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While distributed sensor signal processing goes back a long way, a recent development
is the implementation of wireless links for sensor communication. Typically, distributed
nodes in a wireless sensor network (WSN) are battery powered and the whole network
has access to only a finite portion of the spectrum. This leads to both power and band-
width constrained wireless communication between sensing nodes and the fusion nodes.
Securing reliable communication over a wireless channel is a challenging task due to
physical properties of the wireless medium. Hence, channel-induced errors need to be
taken into account in order to achieve optimal data fusion/detection in distributed wire-
less sensor systems. In recent years, many authors have investigated various aspects of
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distributed processing in resource-constrained wireless sensor networks. In this chapter,
we provide a tutorial exposition of those recent contributions.1

6.1 THE PROBLEM OF DISTRIBUTED DETECTION AND DATA FUSION

Gathering and processing of information through a large number of networked sensors
has potential applications in a number of areas, including environmental monitoring (e.g.,
traffic, habitat, security), industrial sensing (e.g., nuclear power plants), infrastructure
integrity monitoring (e.g., health monitoring of bridges, power grid), homeland security
(e.g., remote surveillance of ports and airports), and military applications (e.g., target
tracking) [1–7]. Availability of microsensors with miniature batteries, processors with
built-in computation, and wireless connectivity capabilities has made such a paradigm a
reality. Sensor nodes (because a sensor has computation and communication capabilities
apart from sensing, it is termed a sensor node) can be deployed almost anywhere: on
the ground and in the air, inside buildings, on vehicles, and under water. In some
applications, they can even be worn by humans. Realizing the full potential of sensor
networks, however, presents a number of challenges, including the limitations posed by
finite battery life, limited processing capability due to power constraints, and limitations
posed by unreliable wireless link quality.

Typically, each individual distributed node in a wireless sensor network (WSN) can
sense in multiple modalities, but has limited communication and computation capabili-
ties. There are two issues related to reliable information gathering: (1) efficient methods
for exchanging information between nodes and (2) collaborative processing of useful
information about the environment being monitored. A successful design of a sensor
network involves addressing layers of design issues: computational capability of a sen-
sor node, network architecture, and routing of information between nodes [1,2,4,8]. All
these issues must be resolved so that reliable information is gathered in an efficient and
affordable manner while extending the whole network lifetime.

In this chapter, we restrict our attention to the problem of distributed detection and
data fusion in wireless sensor networks [9,10]. This problem primarily touches on the
computational aspects of a sensor node, the exchange of information between nodes
(link layer issues, as termed in communications terminology), and the routing archi-
tecture. Information processing in any application can be broadly classified into two
categories, namely, detection and estimation [11–13]. In a detection problem, one is
interested in knowing whether a particular phenomenon of interest (POI), say the pres-
ence of a biological spill or the presence of a particular object or an individual in a
specified location, is present. The answer to such a query is binary in nature, yes or
no. Myriad sensors gather and process information about the POI, before passing them
on to a fusion center where a final answer to the query is arrived at [9,10,14–17]. As
in any situation with uncertain and incomplete information, the final answer arrived at
could be different from the true situation of the POI. An acceptably reliable operation
is achieved by guaranteeing that the number of incorrect decisions made over a period
of time remains below an acceptable number. In an estimation problem, on the other

1 Parts of this chapter have appeared in IEEE Communication Letters, vol. 9, pp. 769–771, Sept. 2005,
and IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’06), Toulouse,
France, May 2006. S. K. Jayaweera was supported in part by a Kansas National Science Foundation
(NSF) EPSCOR First Award grant KUCR # NSF32241.
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hand, one would like to know the characteristics of a POI, e.g., a precise location of
a target or the strength of a biological spill, etc. Moreover, one may want to know the
characteristics of a POI as a function of time or space, e.g., the spatial distribution of
a biological spill over a region of interest or the movement of a target in a region as a
function of time (e.g., target tracking) [2,18–20]. Reliable performance is assured by spec-
ifying the estimated value to be within a fraction of the true value. In a wireless sensor
network, the communication between two nodes is typically unreliable due to channel
fading/shadowing, transmission bandwidth limitations, and transmitter and receiver pro-
cessing power constraints. The quality of sensed data, the quality of processed data at a
node, and the quality of information passed between nodes all play important roles in
the overall performance of a sensor network. A number of papers have addressed the
interplay between these issues within the context of distributed detection [14–16][21–26]
and estimation [18,19,27–32].

This chapter is organized as follows: In Section 6.2, we briefly outline various archi-
tectures that have been considered for data fusion in sensor networks. This is followed
by a discussion of recent results in distributed detection data fusion in wireless sensor
networks in Section 6.3. Note that the emphasis of Section 6.3 is on recent work that has
addressed strictly resource-constrained large wireless sensor networks. Thus, results on
large system analysis and performance in fading channels will be the primary focus of
our discussion. However, we will also briefly outline recent advances in distributed es-
timation in wireless sensor networks. Next, in Section 6.4 we detail recently established
performance results for distributed detection and data fusion systems with analog-relay
amplifier local processing. Here we consider large system analysis for both sensor sys-
tem optimization techniques based on large system performance measures. Section 6.6
provides a summary of the chapter.

