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A great deal of effort has been spent measuring topological features of the Internet. However, it
was recently argued that sampling based on taking paths or traceroutes through the network from
a small number of sources introduces a fundamental bias in the observed degree distribution. We
examine this bias analytically and experimentally. For Erdős-Rényi random graphs with mean degree
c, we show analytically that traceroute sampling gives an observed degree distribution P (k) ∼ k

−1

for k . c, even though the underlying degree distribution is Poisson. For graphs whose degree
distributions have power-law tails P (k) ∼ k

−α, traceroute sampling from a small number of sources
can significantly underestimate the value of α when the graph has a large excess (i.e., many more
edges than vertices). We find that in order to obtain a good estimate of α it is necessary to use a
number of sources which grows linearly in the average degree of the underlying graph. Based on
these observations we comment on the accuracy of the published values of α for the Internet.

The Internet is a canonical complex network, and a
great deal of effort has been spent measuring its topol-
ogy. However, unlike the Web where a page’s outgoing
links are directly visible, we cannot typically ask a router
who its neighbors are. As a result, studies have sought to
infer the topology of the Internet by aggregating paths or
traceroutes through the network, typically from a small
number of sources to a large number of destinations [1–5],
routing decisions like those imbedded in Border Gateway
Protocol (BGP) routing tables [6–8], or both [9–11]. Al-
though such methods are known to be noisy [7, 12–14],
they strongly suggest that the Internet has a power-law
degree distribution at both the router and domain levels.

However, Lakhina et al. [15] recently argued that
traceroute-based sampling introduces a fundamental bias
in topological inferences, since the probability that an
edge appears within an efficient route decreases with
its distance from the source. They showed empirically
that traceroutes from a single source cause Erdős-Rényi
random graphs G(n, p), whose underlying distribution is
Poisson [16], to appear to have a power law degree distri-
bution P (k) ∼ k−1. Here, we prove this evocative result
analytically by modeling the growth of a spanning tree
on G(n, p) using differential equations.

Although it is widely accepted that the Internet, unlike
G(n, p), has a power-law degree distribution P (k) ∼ k−α

with 2 < α < 3 [9], we may reasonably ask whether
traceroute sampling accurately estimates the exponent
α. Petermann and de los Rios [17] and Dall’Asta [18]
considered this question, and found that because low-
degree vertices are undersampled relative to high-degree
ones, the observed value of α is lower than the true expo-
nent of the underlying graph. We explore this idea fur-
ther, and find that single-source traceroute sampling only
gives a good estimate of α when the underlying graph has
a small excess, i.e., has average degree close to 2 and is
close to a tree. As the average degree grows, so does the
extent to which traceroute sampling underestimates α.

Since single-source traceroutes can signficantly under-

estimate α, we then turn to the question of how many
sources are required to obtain an accurate estimate of α.
We find that the number of sources needed increases lin-
early with the average degree. We conclude with some
discussion of whether the published values of α for the
Internet are accurate, and how to tell experimentally
whether more sources are needed.

Traceroute spanning trees: analytical results. The set
of traceroutes from a single source can be modeled as a
spanning tree [19]. If we assume that Internet routing
protocols approximate shortest paths, this spanning tree
is built breadth-first from the source. In fact, the results
of this section apply to spanning trees built in a variety
of ways, as we will see below.

We can think of the spanning tree as built step-by-step
by an algorithm that explores the graph. At each step,
every vertex in the graph is labeled reached, pending, or
unknown. Pending vertices are the leaves of the current
tree; reached vertices are interior vertices; and unknown
vertices are those not yet connected. We initialize the
process by labeling the source vertex pending, and all
other vertices unknown. Then the growth of the spanning
tree is given by the following pseudocode:

while there are pending vertices:
choose a pending vertex v
label v reached
for every unknown neighbor u of v,

label u pending.

The type of spanning tree is determined by how we choose
the pending vertex v. Storing vertices in a queue and
taking them in FIFO (first-in, first-out) order gives a
breadth-first tree of shortest paths; if we like we can
break ties randomly between vertices of the same age
in the queue, which is equivalent to adding a small noise
term to the length of each edge as in [15]. Storing pend-
ing vertices on a stack and taking them in LIFO (last-in,
first-out) order builds a depth-first tree. Finally, choosing
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v uniformly at random from the pending vertices gives a
“random-first” tree.
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FIG. 1: Sampled degree distributions from breadth-first,
depth-first and random-first spanning trees on a random
graph of size n = 105 and average degree c = 100, and our
analytic results (black dots). For comparison, the black line
shows the Poisson degree distribution of the underlying graph.
Note the power-law behavior of the apparent degree distribu-
tion P (k) ∼ k

−1, which extends up to a cutoff at k ∼ c.

