise Factor

The excess noise factor can be determined by devel-
oping similar expressions for the mean squared values of
Z(x) and Y(x). We start by squaring both sides of (4) to
obtain

Z2(x|§) = (Z,(®) + Z,(&) + Y& (16)

If we assume that the original electron ionizes before

reaching the edge at x = W then the conditioning can be
removed by averaging over £ in the interval x < § < W

w
(Z*x)) = S (Z*(x|£)) ho(§ — x) dE

x

w
= S ([Z,(§) + Z,(§) + YO h (¢ — x) dE.

a7

Thus the ensemble average of Z 2(x) can be written as
w

() =[1 — H(W —x)] + S [22,(8) + y,(§)

X

+ 4z(E)y(§) + 227 Bk (¢ — x) dE

where z, (x) = (Z%(x)), and y, (x) = (Y?(x)) are the sec-
ond moments of Z(x) and Y(x), respectively. Similarly,
we start with (7) to obtain a similar expression

(18)

@) =[1 - H,(x)] + go [2y2(8) + 22(5) + 4z(&)y(§)

+ 2921y (x — §) dE. (19)
Atx =W
W) =1 (20a)
andatx =0
»0) = 1. (20b)

These recurrence equations for the second moments re-
quire knowledge of the first moments z(x) and y(x), which
must be computed separately by the use of (10) and (11).
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The excess noise factor
_ G
- (GY?
is related to z(0) and z, (0) by
_AMPO) _ %) +2%0) + 1
, (M(0))) @O + 1)
Our earlier results for the SCM case are reproduced from
(18), (19), and (21) by setting h;, (x) = 0, H,(x) = 0, and
yx) = L.

In general, recurrence equations for yet higher mo-
ments can be generated in a similar manner. These re-
currence equations involve lower moments as well. So one
can systematically solve for the higher order moments by
using the previously calculated lower moments in the re-
currence equations.

For the dead-space model, (18) and (19) yield

@) =1 — (1 - e W dNyW - x - d,)]

@n

w
+ S [22,(§) + »(§) + 4z(H)¥(&)

X

+ 222 (D)]ae ETF TR yE — x — d,) dE (22)
and
yax) =1 — (1 — e P Myy(x — dy)]

+ SO [2y2(8) + 2,(8) + 42(E)y(E)

+ 292 (D)) Be P T W y(x — £ — d,) dE. (23)

D. Probability-Distribution Function of the Gain

We now proceed to determine the probability distribu-
tion function (pdf) of the gain. Let P,(k, x), k = 1,2, 3,
- - -, denote the pdf of Z(x), i.e., Pz(k, x) = Pr {Z(x) =
k}. Similarly, Py(k, x) is the pdf of Y(x). The random
variable Z(x|§) = Z,(£) + Z,(§) + Y(¢) defined in (4)

has the conditional pdf Py (k, x|§) = Pr {Z(x|§) = k}..

Since the random variables Z, (£), Z, (£), and Y(§) are sta-

tistically independent, Pz (k, x|£) is the discrete convo-

lution of the pdf’s of Z,(£), Z,(£), and Y(§) evaluated at

k. Furthermore, since Z, (£) and Z, (£) are identically dis-

tributed, they have identical pdf’s Pz(k, x), so that
k—1j—1

Prtk, xl§) = 2 2 P7(j = i O P2, OPyk = j. §).

(24)

The conditioning can be removed by averaging over all £
in the interval x < £ < W to obtain an integral equation
relating Pz(k, x) and Py(k, x). Fork > 1

Pz(k, X)

I

w
S h (¢ — x)Py (k, x|&) dE

w k=1j-1
Sx he(g - X <j§1 i=2| Pz(_] — i, §)

" Pz, ) Pytk — j, E)) dt. (25a)

Fork =1
P;(1,x) =1 — H(W — x). (25b)
Similarly
x k=1j—1
Py(k, x) = SO hy(x = £) (jg 2 Py(j =i B
© Py(i, §)Pz(k — J, £)> dt (26a)
and
Py(1,x) = 1 — Hy(x). (26b)

The two coupled integral equations (25) and (26) can be
solved, in principle, to determine the pdf’s Pz(k, x) and
Py(k, x). The pdf of the gain Pg(k) = Pr {G = k} can
then be found using (3) to yield Pg(k) = Pz(2k — 1, 0).