6.2 FUSION ARCHITECTURES

Consider the generic wireless sensor network architecture shown in Figure 6.1. The sen-
sors monitor the environment to provide inference regarding a POI. Here Z1, Z2, · · · , Zn

represent the observations at sensor nodes 1, 2, · · · , n, respectively. Unless otherwise
stated, it is assumed that each sensor observation is statistically independent of others,
conditioned on the true state of nature of the environment (some studies have addressed
correlation among sensor data and these will be discussed in the sequel). The locally
processed (e.g., quantized) data sent from these nodes are represented as U1, U2, · · · , Un,
where Uk = δk(Yk) with δk (.) being the local processing (decision) rule at node k. For ex-
ample, if node k quantizes its observation Yk to Dk number of levels, Uk ∈ [1, 2, · · · , Dk].
Using a particular modulation and coding scheme, the node k transmits its data Uk to a
central node, called the cluster head or the access point (AP) (see Figure 6.2).

Depending on the application under consideration, different fusion architectures are
possible in these wireless sensor networks. Most of them stem from the architectures
that were originally considered in decentralized detection problems and from the ar-
chitectures present in mobile ad hoc networks [17]. Broadly speaking, there are three
types of fusion architectures in decentralized detection/estimation, namely the parallel,
the serial, and the tree structure [14]. In the parallel configuration, all the sensors pass
their locally processed data (i.e., quantized, compressed, or amplified data) to a central
site called the fusion center, where a final inference regarding the POI is made. In the
serial configuration, sensors communicate in a tandem fashion, with sensor S1 sending
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its quantized (locally processed) data to sensor S2, which in turn sends a quantized data,
which is derived based on its own data and the data from S1, to the next sensor S3 in the
tandem chain. Data progression along the chain continues until the last sensor is reached,
where the final inference is made [33–35]. In general, for decentralized detection, the
performance of the serial configuration is inferior to that of the parallel configuration [14].
The tree structure is similar to the architecture used in ad hoc networks, where data from
neighboring nodes is transmitted to a central node (or the AP) as in Figure 6.2. Several
such AP neighborhoods might be monitoring the environment with regard to a POI.
These APs then transmit their quantized data to the next level of cluster head nodes in
the hierarchy. If more than one such second level cluster head node exists, then these
will in turn transmit its data to a third level cluster head node. Data progression continues
until a final cluster node, called the fusion center, is reached.

In wireless sensor networks, a typical architecture is similar to the tree structure
described above. In a number of applications, the architecture will have only two levels,
with the first level APs (i.e., distributed sensing nodes) sending their data to the fusion
center for the final assessment. Of course, because data is wirelessly transmitted from
a node to an AP, this connection could be established through intermediate nodes,
which is then called a multihop transmission. Another possibility is for two or more
nodes to transmit data cooperatively to an AP, which is called cooperative relaying [36].
Cooperative relaying seems to provide a definitive advantage in performance, especially
when the direct link between a node and an AP experiences severe signal degradation.
Pertinent questions in many of these wireless sensor networks include, how to designate
APs among a large number of sensor nodes distributed in a given geographical area,
how to identify neighborhood nodes that form the cluster around an AP, and how to
route information to an AP or from APs to the fusion center? Optimal solutions to these
questions become more difficult when one considers energy constraints on nodes as well
as any possible mobility of nodes with time. A flurry of research is being done to answer
these questions in recent years, but a comprehensive consideration of these results is
beyond the scope of this chapter. In the next two sections, we consider primarily the
quality of the data as received at an AP from a node and the quality of the final inference
arrived at the fusion center. A bulk of the discussion deals with the detection problem,
although some results from distributed estimation research are also provided briefly at
the end of Section 6.3.3.

6.3 RECENT ADVANCES IN DISTRIBUTED DETECTION/ESTIMATION
IN RESOURCE-CONSTRAINED WIRELESS SENSOR NETWORKS

Up until recently, most work on decentralized detection/estimation assumed that the
senor data was transmitted to the fusion center error free [14,15]. In a WSN, however,
this assumption of perfect transmission fails as data is sent over a typically unreliable
channel [4,37]. To account for such channel-induced error, some recent studies have
addressed the performance of decentralized detection and fusion schemes in resource-
constrained WSNs. Due to the assumption of a large number of sensors in a WSN, a
number of these studies has specifically dealt with the asymptotic (infinite number of
sensors) performance issues [16,21,24,38–43].

To be specific, let us consider the architecture shown in Figure 6.1. The sensors
monitor the environment to determine the presence or the absence of a POI based on
local observations Z1, Z2, · · · , Zn. We may assume that the local processing at distributed
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nodes is a form of quantization such that the data sent from distributed nodes to the
fusion center is U1, U2, · · · , Un, where Uk = δk(Yk) ∈ [1, 2, · · · , Dk]. In general, this local
processing at distributed nodes could either be continuous or discrete mappings, in the
sense that Uk s could either be analog or discrete (quantized) valued. The node k sends
its quantized data Uk to the AP using a particular modulation and a coding scheme.

Until recently, it has been common to assume the existence of parallel and nonin-
terfering communication links between each sensor node and the AP. However, in the
context of wireless sensor networks it is more realistic to assume that there could be
bandwidth or power constraints on these links. Partial or complete interference among
transmitted signals from different sensors could also be an interesting topic to consider,
especially because of savings in bandwidth or power. A receiver at the AP processes the
signal received from node k and puts out the output Yk. Due to channel degradation
such as fading and additive white Gaussian noise, Yk can be considered as a corrupted
version of Uk. Using all of the data, {Yk}n

k =1, the AP then makes a final decision regarding
the presence or the absence of a POI.

