Dynamic Time Delay Models for Load
Balancing Part II: A Stochastic Analysis of the
Effect of Delay Uncertainty

Majeed M. Hayat!, Sagar Dhakal!, Chaouki T. Abdallah!, J. Douglas
Birdwell?, and John Chiasson?

! ECE Dept, University of New Mexico, Albuquerque NM 87131-1356, USA
{hayat,dhakal, chaouki}Qeece.unm.edu

2 ECE Dept, University of Tennessee, Knoxville TN 37996, USA
{chiasson,birdwell }Qutk.edu

Summary. In large-scale distributed computing systems, in which the compu-
tational elements are physically or virtually distant from each other, there are
communication-related delays that can significantly alter the expected performance
of load-balancing policies that do not account for such delays. This is a particu-
larly significant problem in systems for which the individual units are connected
by means of a shared broadband communication medium (e.g., the Internet, ATM,
wireless LAN or wireless Internet). In such cases, the delays, in addition to being
large, fluctuate randomly, making their one-time accurate prediction impossible. In
this work, the stochastic dynamics of a load-balancing algorithm in a cluster of
computer nodes are modeled and used to predict the effects of the random time de-
lays on the algorithm’s performance. A discrete-time stochastic dynamical-equation
model is presented describing the evolution of the random queue size of each node.
Monte Carlo simulation is also used to demonstrate the extent of the role played
by the magnitude and uncertainty of the various time-delay elements in altering
the performance of load balancing. This study reveals that the presence of delay
(deterministic or random) can lead to a significant degradation in the performance
of a load-balancing policy. One way to remedy such a problem is to weaken the
load-balancing mechanism so that the load-transfer between nodes is down-scaled
(or discouraged) appropriately.

1 Introduction

Effective load balancing of a cluster of computational elements (CEs) in a
distributed computing system relies on accurate knowledge of the state of
the individual CEs. This knowledge is used to judiciously assign incoming
computational tasks to appropriate CEs, according to some load-balancing
policy [1, 2]. In large-scale distributed computing systems, in which the CEs

2 Authors Suppressed Due to Excessive Length

are physically or virtually distant from each other, there are a number of in-
herent time-delay factors that can seriously alter the expected performance
of the load-balancing policies that do not account for such delays. One man-
ifestation of such time delay is attributable to the computational limitations
of the individual CEs. A more significant manifestation of such delay arises
from the communication limitations between the CEs. These include delays
in transferring loads between CEs and delays in the communication between
them. Moreover, these delay elements not only fluctuate within each CE, as
the amounts of the loads to be transferred vary, but also fluctuate as a re-
sult of the uncertainty in the condition of the communication medium that
connects the units. There has been an extensive research in the development
of the appropriate dynamic load balancing policies. The policies have been
proposed for categories such as local versus global, static versus dynamic,
and centralized versus distributed scheduling [3, 4, 5]. Some of the existing
approaches consider constant performance of the network while others con-
sider deterministic communication and transfer delay. Here, we propose and
investigate a dynamic load balancing scheme for distributed systems which
incorporates the stochastic nature of the delay in both communication and
load transfer.

To adequately model load balancing problems, several features of the par-
allel computation environment should be captured including: (1) the workload
awaiting processing at each CE (i.e., queue size); (2) the relative performances
of the CEs; (3) the computational requirements of each workload component;
(4) the delays and bandwidth constraints of CEs and network components
involved in the exchange of workloads, and (5) the delays imposed by CEs
and the network on the exchange of measurements and information. The au-
thors have previously developed a deterministic model, based on dynamic rate
equations, describing the load-balancing dynamics and characterizing condi-
tions for its stability [2, 6, 7, 8]. While thie deterministic model is appropriate
when dealing with a dedicated communication medium, it may become inad-
equate for cases when a shared communication medium is used whereby the
delays encountered are stochastic. In this paper, we will focus on the effect
of stochastic delay on the performance of load balancing. The effect of de-
lay is expected to be a key factor as searching large databases moves toward
distributed architectures with potentially geographically distant units.

This article is organized as follows. In Section 2 we identify the stochastic
elements of the load-balancing problem at hand and describe its time dy-
namics. In Section 3 we present a discrete-time queuing model describing the
evolution of the random queue size of each node in the presence of delay
for a typical load balancing algorithm. In Section 4 we present the results of
Monte-Carlo simulations which demonstrate the extent of the role played by
the uncertainty of the various time-delay elements in altering the performance
of load balancing from that predicted by deterministic models, which assume
fixed delays. Finally, the conclusions are given in Section 5.