If only electrons are allowed to ionize, as it is the case
with an SCM APD, Py(k, x) = 1 for k = 1, and O oth-
erwise. In this case, (25) becomes equivalent to the result
obtained in our earlier work [14].

The complexity of (25) and (26) arises in part from the
appearance of summations of the discrete-convolution
type under the integrals; nonetheless, these summations
can be transformed into multiplications with the aid of
generating functions. Let Fz(s, x) and Fy(s, x) be the gen-
erating functions of Z(x) and Y(x), respectively, i.e.,

Fy(s, x) = kl_‘jo Pk, sk, |s| =1 X))
and
Fy(s, x) = E)O Pyk, x)s*,  |s| = 1. (28)

Using (27) and (28) in (25) and (26), respectively, gives

W

Fy(s, x) = s[1 — H.(W = x)] + S h(§ — x)

- [Fy(s, OV Fy(s, ) dE, |s| <1 (29)
F,(1,x) =1 (29b)
Fy(s, x) = s[1 = H,)] + SO hy(x — £)

- [Fy(s, )V Fy(s, £ dE, |s| <1 (30a)

and

Fy(l,x) = 1. (30b)

The foregoing coupled nonlinear integral equations can be
solved numerically. Once the generating functions are ob-
tained, the pdf’s can be determined by the use of the re-

lation
1 [3*F(s, x)
P = (—F=
& ) k!< as* J._o

with the proper subscripts on P and F. Furthermore, these
integral equations can be used to derive the recurrence
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equations for the first and second moments z(x), y(x),
7, (x), and y, (x) ((10), (11), (18), and (19)). This may be
accomplished by use of the standard relations

z2(x) = <?- Fz(s, x))
ds s=1
and
62
2(x) = z2(x) + <W Fy(s, X)>s=l

IV. RESULTS

We have used the recurrence equations obtained in Sec-
tions III-B and III-C to determine the mean gain and ex-
cess noise factor of a DCM APD with ionization rates o
and B and dead-space distances d, and dj,. The numerical
computations are carried out as follows: i) z(x) and y(x)
are set to zero everywhere in the interval 0 < x < W,
with the two exceptions z(W) = y(0) = 1, in accordance
with (12). ii) Equation (15) is discretized, using a suitable
mesh size, and then used to generate estimates of y(x) in
the interval 0 < x < W. iii) Using this estimate of y(x)
in the discrete version of (14), an estimate of z(x) is gen-
erated in the interval 0 < x < W. iv) An improved esti-
mate of y(x) is obtained by substituting in the discrete ver-
sion of (15) the previously calculated estimate of z(x). v)
Steps iii) and iv) are repeated until convergence is
achieved. The mean multiplication m(x) is computed by
the use of (13a).

The validity of the numerical results has been verified
by comparison with known expressions in the special case
of no dead space and with the SCM theory [14].

The effect of dead space on m(x) is shown in Fig. 1 for
different. values of the hole-to-electron ionization ratio
k = B/a. As expected, dead space reduces m(x) every-
where ir the interval 0 < x < W. In particular, it reduces
the mean gain {G) = m(0). This effect is more significant
for larger k, as can be deduced from Fig. 2 which shows
the dependence of (G) on k for different values of the
ratio d,/W = d,/W. The dead-space effect is substan-
tially greater here than in the results of Marsland [15]
which fail to account for the dead space encountered by
secondary carriers.

In a similar manner, the second moments z, (x) and y, (x)
have been computed numerically using discrete version of
(22) and (23). With the aid of (21), the excess noise factor
F has been computed. The effect of dead space on F is
illustrated in Fig. 3. In this figure, F is plotted as a func-
tion of (G) with the ratio d,/W = d, /W as a parameter
and for different values of k. It is seen that for fixed values
of k and (G), an increase in the ratio d,/W = d,/W
cauases a reduction.in F. In the special case where k = 0,
F initially increases with {(G), reaches a maximum, and
then decays monotonically to an asymptotic value. This
decrease in F can be understood in the context of our ear-
lier work [14].