6.3.1 Detection in Large Systems

Assuming a total capacity constraint
∑n

k =1 log2(Dk) ≤ R on the communication channel,
the allocation of optimal numbers of bits to each sensor was considered in [21]. For
the problem of detecting deterministic signals in additive Gaussian noise, it was shown
in [21] that having a set of identical binary sensors is asymptotically optimal, as the
number of observations per sensor goes to infinity. Thus, the gain offered by having
more sensors exceeds the benefits of getting detailed information from each sensor. It
must be mentioned that this result was obtained with the restriction that each log2(Dk)
was an integer, i.e., no fractional bit was allowed, and that each log2(Dk) was rounded
off to the nearest higher integer. Previously large decentralized system performance has
been considered in [16], with the emphasis on optimal processing at the sensors and at
the fusion center. However, in [16], the links between the sensors and the fusion center
were assumed to be error free.

With a joint power constraint on the channels between sensors and the AP, and
assuming additive white Gaussian noise (AWGN), it was shown using a large deviation
theory, that having identical sensor nodes, i.e., each node having the same transmission
scheme, is asymptotically (as the total transmit power is allowed to go to infinity or
equivalently, as the number of sensors, each with finite power, is allowed to go to infinity)
optimal [38]. With reference to Figure 6.1 terminology, in this work, Yk = Uk + Wk,
where Wk represents the AWGN. For any reasonable coding (local processing) scheme
(δk, k = 1, 2, · · · , n) and a fusion rule, which is a function of (Yk, k = 1, 2, · · · , n), the
Bayes error probability goes to zero as the total energy is allowed to go to infinity.
Having established the optimality of identical sensor nodes, an appropriate measure of
efficiency is the normalized Chernoff information [38]:

S = − 1

f (δ
) min

λ∈[0,1]

(
log E0

{
e λZk

})
, (6.1)

where E0{.} denotes the expectation with respect to the induced variable Uk = δ(Yk),
under the no POI hypothesis (null hypothesis), H0 and f (δ) denote the expected power
spent at a node. In [38], the measure S was computed for two transmission schemes,
namely, binary sensor nodes and analog sensor nodes. A binary sensor node employs a
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binary mapping and sends Uk, where Uk = m if Yk exceeds a threshold and Uk = −m if
Yk falls below the threshold (in [38] the threshold was taken as 0 for the case of a specific
observation model for Zk). In the case of analog sensor nodes, as will be discussed in
detail in the next section, Uk = gYk, where g is the amplification gain of the sensor node
[36,39,44]. A plot of normalized Chernoff information S against the observation SNR (i.e.,
the signal-to-noise ratio of the observation Zk at the sensor) showed that there exists a
threshold SNR below which the analog sensor nodes perform better than their binary
counterparts. Indeed, the authors observed that for some detection applications, wireless
sensor nodes with continuous transmission mappings may outperform sensor nodes with
finite-valued transmission mappings. They also pointed out that for the Neyman–Pearson
criterion of signal detection, the normalized relative entropy measure (Kullback–Leibler
distance) plays a role analogous to that of the Chernoff measure for Bayes error criterion.

The problem of decentralized detection in a sensor network subjected to a total av-
erage power constraint and all nodes sharing a common bandwidth was considered in
[24]. The bandwidth constraint was taken into account by assuming nonorthogonal com-
munication between sensors and the data fusion center via direct-sequence codedivision
multiple access (DS-CDMA) spreading. In the case of large sensor systems and random
spreading, the asymptotic decentralized detection performance was derived assuming
independent and identically distributed sensor observations via random matrix theory.
The results showed that, even under both power and bandwidth constraints, it is better
to combine many not-so-good local decisions rather than relying on one (or a few) very-
good local decisions. Using large deviation analysis similar to that in [38], the question of
allocating two bits per sensor versus one bit per sensor was addressed in [45]. A general
conclusion is that a higher SNR at a sensor would dictate a larger number of bits per
sensor for achieving higher Chernoff information at the fusion center.

The impact of specific binary modulation schemes on the overall performance of
fusion rules were examined in [41] and [42], by modeling each link between a sensor
and the fusion center as an independent and identically distributed slow Rayleigh-fading
AWGN channel. While [41] addressed only the performance of counting rules (fusion
center counts the number of decisions received in favor of the presence of a POI and
compares it to a threshold) at the fusion center, performances of other combiners were
addressed in [42]. For three standard modulation techniques (binary phase shift keying
(BPSK), on/off keying (OOK), and frequency shift keying (FSK)) this study considered
(1) the impact of the sensor-fusion center link on the quality of the decision received at
the fusion center and (2) the minimum required sensor decision quality, given the avail-
ability of a minimum sensor-to-fusion center link SNR, in order that the asymptotic (large
number of sensors) error in the counting rule classification goes to zero. With a proper
choice of threshold for noncoherent OOK detection, it was shown that an asymptotic
performance comparable to that of FSK, while achieving some energy savings, is possi-
ble. Asymptotic error exponents of the probability of false alarm and the probability of
miss at the fusion center were derived in [42] for the following cases: BPSK modulation
and (1) maximal ratio combining (MRC), (2) equal gain combining (EGC), and (3) deci-
sion fusion (DF) and BFSK modulation and (1) square law combining and (2) decision
fusion. In the case of BPSK, the EGC performs the best for low and moderate SNR, with
DF achieving the next best performance. The DF scheme performs the best for large
SNR values, whereas the MRC performs the best for very low SNR values. Similar relative
performance results were obtained earlier for the case of a finite number of sensors (see
discussion below and [37]). In the case of BFSK, square law combining was shown to
outperform DF, except for large SNR values.
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6.3.2 Detection Performance in Fading Channels

An analysis of the performance of different fusion rules in the presence of Rayleigh
has been carried out in [37]. In this work, the sensor nodes are assumed to transmit
their binary decisions (Uk ∈ ±1) over parallel noninterfering, but slow Raleigh fading
channels to the fusion center. The BPSK modulation with coherent detection was as-
sumed. Assuming that the fusion center has the knowledge of channel state information
(CSI), the authors derived the optimal likelihood ratio test (LRT) at the fusion center.
For large SNR, the LRT was shown to approach the Chair–Varshney rule [10], which is
based on individual decisions made from the matched filter outputs of each link. Note
that the Chair–Varshney rule requires the knowledge of sensor quality information, i.e.,
individual (local) sensor probability of false alarm and the probability of detection. For
identical sensors, i.e., all having the same decision quality, they also showed that the
LRT approaches the MRC as the average SNR of the fading link approaches zero.