Title Suppressed Due to Excessive Length 3

2 Description of the Stochastic Dynamics

The load balancing problem in the presence of delay can be generically de-
scribed as follows. Consider n nodes in a network of geographically-distributed
CEs. Computational tasks arrive at each node randomly and tasks are com-
pleted according to an exponential service-time model. In a typical load-
balancing algorithm, each node routinely checks its queue size against other
nodes and decides whether or not to allocate a portion of its load to less
busy nodes according to a predefined policy. Now due to the physical (or vir-
tual) distance between nodes in large-scale distributed computing systems,
communication and load transfer activity among them cannot be assumed
instantaneous. Thus, the information that a particular node has about other
nodes at any time is dated and may not accurately represent the current
state of the other nodes. For the same reason, a load sent to a recipient node
arrives at a delayed instant. In the mean time, however, the load state of
the recipient node may have considerably changed from what was known to
the transmitting node at the time of load transfer. Furthermore, what makes
matters more complex is that these delays are random. For example, the
communication delay is random since the state of the shared communication
network is unpredictable, depending on the level of traffic, congestion, and
quality of service (QoS) attributes of the network. Clearly, the characteristics
of the delay depend on the network configuration and architecture, the type of
communication medium and protocol, and on the overall load of the system.
Other factors that contribute to the stochastic nature of the distributed-
computing problem include: 1) randomness and possible burst-like nature of
the arrival of new job requests at each node from external sources (i.e., from
users); 2) randomness of the load-transfer process itself, as it depends on
some deterministic law that may use a sliding-window history of all other
nodes (which are also random); and 3) randomness in the task completion
process at each node. In the next section, we lay out a queuing model that
characterizes the dynamics of the load-balancing problem described so far.

3 A Discrete-time Queuing Model with Delays

Consider n nodes (CEs), and let @Q;(t) denote the number of tasks awaiting
processing at the ¢th node at time ¢. Suppose that the ith node completes tasks
at a rate p;, and new job requests are assigned to it from external sources
(i.e., from external users) at a rate A,. Note that these incoming tasks come
from sources external to the network of nodes and do not included the jobs
transferred to a node from other nodes as a result of load balancing. Let the
counting process J;(t1, t2) denote the number of such external tasks arriving at
node i in the interval (¢, t2]. To capture any possible burst-like characteristics
in the external-task arrivals (as each job request may involve a large number of
computational tasks), we will assume that the process J;(-,-) is a compound

4 Authors Suppressed Due to Excessive Length

Poisson process [9]. That is, Ji(t1,t2) = >;.; -, <;, Hk, where 7 are the
arrival times of job requests (which arrive according to a Poisson process with
rate \;) and Hy (k=1,2...) is an integer-valued random variable describing
the number of tasks associated with the kth job request. We next address the
load transfer between nodes which will allow us to describe the dynamics of
the evolution of the queues.

For the ith node and at its specific load-balancing instants 7}, £ = 1,2, ...,
the node looks at its own load Q;(7}) and the loads of other nodes at ran-
domly delayed instants (due to communication delays), and decides whether it
should allocate some of its load to other nodes, according to a deterministic (or
randomized, if so desired) load-balancing policy. Moreover, at times when it is
not balancing its load, it may receive loads from other nodes that were trans-
mitted at a randomly delayed instant, governed by the characteristics of the
load-transfer delay. With the above description of task assignments between
nodes, and with our earlier description of task completion and external-task
arrivals, we can write the dynamics of the ith queue in differential form as

Qi(t+At) = Qi(t)—Ci(t, t+At)= > Lji(t)+Y _ Lij(t—7ij)+Ji(t, t+At), (1)
Jj#i J#i

where

o (C;(t,t+At) is a Poisson process with rate p; describing the random number
of tasks completed in the interval (¢,t 4+ At]

e 7;; is the delay in transferring the load arriving to node i sent by node j,
and finally

e L;(t) is the load transferred from node j to node i at the time ¢. Note
that L;;(t) is zero except at the load-transfer instants Tg, (=1,2,...,for
the jth node.