Since the presence of dead space is responsible for a
reduction of both the mean gain and the excess noise fac-
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Fig. 1. Mean number of electron-hole pairs produced by an initial elec-
tron-hole pair at location x in the multiplication region of width W. The
value of aW is selected so that the mean gain (G) = m(0) = 40 in the
absence of dead space. The quantity d/W = d,/W = d, /W assumes values
0, 0.05, and 0.1 in the four cases: (a) k = 0 (W = 3.689); (b) k = 0.1
(aW = 2.333); (c) k = 0.2 (aW = 1.893); (d) k = 1 (W = 0.975).
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Fig. 2. Mean gean (G) = m(0) as a function of the hole-to-electron ion- ’ )

ization rates ratio k ford/W = d,/W = d,/W = 0, 0.05, and 0.1.

tor, it is not clear whether it is of advantage to the overall
performance of the detector. To assess this effect consider

" a communication system receiving a photon flux ¢ (pho-
tons per second). Assuming Poisson photon statistics, the
signal-to-noise ratio (SNR) of the total charge accumula-
tion in the detection circuit in a time interval T is given
by [17]

¢T(G)?
2
g

GY'F + —

(G oT

where ¢ = i/eT, is the rms current, and e is the electron

charge. Thus ¢7 is the mean number of photons collected

and ¢ is the rms circuit noise charge flow in the time in-

terval ‘T (units of number of electrons). The quantum ef-

ficiency of the APD is assumed to be unity. Since the

SNR for an ideal photon-noise-limited receiver (¢ = 0,
F = 1) is ¢T, the performance factor

(G)?

SNR = (€2Y)

P = (32)

2 o’
(G) F+ﬁ
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Fig. 3. Excess noise factor F as a function of the mean gain (G) = m(0)
ford,/W = d,/W = 0 (dotted), 0.05 (dashed), and 0.1 (solid). Four val-
ues of the ionization ratio are shown: (a) k = 0, k = 0.1; (b) k = 0.2,
k=1.
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Fig. 4. The performance factor P, which governs the signal-to-noise ratio
of an optical receiver that uses an APD, as a function of the mean gain
(G). The circuit-noise to photon-noise ratio ¢2/¢T = 100. Values of d,/ W
= d, /W are taken to be 0, 0.05, and 0.1 (corresponding, respectively, to
the dotted, dashed, and solid curves) and used for four values of the ion-
ization ratio: (a)k = 0,k =0.1; (b)k = 0.2,k = 1.

represents the SNR reduction caused by the combination
of gain fluctuations and circuit noise. Thus the importance
of the role played by dead space is governed by the ratio

02/¢T. If 6% /¢T << (G)*F, then P & 1/F, so that the
performance is enhanced by the presence of dead space.
On the other hand, if 2 /¢T>> (G)*F, then P o (G)?,
so that dead space has a performance degradation effect.
However, the mean gain can usually be increased by sim-
ply increasing the applied voltage to the device. The
beneficial effort of dead space on P as a function of {(G)
is depicted in Fig. 4 for different values of ratio d,/ W =
d, /W and for a fixed value of the circuit-noise to photon-
noise parameter ¢ /¢T = 100.

V. CONCLUSION

The effect of dead space on the mean gain and noise
properties of double-carrier multiplication APD’s has been
studied using recurrence relations in the form of coupled
integral equations.

We found that dead space reduces the mean gain since
it results in fewer ionizations. The reduction was found
to be relatively greater as the hole-to-electron ionization
ratio k approached 1 since the growth rate of the branch-
ing process is reduced by the inhibiting effect of dead
space.

We have also shown that dead space causes a lower
excess noise factor since it introduces some orderliness in
the random ionization process. In as much as real devices
have intrinsic dead space built into them, the results here
may therefore elucidate some enigmatic results in the lit-
erature [18]. Under certain conditions, the dead space has
a beneficial effect on the performance of optical receivers.
It may therefore be advantageous to select materials for
which the dead space is enhanced, without jeopardizing
other parameters such as large o and small k. '
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