They also pointed out another interesting result: In traditional combining there is
one source and many diversity paths, whereas the MRC maximizes the SNR among all
linear combiners, it does not exhibit any such optimality in distributed sensor networks,
where a consensus of decisions of all the sensors does not occur with probability one.
Interestingly, except for very small SNR, both EGC and the Chair–Varshney rule out-
perform MRC. The EGC also performs better than the Chair–Varshney rule, except for
large SNR values. Similar to this analysis, an exercise of finding different statistics for the
fusion of censored decisions was carried out in [46]. Although the authors termed this as
censoring, it is essentially an OOK modulation for transmitting the Uks. Certainly, OOK
allows for noncoherent detection, thereby eliminating any need for phase track of an
individual link. Assuming complete CSI and sensor information quality, the authors de-
rived the LRT, which is a function of the energy detector outputs of the individual links.
For very small SNR and independent and identically distributed (iid) sensors, the LRT
becomes a weighted energy detector, with weights being proportional to the individual
channel gains. Censoring strategy with resource constraints (expected cost arising from
transmission and measurement at each sensor) was considered in [47]. It was found that
the randomization over the choice of measurement and when to transmit achieves the
best performance (in Bayesian, Neyman–Pearson, and Ali–Silvey sense).

The effect of link quality on the performance of a counting rule has been investigated
in [41,48]. Assuming iid sensor observations and a specific quality of sensor decision, [48]
showed how the fusion false alarm probability could change several orders of magnitude
as the link error rate changes from low to high. For a counting rule at the fusion center
and a slow fading channel, [48] established the correctness of using an average bit
error rate for a link, averaged with respect to the fading distribution. The effect of
correlation on the performance of a wireless sensor detection system subjected to a
total transmission power constraint was studied in [44]. Assuming that the sensors are
placed as a linear array, such that the correlation coefficient between any two sensors is
exponentially decreasing with distance separation, they studied the fusion performance
with analog-relay amplifier local processing at the sensors. It is found that the optimal
number of sensor nodes in the system increases as the correlation coefficient decreases.
In general, systems with many low-power nodes appear to perform better in the case
of a deterministic signal detection, regardless of the specific correlation coefficient. In
contrast, the effect of correlation on the detection of a stochastic (random) signal in a total
power constrained sensor network was investigated in [39]. An important observation
was that the average fusion probability of error does not improve monotonically with the
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number of sensors, unlike in the case of deterministic signal detection reported earlier
in [44,47]. In particular, [39] showed that there is an optimal number of sensors that
minimizes the probability of fusion error, which depends on both the local observation
SNR as well as channel SNR (we will discuss these results in detail in Section 6.4 below).

6.3.3 Estimation with Distributed Sensors

In this section, we briefly discuss some important results in distributed estimation in
sensor networks. In estimation problems, the nodes periodically transmit their pro-
cessed information to the fusion center where the estimation of a POI takes place (see
Figure 6.1). Early work in this area dealt with target tracking based on distributed data
[49]. Essentially, the problem boiled down to aggregating different Kalman filter estimates
that were obtained at several sensors. Performance analysis of parameter estimation with
distributed sensors was carried out in [50]. A specific design of a decentralized estimation
system was considered in [50]. The local processors at the sensor nodes were taken to be
quantizers and the aim was to minimize a certain distortion function. Necessary condi-
tions for the optimum system based on Bayes distortion measure and Fisher information
were derived. The numerical results in [50] also compared the resulting quantizers ob-
tained by different distortion criteria. Another early work considered the estimation of an
unknown constant, using distributed estimators [51]. For estimating a constant parameter
in Laplace noise density at each sensor, it was assumed that the sample medians of a set
of iid observations at each sensor were obtained. These local median estimates were then
combined in some fashion at the fusion center. The results obtained reveal that the mean
of local medians exhibits a slightly smaller mean-squared error (MSE) than the median of
local medians. It is noteworthy that in all these early papers, the links between sensors
and the fusion center were assumed to be error free.

Some recent work has considered distributed estimation of a constant parameter
within the context of bandwidth constrained sensor networks [52,53]. In this setup, each
sensor observes a corrupted version of the parameter and quantizes its data. The analysis
in [53] applies only to the case of the observation noise at a sensor being over a bounded
interval. Bandwidth constraint is indirectly met by allowing approximately 1/2 of the
sensors to send one bit quantized data, 1/4 of the sensors to send two bits quantized
data, and so on. In [53] both the quantization rule at a sensor (all sensors employ identical
quantizers) and the fusion rule were completely distribution free, thereby making the
scheme highly suitable for ad hoc networks. Moreover, the authors showed that the MSE
of the proposed distributed quantizer is almost within a factor of four of the Cramer–Rao
lower bound of the centralized counterpart. Subsequently, [54] has shown that the MSE
of any universal decentralized estimator is lower bounded by 1/16-th of the MSE of the
scheme in [53]. For the case of distributed estimation of a constant parameter in Gaussian
noise, results in [52] showed that a class of maximum likelihood (ML) estimators requires
sending just one bit from each sensor, when the dynamic range of the parameter is small
or comparable to the noise standard deviation. Moreover, such a scheme yields a fused
estimator whose variance is close to that of the sample mean estimator based on all
(unquantized) sensor samples. When the dynamic range is comparable or larger than
the noise standard deviation, there exists an optimum quantization scheme that achieves
the best possible variance for a given bandwidth constraint.