Now for any k # ¢, the random load Lg,(t) diverted from node ¢ to node k
at a pre-specified load-transfer time ¢ is governed by the mutual load-balancing
policy a-priory agreed upon between the two nodes. This policy utilizes knowl-
edge of the state of the /th (transmitting) node and the delayed knowledge
of the recipient kth node as well as the dated states of all the other nodes.
More precisely, we assume Ly (t) = gre(Qe(t), Qr(t—nek), - .., Q; (E—e5), - -),
where for any j # k, nx; = 7, is the communication delay between the kth
and jth nodes. The function gps governs the load-balancing policy between
the kth and /th nodes. One common example is

Gre(Qe(t), Qu(t — nex), - - - an(t —Nej), - --)

= Kkpre - (ZQ; — Nej))
U()—n" ZQ; — Nej) (2)

Title Suppressed Due to Excessive Length 5

where u(-) is the unit step function with the obvious convention 7;;(t) = 0,
and K}, is a parameter that controls the “strength” or “gain” of load balancing
at the kth (load distributing) node. We will refer to it henceforth as the gain
coefficient. In this example, the fth node simply compares its load to the
average over all nodes and sends out a fraction pge of its excess load, Q.(t) —
n~! > i=1 Qj(t—1e;), to the th node. (Of course we require that -, pre =
1.) This form of policy has been previously adopted and implemented by the
authors for a cluster of CEs [1, 2]|. Finally, the fractions ps can be defined in
a variety of ways. In this work they are defined as follows:

e 2 1 {1_ Qi (t — mew) }
w n—2 Z#eQi(t_Wi) .

In this definition, a node sends a larger fraction of its excess load to a node
with a small load relative to all other candidate recipient nodes.

3)

4 Simulation Results

We have developed a custom-made Monte-Carlo simulation software accord-
ing to our queuing model. We utilized actual data from load-balancing experi-
ments (conducted at the University of Tennessee) pertaining to the number of
tasks awaiting processing, average communication delay, average load-transfer
delay, and actual load-balancing instants [2]. In the actual experiment, the
communication and load-transfer delays were minimal (due the fact that the
PCs were all in a local proximity and benefited from a dedicated fast Ether-
net). Thus, to better reflect cases when the nodes are geographically distant
we synthesized larger delays in communication and load transfer in our sim-
ulations.

4.1 Effect of Delay

Three CEs (n = 3) were used in the simulations and a standard load-balancing
policy [as described by (2)] was implemented. The PCs were assumed to have
equal computing power (the average task completion time was 10 us per
task), but the initial load was distributed unevenly among the three nodes
as 7000, 4500, and 500 tasks, with no additional external arrival of tasks (viz.,
Jl(tl,tz) = 7000,J2(t1,t2) = 45007 J3(t1,t2) = 500 only if tl = 0,0 < tQ and
they are zero otherwise). Figure 1 corresponds to the case where no com-
munication nor load-transfer delays are assumed. This case approximates the
actual experiment [1], where all the computers were within the proximity of
each other benefiting from a dedicated fast Ethernet. Note that the system
is balanced at approximately 15 ms and remains balanced thereafter until all
tasks are executed in approximately 39 ms.

We next considered the presence of deterministic communication delay of
8 ms and a load transfer-delay of 16 ms. The behavior is seen in Fig. 2, where

6 Authors Suppressed Due to Excessive Length

Zero—Delay Case

0.8 T T
— Queue 1
L — Queue 2 |
0.6 — Queue 3
- - Tasks Completed

QUEUE LENGTH
o o
[

0 ; | i ; .
0 10 20 30 40 50 60
TIME, ms
1 : 5 T
— Queue
2 — Queue 2
o O.SELE*g : — Queue3 |
2]
(%]
8 Oljf/r 1
<
w
—05 | | | | |
0 10 20 30 40 50 60
TIME, ms

Fig. 1. Top: Queue size in the ideal case when delays are nonexistent. The queues
are normalized by the total number of submitted tasks (12000 in this case). The
dashed curves represent the tasks completed cumulatively in time by each node.
Bottom: Excess queue length for each node computed as the difference between each
nodes normalized queue size and the normalized queue size of the overall system.
Note that the three nodes are balanced at approximately 15 ms and that all tasks
are completed in approximately 39 ms.

it is observed that the delay prevents load balancing to occur. For example,
nodes 1 and 2 each eventually executes approximately 40% of the total tasks,
whereas node 3 executes only 20% of the total tasks submitted to the system
(as seen from the dashed curves in the top figure in Fig. 2). The conclusion
drawn here is that the presence of delay in communication and load transfer
seriously disturbs the performance of the load balancing policy, as each node
utilizes dated information about the state of the other nodes as it decides what
fraction of its load must be transferred to each of the other nodes.