Surprisingly, while these three processes build different
trees, and traverse them in different orders, they all yield
the same degree distribution when n is large. To illus-
trate this, Fig. 1 shows the degree distributions for each
type of spanning tree for a random graph G(n, p = c/n)
where n = 105 and c = 100. The three degree distribu-
tions are indistinguishable, and all agree with the ana-
lytic results derived below.

We now show analytically that building spanning trees
in Erdős-Rényi random graphs G(n, p = c/n) using any
of the processes described above gives rise to an apparent
power law degree distribution P (k) ∼ k−1 for k . c. To
model the progress of the while loop described above,
let S(T ) and U(T ) denote the number of pending and
unknown vertices at step T respectively. The expected
changes in these variables at each step are

E[U(T + 1) − U(T )] = −pU(T )

E[S(T + 1) − S(T )] = pU(T )− 1 (1)

Here the pU(T ) terms come from the fact that a given
unknown vertex u is connected to the chosen pending
vertex v with probability p, in which case we change its
label from unknown to pending; the −1 term comes from
the fact that we also change v’s label from pending to
reached. Moreover, these equations apply no matter how
we choose v; whether v is the “oldest” vertex (breadth-
first), the “youngest” one (depth-first), or a random one
(random-first). Since edges in G(n, p) are independent,
the events that v is connected to each unknown vertex u
are independent and occur with probability p.

Writing t = T/n, s(t) = S(tn)/n and u(tn) = U(t)/n,
the difference equations (1) become the following system
of differential equations,

du

dt
= −cu ,

ds

dt
= cu − 1 (2)

With the initial conditions u(0) = 1 and s(0) = 0, the
solution to (2) is

u(t) = e−ct, s(t) = 1 − t − e−ct . (3)

The algorithm ends at the smallest positive root t0 of
s(t) = 0; using Lambert’s function W , defined as W (x) =
y where yey = x, we can write

t0 = 1 +
1

c
W (−ce−c) . (4)

Note that t0 is the fraction of vertices which are reached
at the end of the process, and this is simply the size of
the giant component of G(n, c/n).

Now, we wish to calculate the degree distribution
P (k) of this tree. The degree of each vertex v is the
number of its previously unknown neighbors, plus one
for the edge by which it became attached (except for
the root). Now, if v is chosen at time t, in the limit
n → ∞ the probability it has k unknown neighbors is
given by the Poisson distribution with mean m = cu(t),
Poisson(m, k) = e−mmk/k!. Averaging over all the ver-
tices in the tree and ignoring o(1) terms gives

P (k + 1) =
1

t0

∫ t0

0

dt Poisson(cu(t), k) .

It is helpful to change the variable of integration to m.
Since m = ce−ct we have dm = −cm dt, and

P (k + 1) =
1

t0

∫ c

c(1−t0)

dm
Poisson(m, k)

cm

≈
∫ c

ce−c

dm
Poisson(m, k)

cm

=
1

ck!

∫ c

ce−c

dm e−mmk−1 . (5)

Here in the second line we use the fact that t0 ≈ 1− e−c

when c is large (i.e., the giant component encompasses
almost all of the graph).

The integral in (5) is given by the difference between
two incomplete Gamma functions. However, since the
integrand is peaked at m = k − 1 and falls off exponen-
tially for larger m, for k . c it coincides almost exactly
with the full Gamma function Γ(k). Specifically, for any
c > 0 we have

∫ ce−c

0

dm e−mmk−1 < ce−c
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and, if k − 1 = c(1 − ε) for ε > 0, then

∫ ∞

c

dm e−mmk−1 = e−cck−1

∫ ∞

0

dx e−x(1 + x/c)k−1

< e−cck−1

∫ ∞

0

dx e−xex(k−1)/c

=
e−cck−1

ε
<

e−(k−1)(k − 1)k−1

ε

≈
Γ(k)

ε
√

2π(k − 1)

This is o(Γ(k)) if ε & 1/
√

k, i.e., if k < c − cα for some
α > 1/2. In that case we have

P (k + 1) = (1 − o(1))
Γ(k)

ck!
∼

1

ck
(6)

giving a power law k−1 up to k ∼ c.
We note that this derivation can be made mathemat-

ically rigorous, at least for constant c. Wormald [20]
showed, under fairly generic conditions, that discrete
stochastic processes like this one are well-modeled by
the corresponding differential equations. Specifically, we
can show that if the initial source vertex is in the gi-
ant component, then with high probability, for all t such
that 0 < t < t0, U(tn) = u(t)n + o(n) and S(tn) =
s(t)n + o(n). It follows that with high probability our
calculations give the correct degree distribution of the
spanning tree within o(1).