Another interesting result in distributed estimation is the use of dithering to reduce
MSE [55]. In [55], the authors showed that the addition of independent random noise to
sensor observations before quantization helps to reduce the MSE of the estimate at the
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fusion center. In the past, such dithering is known to be beneficial in the quantization
of speech signals.

The theory and methodology of estimating inhomogeneous, two-dimensional fields
using wireless sensor networks have been addressed in [56]. The sensors make noisy
measurements of the field, and the goal is to obtain an accurate estimate of the field at
some desired location (typically remote from the sensor network). Key questions are the
accuracy attainable in estimation and the energy consumption for communication. This
paper also presented a practical strategy for estimation and communication. So far, all
analysis in estimation has assumed that the links between sensors and the fusion center
are error free. The impact of link errors on the overall estimation accuracy needs to be
investigated.

6.4 RECENT RESULTS ON ANALOG DATA FUSION IN WIRELESS
SENSOR NETWORKS

Having provided a summary of recent advances in distributed detection/estimation under
resource constraints for wireless sensor networks, in this section we will consider some
of those results in detail. Specifically, we consider large wireless sensor networks with
so-called analog-relay amplifier local processing schemes. We will look at some large
system analysis based fusion performance and sensor system optimization results for
resource-constrained wireless sensor networks.

Let us consider a binary hypothesis testing problem in an n-node wireless sensor
network connected to a data fusion center via distributed parallel architecture [14,17].
Denote by H0 and H1 the null and alternative hypotheses, respectively, having corre-
sponding prior probabilities P (H0) = π0 and P (H1) = π1 = 1 − π0. Note that, unless
otherwise stated, we will assume equal priors so that π0 = π1 = 1/2. To be specific, the
observed POI is a Gaussian signal denoted by Xk ∼ N (m, σ 2

x ) corrupted by AWGN. The
k-th local sensor observation Zk, for k = 1, · · · n, can be written as

H0 : Zk = Vk

H1 : Zk = Xk + Vk (6.2)

where observation noise Vk ∼ N (0, σ 2
v ) is a zero-mean Gaussian with a collection of

noise samples V = [V1, V2, · · · , Vn ]T ∼ N (0, �v). Each sensor locally processes its ob-
servations to generate a local decision Uk = δk (Zk) which is sent to the fusion center.
Denote by Y(U1(Z1), U2(Z2), · · · , Un (Zn )) the received signal at the fusion center. The
fusion center makes a final decision U0 based on the decision rule U0 = δ0(Y). The
problem at hand is to choose δ0(Y), δ1(Z1), δ2(Z2), · · · , δn (Zn ) to optimize a given per-
formance metric (e.g., Bayesian or Neyman–Pearson criterion). If local observations are
independently conditioned on the true hypothesis, then all local decision rules simplify
to a set of likelihood ratio (LR) based tests but with possibly coupled thresholds [9].
While this assumption is commonly found in most work on distributed detection, in the
context of dense wireless sensor networks it may not be justified. Once the conditional
independence assumption is dropped, the optimality of simple threshold tests may be
lost and the analysis could get unwieldy.

In this section, we exclusively consider a simple but important continuous local map-
ping called the amplify-and-relay processing, according to which the local observations
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are amplified before retransmission to the fusion center [44]:

Uk = gk Zk, for k = 1, · · · n, (6.3)

where gk > 0 is the analog-relay amplifier gain at the k-th node. Interestingly, as men-
tioned in the previous section, it has been shown in [38] that below a certain threshold
SNR value, such continuous local mappings may outperform binary (or discrete valued)
local mappings for certain detection problems. This makes analog-relay local processing
a good candidate for emerging low-power, wireless sensor networks.

In modeling dense distributed wireless sensor networks it is more appropriate to
consider nonorthogonal sensor-to-fusion center communication over noisy channels.
Thus, let the k-th sensor node be assigned a signaling waveform (code) sk normalized
such that sT

k sk = 1, for k = 1, · · · , n. We assume that the number of degrees of freedom
(DoF) in the signaling waveform to be N (for example, the number of chips per symbol
in DS-CDMA signaling) so that sk is a length N vector. The message Uk of the k-th
sensor is transmitted to the fusion center over a noisy, bandlimited wireless channel
by modulating onto the signaling waveform sk. Hence, k-th sensor’s transmitted signal
is given by skUk = gk sk Zk. Throughout this section we assume an AWGN channel
with double-sided spectral density σ 2

w and ignores the effects of fading for simplicity.
Assuming synchronized sensor transmissions, the signal received at the fusion center
is a superposition of signals transmitted from all the nodes

∑n
k =1 gk sk Zk corrupted by

additive noise. A sufficient statistic for the fusion center processing is obtained by passing
this received signal through a bank of matched filters (each matched to a signaling
waveform sk of a particular node). The output of this bank of matched filters at the
fusion center can be written in vector notation as

Y = RU + W, (6.4)

= RAZ + W, (6.5)

where we have defined A = diag (g1, g2, · · · , gn), U = [U1, · · · , Un ]T , Z = [Z1, · · · , Zn ]T ,
and R is the n×n symmetric and normalized received signal correlation matrix in which
the (k, k ′)-th element is given by sT

k sk ′ . If we define the N × n matrix S such that its k-th
column is the waveform sk, then it is easily shown that

R = ST S. (6.6)

Note that, in the special case of orthogonal sensor-to-fusion center communication, the
received signal model (6.4) simplifies such that R = I. In (6.4), w ∼ N (0, σ 2

w R) is the
n-dimensional filtered noise vector.