To see the effect of the delay randomness on the load balancing perfor-
mance, two representative realizations of the performance were generated and
are shown in Figs. 3 and 4. The average delays were taken as in the de-
terministic case (i.e., 8 ms for the communication delay and 16 ms for the
load-transfer delay). For simplicity and due to lack of availability of detailed
information on the statistics of the delays, the delays were assumed to be
uniformly-distributed in the range extending from 0 to twice their mean val-
ues. For the example considered, it turns out that the performance is sensitive
to the realizations of the delays in the early phase of the load-balancing proce-
dure. For example, it is seen from the simulation results that a deterministic
(fixed) delay can lead to a more severe performance degradation than the case
when the delays are assumed random (with the same mean as the determinis-

Title Suppressed Due to Excessive Length 7

Deterministic-Delay Case

0.8 T T T T
— Queue 1
L — Queue 2 U
06 — Queue 3
- - Tasks Completed

sezmESSEEES
e2=3

QUEUE LENGTH
=}
>

027 Sy e e 1
0 ——
0 10 20 30 40 50 60
TIME, ms
1 : B I
— Queue
2 — Queue 2
9 0_5E‘h : — Queue 3 |4
2]
(%]
<
Ll
05
0 10 20 30 40 50 60
TIME, ms

Fig. 2. Similar to Fig. 1 but with a deterministic communication and load-transfer
delays of 8 ms and 16 ms, respectively. In contrast to the zero-delay case, the three
nodes are balanced at approximately 60 ms and all tasks are completed shortly
afterwards. Also note that nodes 2 and 3 each execute approximately 40% of the
total tasks, where node 3 executes only 20% of the total tasks submitted to the
system.

tic case). To see the average effect of the random delay, we calculated the mean
queue size and the normalized variance (normalized by the mean square) over
100 realizations of the queue sample functions, each with a different set of
randomly generated delays. The results are shown in Figs. 5 and 6. It is seen
from the mean behavior that the randomness in the delay actually leads, on
average, to balancing characteristics (as far the excess-load is concerned) that
are superior to the case when the delays are deterministic! However, there is
a high level of uncertainty in the queue size, and hence in the load balancing.
It is seen from Fig. 5 (dashed curves) that the average total number of tasks
completed by each node continues to increase well beyond 60 ms, which is
inferred from the positive slope of the dashed curves. This indicates that in
comparison to the deterministic-delay case, the system requires (1) almost
twice as long as the zero-delay case to complete all the tasks and (2) a longer
time to complete all the tasks than the deterministic-delay case.

4.2 Interplay Between Delay and the Gain Coefficient K

We now consider the effect of varying the gain coefficient K on the perfor-
mance of load balancing (assume that K; = Ky = K5 = K). Figures 7 and
8 show the performance under two cases corresponding to a large and small
gain coefficient, K = 0.8 and K = 0.2, respectively. It is seen that when

Authors Suppressed Due to Excessive Length

Random-Delay Case

0.8 T
E —_— CQ)ueue;
— Queue
% 0.65 — Queue 3)
[im| - - Tasks Completed
—0.4]
L
a
502 .
(o4
0
0 10 20 30 40 50 60 70 80
TIME, ms
1 d I
— Queue
% — Queue 2
S O.Si — Queue3 |
%)
0
8 OLHf'“ n 7
x
w
05 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
TIME, ms

Fig. 3. In this example, the communication and load-transfer delays are assumed
random with average values of 8 ms and 16 ms, respectively. Note that the perfor-
mance is somewhat superior to the deterministic-delay case shown in Fig. 2.

Random-Delay Case

E 08 —_ 8ueue ; ‘
— Queue
% 065 — Queue 3)
w - - Tasks Completed
—0.4]
w
T
502 .
o4 PO ek
0 s Y e 1 1 I
0 10 20 30 40 50 60 70 80
TIME, ms
1 d T
— Queue
% — Queue 2
S O.SEDE\ — Queue3 |
%)
0
8 01;:5* ~]
x
w
05 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
TIME, ms

Fig. 4. Another realization of the case described in Fig. 3 showing the variability
in the performance from one realization to another. Load-balancing characteristics

here are inferior to those in Fig. 3.