Power-law degree distributions. While the result of the
previous section shows that power-law degree distribu-
tions can be observed even when none exist, the evidence
seems overwhelming that the Internet does, in fact, have
a power-law degree distribution P (k) ∼ k−α. However,
as shown in [17, 18], traceroute sampling on graphs of
this kind can underestimate the value of α by under-
sampling the low-degree vertices relative to the high-
degree ones. Here we show experimentally that the ex-
tent of this underestimate increases with the average de-
gree of the underlying graph. We performed experiments
on both the preferential attachment model of Barabási
and Albert [21] and the configuration model [22].

The preferential attachment model of [21] gives each
new vertex m edges, and so has minimum degree m and
average degree 2m. In the extreme case m = 1, the graph
is a tree, and traceroutes from a single source will sample
every edge. However, as m increases the fraction of edges
sampled by a given source decreases. Figure 2 shows the
observed and underlying degree distributions for different
values of m. For m = 2, for instance, the observed slope
is αobs ≈ 2.7 instead of the correct value α = 3.

It is worth pointing out that the average degree, and
therefore αobs, is highly sensitive to the low-degree part
of the degree distribution, not just the shape of its high-
degree tail. For instance, we used the configuration
model [22] to construct random graphs with minimum de-
gree kmin and a power-law tail, i.e., P (k) = 0 for k < kmin

and P (k) ∝ k−α for k ≥ kmin. (Note that the normal-
ization of P (k) then depends on kmin.) Here we found
that αobs is a function of kmin, not just of α [23]. We are
currently extending our analytic calculations to this and
other degree distributions.
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FIG. 2: Single-source traceroute sampling for preferential at-
tachment networks with n = 5×105 and varying values of the
minimum degree m. The extent to which traceroute sampling
underestimates α increases with m.

Building unbiased maps. Since single-source tracer-
outes can significantly underestimate α, especially for
graphs of large average degree, we now turn to the ques-
tion of how many sources are needed to obtain a good
estimate of α. In Fig. 3, we show the observed expo-
nent (estimated by performing a fit to the high-degree
tail k � m) for preferential attachment networks as a
function of the number of sources divided by m; it also
shows the fraction of edges included in the sample. The
collapse of the data clearly shows that the number of
sources s we need to converge to within a given error
from the true exponent grows linearly in m, and the er-
ror decreases rapidly as s/m increases. For instance, with
m sources we see 41% of the edges and αobs ≈ 2.82; with
10m sources, 5 times the average degree, we see 94% of
the edges and our estimate improves to αobs ≈ 2.99.

Traceroute-based studies [1–5, 9–11, 13] suggest an av-
erage degree for the Internet of 2.8 ± 0.5. (Of course, it
may be higher since these studies do not see all the edges
of the graph.) However, none of these studies use more
than 12 sources, suggesting that the published values of
α may still be somewhat low.

For the Internet, gaining access to an increasing num-
ber of sources in order to sample traceroutes from
them can present practical difficulties. However, even
if the measured exponent increases with each additional
source—indicating that we still do not have the correct
value of α, and the “marginal value” [13] of each source
is nonzero—it may be possible to extrapolate the true α
from the rate of convergence.
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FIG. 3: Performance of multi-source traceroute sampling in
preferential attachment networks as a function of the number
of sources divided by m. On the left, the convergence of αobs

to the correct value α = 3; on the right, the fraction of edges
observed at least once. Both curves collapse, showing that
the number of sources necessary to counter the sampling bias
grows linearly with the average degree.

Conclusions. Unlike the World Wide Web where links
are visible, the Internet’s topology must be queried in-
directly, e.g., by traceroutes; and, since efficient routing
protocols cause these traceroutes to approximate short-
est paths, edges far from the source are difficult to see.

Lakhina et al. [15] noted that this effect can signifi-
cantly bias the observed degree distribution, and may
create the appearance of a power law where none ex-
ists. We have proved this result analytically for ran-
dom graphs G(n, p = c/n), showing that single-source
traceroutes yield an observed distribution P (k) ∼ k−1

for k . c. Other mechanisms for observing power laws
in G(n, p) include gradient-based flows [24], probabilistic
pruning [17], and minimum weight spanning trees [25];
however, these are rather different from our analysis.

For graphs with a power-law distribution P (k) ∼ k−α

traceroute sampling underestimates α by under-sampling
low-degree vertices [17, 18], and we have found that the
extent of this underestimate increases with the network’s
average degree. To compensate for this effect, we have
found that to estimate α within a given error it is neces-
sary to use a number of sources that grows linearly with
the average degree. Given the small number of sources
used in existing studies, it seems possible to us that the
published values of α for the Internet are somewhat low.
In future work, we will measure whether αobs for the
Internet increases with the number of sources, and if it
does, attempt to extrapolate the correct value of α.
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