A sensible way to model a system in which the most important objective is to extend
the whole network lifetime, is to impose a total average power constraint P on the
whole sensor system. According to this model, as the number of nodes in the system
increases, the power available for each node correspondingly decreases. This allows
trading off individual node power against the number of nodes in the network and vice
versa. For example, in certain applications the cost of a node may be dominated by
the cost of batteries. In such situations it may be necessary to determine whether to
deploy a few nodes with high power or a large number of nodes with low power. Also,
when the sensor system is powered by a distributed power source with a certain power
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density per unit area the total available power may be constant, justifying application
of a global power model. With this model, gk, for k = 1, · · · n, depends on the total
average power constraint P . For simplicity, throughout this discussion we assume gk = g
for all k. With these assumptions the average radiated power of node k is given by

E{|Uk|2} = g 2
E{|Zk|2} = g 2(m2+σ 2

x
2 + σ 2

v ), where σ 2
x and σ 2

v are the variances of the
signal of interest and the observation noise, respectively, and we have assumed that
π0 = 1

2 . Hence, the local amplifier gain g is given by

g 2 = P

n
(
σ 2

v + m2+σ 2
x

2

) . (6.7)

Observe that, as more nodes are introduced the gain at each node correspondingly
decreases. With equal amplifier gains at the nodes (6.5) simplifies to

Y = g RZ + W. (6.8)

The detection problem at the fusion center is then given by the following binary hypoth-
esis testing problem:

H0 : Y ∼ N (0, �0)

H1 : Y ∼ N (m, �1) , (6.9)

where �0 = g 2R�vR + σ 2
w I, �1 = g 2R (�x + �v) R + σ 2

w I = g 2R�x R + �0, m =
g RE{X} = gmR1 and 1 is the vector of all ones. Because the quantity P

σ 2
w

is a measure

of how good the channel is, let us define the channel quality SNR as γc
�= P

σ 2
w
.

6.4.1 Distributed Detection of a Deterministic Signal in a Total Power
and Bandwidth Constrained System

In this section, we consider the detection of a deterministic signal so that X = m1, forAu: Sense?

m > 0, is known in uncorrelated observation noise. Hence, �v = σ 2
v I. Then �0 = �1 =

�, where

� = g 2σ 2
v R2 + σ 2

w R. (6.10)

Accordingly, the amplifier gain g in (6.7) is simplified as

g =
√√√√ P

n
(

m2

2 + σ 2
v

) . (6.11)

The quality of local observations are then characterized by the ratio m2

σ 2
v
. Hence, let us

define the local observation quality SNR as γ0
�=m2

σ 2
v
.

The fusion center design problem is then a standard Gaussian hypothesis testing
problem with the only additional caveat being that the gain g depends on the total
power constraint P as in (6.11). It is well-known that the the optimal fusion rule is a LR
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threshold test of the form of

δ0( y) =



1 ≥
if T

(
y
)

τ ′

0 <

, (6.12)

where we have defined the decision variable T as T
(

y
) = mT �−1 y = gm1T R

(
g 2σ 2

v R2

+ σ 2
w R

)−1
y and τ ′ is the threshold that depends on the specific optimality criteria. It

can be shown that the false-alarm P f and miss Pm probabilities of the detector (6.12)
are given by

P f = Q

(
τ ′

gm
√

1T R�−1R1

)
, (6.13)

and

Pm = Q

(
g 2m21T R�−1R1 − τ ′

gm
√

1T R�−1R1

)
. (6.14)

In the case of Neyman–Pearson optimality at the fusion center, τ ′ is chosen to minimize
Pm subject to an upper bound on P f . On the other hand, under Bayesian minimum
probability of error optimality one would choose τ ′ to minimize Pe = π0 P f + π1 Pm. In
the following we explicitly consider Bayesian optimality with equal prior probabilities
(i.e., π0 = π1 = 1

2 ), in which case the threshold simplifies to

τ ′ = 1

2
g 2m21T R�−1R1. (6.15)

The resulting minimum fusion probability of error is given by

Pe = Q
(

gm

2

√
1T R�−1R1

)
. (6.16)

The above analysis characterizes the fusion performance for a deterministic signal in
a resource-constrained, noisy, bandlimited wireless sensor network. Of course, to say
anything beyond this point we need to specify the particular signaling scheme used to
share the total available bandwidth because the performance depends on the particular
waveforms (or codes) assigned to each sensor node as seen from (6.16). This hinders
drawing general conclusions regarding the fusion system. However, such conclusions
can be reached for large systems through asymptotic (in large n) analysis, as we show
next.