K = 0.8, the queue lengths fluctuate more than the case when K = 0.2, re-
sulting in a longer overall time to total task completion. This example shows
that a “weak” load-balancing policy can outperform a “strong” policy in the

Title Suppressed Due to Excessive Length 9

7000 — Queue 1
| --- Queue 2
6000 Queue 3
- - mean tasks completed
- 5000
'_
O] N
Z 4000
w =
-
& 3000¢
w
=)
O 2000f
1000F
O i L L - e, L L
0 10 20 30 40 50 60

TIME.ms

Fig. 5. The empirical average queue length using 100 realizations of the queues
for each node (solid curves). The dashed curves are the empirical average of the
number of tasks performed by each node cumulatively in time normalized by the
total number of tasks submitted to the system. Only 87% of the total tasks are
completed within 60 ms.

40
— Queuel

--- Queue 2
Queue 3

w
a1
T

w
o
T

N
o
T

VARIANCE
)
@ 5 & S

Fig. 6. The empirical variance of the queue length normalized by the mean-square
values. Observe the high-degree of uncertainty in the lowest queue as well as the
variability at large times, which is indicative of the fact that nodes continue to
exchange tasks back and forth, perhaps unnecessarily.

presence of random delay. We will revisit this interesting observation in more
detail in the next section.

4.3 Load Dependent Delay

Clearly, the nature of the transfer delay depends on the amount of load to
be transferred; a sizable load will entail, on average, a longer transfer delay

10 Authors Suppressed Due to Excessive Length

7000
—— Queue 1
6000+ Queue 2 7
—— Queue 3
5000+ q
T
o
= 4000+ 4
|
—
5
z 3000+ 1
=)
o
2000+ q
1000 q
0 Ud\l JL\A{AH IR "
0] 20 40 60 80 100 120

TIME, ms

Fig. 7. Queue size versus time when the gain coefficient is K = 0.8, corresponding
to a “strong” load-balancing policy. Notice the abundance of fluctuations in the tail
of the queue in comparison to Fig. 8.

7000
6000+ q
—— Queue 1
Queue 2
50001 —— Queue 3 b
T
o
= 4000+ 4
|
-
5
P 3000+ q
=)
(o4
2000+ 1
1000 q
o N Wb ‘ ‘
0] 20 40 60 80 100 120

TIME, ms

Fig. 8. Same as Fig. 7 but with K = 0.2, corresponding to “weak” load-balancing
policy.

than a small load. As a consequence, the load balancing policy is directly
affected by the load-dependent nature of transfer delay. For example, if there
is a high degree of load imbalance present at any time, it might seem tempting
to redistribute big packets of data up front so as to rid the imbalance quickly.
However, the tradeoff here is that the sizable load takes much longer to reach
the destination node, and hence, the overall computation time will inevitably
increase. Thus, we would expect the gain coefficient K to play an important
role in cases when transfer delay is load dependent. Since the balancing is
done frequently, it is intuitively obvious that we would be better off if we
were to select K conservatively. To address this issue quantitatively, we will

Title Suppressed Due to Excessive Length 11

need to develop a model for the load-dependent transfer delay. This is done
next.

We propose to capture the load-dependent nature of the random transfer
delay 7;; by requiring that its average value, 0;;, assumes the following form

1+ exp([Li;(t)dp] ")
1 — exp([Lq;(t)dp]~1)’

where di, is the minimum possible transfer delay (its value is estimated as
9 ms in this paper), d is a constant (equal to 0.082618), and [is a parameter
which characterizes the transfer delay (selected as 0.04955). Moreover, we will
assume that conditional on the size of the load to be transferred, the random
delay 7;; is uniformly-distributed in the interval [0, 26;;]. This model assumes
that up to some threshold, the delay is constant (independent of the load size)
that is dependent on the capacity of the communication medium. Beyond this
threshold, however, the average delay is expected to increases monotonically
with the load size. The parameters d and b are selected so that the above
model is consistent with the overall average delay for all the actual transfers
that occurred in the simulation. We omit the details.

oij = dmin —

(4)

11.2

11F

Transfer Delay (in ms)

lo0 100 200 300 400 500 600 700 800 900 1000

No. of tasks

Fig. 9. The load-dependent transfer delay as a function of the load size according
to the model shown in (4).

The load-dependent transfer delay versus the load is shown in the Fig. 9.
The transfer delay for the loads sent from node 1 to node 3 (top) and from node
2 to node 3 (bottom) over the period of execution time is shown in Fig. 10.
With the average communication delay being equal to 8 ms (as before) and the
transfer delay made load dependent, according to the model described in (4),
one realization of the load-balancing performance for K = 0.5 was generated
and it is shown in Fig. 11. As expected, the performance deteriorates beyond
the case corresponding to a fixed transfer delay. For example, we see from the

12 Authors Suppressed Due to Excessive Length

80
60

DELAY,ms
N
S

5 10 15 20 25 30 35 40
TIME, ms

DELAY,ms

0 5 10 15 20 25 30 35 40
TIME, ms
Fig. 10. Scatter-plot of the transfer-delay showing its fluctuations for a particular
realization of the queues.

figure that a load sent by node 1 at approximately 5 ms arrives at node 3
approximately 50 ms later, thereby bringing more fluctuation to the tail of
the queues. The average effect (over 50 realizations) of this delay model for

6000
— Queue 1
--- Queue 2
5000¢ Queue 3
- - Tasks completed
F 4000F,
o X -
5 - eeiiiee
—1 3000 0. pemmereeam i
w U ’/,l
it i
> 2000 R
o %
1000 ;,;,v". N
’l
0/,’ ‘ ‘ by ‘ . X l H
0 10 20 30 40 50 60

TIME, ms

Fig. 11. Queue size and cumulative (in time) number of tasks completed (by each
node) as a function of time. These graphs show that queues become more uncertain
when the load-transfer delays are load dependent. (K = 0.5 in this example.)

two different gain coefficients (K = 0.1 and K = 0.9) can be seen in Figs. 12
and 13. When K = 0.9, the queue is fluctuating even beyond ¢t = 80 ms
while when K = 0.1, all the tasks are completed at approximately 60 ms. The
optimal value of K for this delay model was found to be equal to K = 0.06
and the overall completion time in this case was 54.85 ms. The variation of

Title Suppressed Due to Excessive Length 13

the overall completion time with respect to the gain coefficient is shown in
Table 1 below.

Table 1. Dependence of the load-balancing performance on the gain coefficient K.

Gain (K)|Task completion time (ms)|Time to execute 95% of tasks (ms)
0.01 62.53 41.80
0.02 61.44 42.86
0.03 59.68 42.59
0.04 57.27 41.98
0.05 56.79 41.35
0.06 54.85 41.99
0.07 56.04 42.49
0.08 59.68 41.56
0.09 62.53 41.81
0.1 61.10 42.18
0.2 65 43.38
0.3 63.40 46.2
0.4 78.313 53.33
0.5 > 80 55.21

It is clearly seen in Fig. 13 that the required time for completing all tasks
(in the system) is significantly larger than the time required to execute 95%
percent of the assigned tasks. This difference increases with higher values of
K. This is due to the fact that even when all the queues are almost depleted
of tasks, they continue to execute the balancing policy. As a result, small
amounts of tasks (e.g., one or two) are sent from one node to other nodes and
vice versa. This unnecessary task-swapping significantly increases the transfer
delay, therefore increasing the overall computational time. This phenomenon
is clearly depicted in Fig. 13 where the minute fluctuations are evident near
the tail of the queues.

5 Summary and Conclusions

Whenever there are tangible communication limitations between nodes in a
distributed system, possibly with geographically-distant computational ele-
ments, we must take a totally new look at the problem of load balancing. In
such cases, the presence of non-negligible random delays in inter-node com-
munication and load transfer can significantly alter the expected performance
of existing load-balancing strategies. The load-balancing problem must be
viewed as a stochastic system, whose performance must be evaluated statisti-
cally. More importantly, the policy itself must be developed with appropriate
statistical performance criteria in mind. Thus, if we design a load-balancing

14 Authors Suppressed Due to Excessive Length

7000

— Queue 1
--- Queue 2
6000 Queue 3
- - Tasks completed
550007
9 ~ L= zsz==zpz==zzz==z===:
& 4000} o=
-
% ,,,,,,,,,,,,,,,,,,,,,,,,,
|_IJSOOO*
=)
© 2000t
1000¢
o) G L
0 10 20 30 _40_ 50 60 70 80

TIME, ms

Fig. 12. Queue size versus time for the case where the transfer delay is load depen-
dent. The gain coefficient K is 0.1. Note that the total execution time is approxi-
mately 60 ms.