Let us assume that the signaling codes are chosen randomly, so that each element of
sk takes either 1√

N
or − 1√

N
with equal probability, and that, as assumed above, sensor

observations are independent so that �v = σ 2
v I. Consider a large sensor system in which

both n and N are large, such that limN−→∞ n
N = α. Using the definitions of �, R, S, and

1, we can show that

g 21T R�−1R1 = g 21T ST C−1S1

= g 2


 n∑

k =1

sT
k C−1sk +

n∑
k =1

n∑
k ′=1
k ′ �=k

sT
k C−1sk ′


, (6.17)
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where we have defined C = g 2σ 2
v SST + σ 2

w I. Let I denote a set of sensor indices (i.e.,
I ⊂ {1, 2, · · · , n}), SA denote the matrix S with column indices specified by set A deleted,
�k = g 2σ 2

v Ik and QA = (
SA�n−|A|SA + σ 2

w In
)
, where Ik and |A| denote the k×k identity

matrix and the cardinality of set A, respectively. Then, using the matrix inversion lemma2

we can show that, for k = 1, · · · , n,

sT
k C−1sk = sT

k Q−1
{k}sk/

(
1 + g 2σ 2

v sT
k Q−1

{k}sk
)
. (6.18)

The key to large system asymptotic analysis in this situation is the theory of large ran-
dom matrices [57]. In particular, under the assumed conditions for signaling codes, the
empirical distribution of eigenvalues of the large random matrix R converges almost
surely to a deterministic distribution characterized by the parameter α [58–60]. Applying
Theorem 7 of [60], which essentially relies on the above result, and using (6.11), we can
show that [24],

sT
k Q−1

{k}sk
a.s.
−→

β0

σ 2
w

, (6.19)

where β0 =
√

(γ+σ 2
w)

2
α2+2γ (σ 2

w−γ )α+γ 2−(γ+σ 2
w)α+γ

2γ
and γ = P

N(1+ γ0
2 ) . Substituting (6.19) in

(6.18) we have, for k = 1, · · · , n,

sT
k C−1sk

a.s.
−→

(
σ 2

w

β0
+ g 2σ 2

v

)−1

. (6.20)

Similarly, repeated application of the matrix inversion lemma twice yields, for k �= k ′

sT
k C−1sk ′ = sT

k Q−1
{k,k ′}sk ′(

1 + g 2σ 2
v sT

k Q−1
{k}sk

)(
1 + g 2σ 2

v sT
k ′Q−1

{k,k ′}sk ′
) a.s.

−→ 0. (6.21)

where we have again used Theorem 7 of [60] in the last step to obtain (6.21). Substituting
(6.20) and (6.21) in (6.17) gives

g 21T R�−1R1 a.s.
−→

(
σ 2

v

n
+ σ 2

v

(
1 + γ0

2

)
γcβ0

)−1

. (6.22)

This asymptotic convergence result can be used to characterize the large sensor
system Bayesian fusion error probability when limN−→∞ n

N = α. Substituting (6.22) in
(6.16) gives,

Pe(α) a.s.
−→ Q


 m

2

√
σ 2

v
n + σ 2

v (1+ γ0
2 )

γcβ0


. (6.23)

2 If A, C and
(
C−1 + DA−1B

)
are all nonsingular square matrices, then (A + BCD)−1 = A−1 −

A−1B
(
C−1 + DA−1B

)−1
DA−1.
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Figure 6.3 Large Sensor System Fusion Performance in a Noisy, Bandlimited Channel Subjected
to a Total Power Constraint

Figure 6.3 shows the convergence of the random waveform based decentralized
detection performance as predicted by (6.23). Note that the exact analysis result in
Figure 6.3 was obtained from (6.16) by using a random choice of the code matrix S
where the large system approximation results are from (6.23). As can be seen from
Figure 6.3, (6.23) provides a very good approximation to the fusion performance for
large code lengths N , and thus for large-sensor systems (because n = Nα). More im-
portantly, we can observe from Figure 6.3 that for each fixed N , increasing α improves
the decentralized detection performance. Because this is equivalent to increasing the
number of sensors n allowed in the system for a fixed bandwidth, we conclude that it
is better to allow as many sensors to send their local decisions to the fusion center.

In fact, for large α, one can show that β0
a.s.
−→ 1, and as a result in this case, the error

probability in (6.23) goes to (see Figure 6.4).

Pe(α) −→ Q


1

2

√
γc

1
2 + 1

γ0


. (6.24)

On the other hand, if one were to allocate all available power P and the total bandwidth
to just one sensor node, the fusion center performance will be given by

Pe,1 = Q


√

γc
γc

γ0
+ 1

γ0
+ 1

2


. (6.25)
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Figure 6.4 Limit of Large Sensor System Approximation to the Fusion Performance in a Noisy,
Bandlimited Channel Subjected to a Total Power Constraint when α −→ ∞

Comparison of (6.24) and (6.25) shows that allowing more sensor nodes in the net-
work is even better if the channel is both noisy and bandlimited. This comparison is
shown in Figure 6.4, in which the limit of large system performance and the single
sensor system performance refer to, respectively, (6.24) and (6.25). The large system
approximations for finite N values shown in Figure 6.4 were obtained from (6.23). First,
observe from Figure 6.4 that as N increases the fusion center performance improves.
Secondly, note that as N −→ ∞, the performance for large α indeed goes to (6.24).
Third, Figure 6.4 confirms that combining more local decisions is better than allocating
all available power and bandwidth to one sensor. Moreover, the performance improves
monotonically with increasing α (for a fixed N ) showing that it is better to combine as
many local decisions as possible at the fusion center. We should divide the available
power among all nodes and allow them to share the available bandwidth, even if they
interfere with each other due to nonorthogonality.