7000 — Queue 1
| --- Queue 2
6000 Queue 3
- - Tasks completed
-~ 50001
'_
g N
& 4000p
-
% 3000} R
=) ~ -
O 20001 -
1000F
G/‘,“ ‘V\ '\ e e i L o
0 10 20 30 40 50 60 70 80

TIME, ms

Fig. 13. Same as Fig. 12 but with K = 0.9. The queues fluctuate even at 80 ms.

policy under the no-delay or fixed-delay assumptions, the policy will not per-
form as expected in a real situation when the delays are non-zero or random.
A load-balancing policy must be designed with the stochastic nature of the
delay in mind.

Monte-Carlo simulation indicates that the presence of delay (deterministic
or random) can lead to a significant degradation in the performance of a load-
balancing policy. Moreover, when the delay is stochastic, this degradation is
worsened, leading to extended cycles of unnecessary exchange of tasks (or
loads), back and forth between nodes, leading to extended overall delays and
prolonged task-completion times. One way to remedy such a problem is to
weaken the load-balancing mechanism so that the load-transfer between nodes
is down-scaled (or discouraged) appropriately. This action makes the load-

Title Suppressed Due to Excessive Length 15

balancing policy in the presence of random delay “less reactionary” to changes
in the load distribution within the system. This, in turn, reduces the sensitivity
of the load-balancing process to inaccuracies in the state-of-knowledge of each
node about the load distribution in the remainder of the system caused by
communication limitations.

6 Acknowledgements

This work was supported by the National Science Foundation (NSF) under
Information Technology Research (ITR) grant No. ANI-0312611. Additional
support was also provided by NSF under grant No. INT-9818312. The work of
J.D. Birdwell was supported by U.S. Department of Justice, Federal Bureau of
Investigation under contract J-FBI-98-083. Drs. Birdwell and Chiasson were
also partially supported by a Challenge Grant Award from the Center for
Information Technology Research at the University of Tennessee. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Government.

References

1. J. D. Birdwell, T. W. Wang, R. D. Horn, P. Yadav, and D. J. Icove, “Method
of indexed storage and retrieval of multidimensional information,” U. S. Patent
Application 09/671,304 (2000)

2. C.T. Abdallah, N. Alluri, J. D. Birdwell, J. Chiasson, V. Chupryna, Z. Tang, and
T. Wang “A linear time delay model for studying load balancing instabilities in
parallel computations,” The International Journal of System Science, to appear
(2003)

3. T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems,” IEEE Trans. Software Eng., vol. 14, pp. 141-
154 (Feb. 1988)

4. Zhiling Lan, Valerie E. Taylor, Greg Bryan, “Dynamic Load Balancing for Adap-
tive Mesh Refinement Application,” In Proc. Of ICPP’2001, Valencia, Spain
(2001)

5. G. Cybenko, “Dynamic load balancing for distributed memory multiprocessors,”
IEEE Transactions on Parallel and Distributed computing, vol. 7, pp. 279-301
(1989)

6. J. D. Birdwell, J. Chiasson, Z. Tang, T. Wang, C. T. Abdallah, and M. M.
Hayat, “Dynamic time delay models for load balancing Part I: Deterministic
models,” CNRS-NSF Workshop: Advances in Control of Time-Delay Systems,
Paris, France (Jan. 2003)

7. C. T. Abdallah, J.D. Birdwell, J. Chiasson, V. Churpryna, Z. Tang, and T.W.
Wang “Load balancing instabilities due to Time delays in farallel computation,”
Proceedings of the 3rd IFAC Conference on Time Delay Systems, Santa Fe, NM
(Dec. 2001)

16 Authors Suppressed Due to Excessive Length

8. M. M. Hayat, C. T. Abdallah, J. D. Birdwell and J. Chiasson, “Dynamic time
delay models for load balancing, Part II: A stochastic analysis of the effect of
delay uncertainty,” CNRS-NSF Workshop: Advances in Control of Time-Delay
Systems, Paris, France (Jan. 2003)

9. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes
(Springer-Verlag, New York, NY 1988)