6.4.2 Distributed Detection of a Random Gaussian Signal in a Total Power
and Bandwidth Constrained System

In the previous section, we could derive the exact fusion error probability in closed form
for any finite n due to the assumed simplicity of the model. In particular, if instead of
a deterministic signal, the POI to be detected happened to be a random signal (e.g., a
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Gaussian signal), the analysis quickly becomes much more difficult. The present conve-
nience is quickly lost when we consider more involved signaling and channel models.
In those situations, asymptotic performance analysis (for large n) becomes a necessity
in order to establish any meaningful characterization of performance. Recently, several
works have employed large deviations theories and error exponent analysis to achieve
this goal. In this section, we illustrate some of these ideas in fusion performance analysis,
assuming the POI to be detected in (6.2) to be a zero-mean Gaussian signal such that
Xk ∼ N (0, σ 2

x ), for k = 1, · · · , n. Again assuming both signal of interest and the additive
noise Vk are independent at each node, the set of observation noise samples and the
set of desired signal samples are then distributed as A ∼ N (0, σ 2

v I) and X ∼ N (0, σ 2
x I),

respectively. Accordingly, we redefine the local observation quality SNR at each node as

γ0
�= σ 2

x
σ 2

v
.

As before, assume that the local decisions sent to the fusion center are generated via
analog-relay amplifier processing, so that Uk = gk Zk, for k = 1, · · · n, where gk > 0 is the
gain at the k-th node that depends on either the global system power constraint P on
the whole sensor system. For simplicity, suppose also that gk = g for all k, and that the
k-th node transmits its local decision Uk to the fusion center after modulating it with a
normalized signaling waveform sk. A sufficient statistic for the fusion center processing
is again given by Y in (6.8). The matrix R = ST S in which the (k, k ′)-th element is
given by sT

k sk ′ reflects the possible nonorthogonality of signaling due to a finite total
bandwidth constraint. Under the global average power constraint P on the system, the
local amplifier gain is now given by

g 2 = P

n
(
σ 2

v + σ 2
x
2

) . (6.26)

With these definitions, the new fusion problem is reduced to the following binary
hypothesis testing problem

H0 : y ∼ p0(y) = N (0, �)

H1 : y ∼ p1(y) = N
(
0, g 2σ 2

x R2 + �
)
,

where p j (y) is the density of Y under the hypothesis Hj , for j = 0, 1, and � is as defined
in (6.10). The optimal (e.g. Bayesian, minimax or Neyman–Pearson) fusion rules should
then be based on the LR L(y) = p1(y)

p0(y) that can be written as

L(y) =
( |�|

|g 2σ 2
x R2 + �|

) 1
2

exp
(

1

2
yT

(
�−1 − (

g 2σ 2
x R2 + �

)−1
)

y
)

. (6.27)

Let us define the spectral decomposition of R to be R = ∑n
k =1 λk ξkξ

T
k . Under the

assumption that the signaling waveforms (equivalently, codes) of the sensors are all
linearly independent of each other, the set of orthonormal eigenvectors ξks forms a
complete basis for R

n and λk’s are the corresponding eigenvalues. In that case, we have
that R2 = ∑n

k =1 λ2
k ξk ξ

T
k and � = ∑n

k =1

(
g 2σ 2

v λk + σ 2
w

)
λk ξk ξ

T
k . Using these in (6.27)
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leads to

L(y) = exp

(
1

2

n∑
k =1

g 2σ 2
x(

g 2σ 2
v λk + σ 2

w

) (
g 2

(
σ 2

x + σ 2
v

)
λk + σ 2

w

) |ξT
k y|2

)

×
n∏

k =1

(
g 2σ 2

v λk + σ 2
w

g 2(σ 2
x + σ 2

v )λk + σ 2
w

) 1
2

. (6.28)

For k = 1, · · · , n, let us define a new set of random variables Ȳ 1, · · · ,Ȳ n by projecting
the observation vector Y onto each of the eigenvectors ξk followed by scaling:

Ȳ k =
√

g 2σ 2
x(

g 2σ 2
v λk + σ 2

w

) (
g 2

(
σ 2

x + σ 2
v

)
λk + σ 2

w

)ξT
k r. (6.29)

Due to the orthonormality of ξk s, it is easy to show that Ȳ ks are a set of zero-mean
independent Gaussian random variables under both hypotheses, that is equivalent to the
original statistic y. However, Yks are not identically distributed under either hypothesis. In
fact, if the variance of the k-th sample Ȳ k under Hj is σ 2

j,k, for j = 0, 1, and k = 1, · · · , n,
then it can be shown that

σ 2
j,k =




g 2σ 2
x λk

g 2(σ 2
x +σ 2

v )λk+σ 2
w

if j = 0

g 2σ 2
x λk

g 2σ 2
v λk+σ 2

w
if j = 1

. (6.30)

Substitution of (6.29) in (6.28) allows us to write the fusion center LR as

L(y) = exp

(
1

2

n∑
k =1

|ȳk|2
)

n∏
k =1

(
g 2σ 2

v λk + σ 2
w

g 2(σ 2
x + σ 2

v )λk + σ 2
w

) 1
2

. (6.31)

The optimal fusion decision rule is then given by

δopt( y) =



1 ≥
if T

(
y
)

τ ′

0 <

, (6.32)

where

τ ′ = 2 log τ +
n∑

k =1

log
(

g 2(σ 2
x + σ 2

v )λk + σ 2
w

g 2σ 2
v λk + σ 2

w

)
, (6.33)

and the decision variable T is the quadratic form T
(

y
) = ∑n

k =1 |ȳk|2. We again restrict
our discussion to the minimum probability of error in Bayes detection with equal priors
so that τ = 1.

In certain special circumstances one can evaluate the exact probability of error Pe

of the optimal quadratic detector (6.32) in closed form. A common method in such
situations is to obtain good error bounds or error exponents. While they may not be
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exact, in most situations error exponents (and the bounds based on them) can be helpful
in characterizing the performance of a detection procedure. The most commonly used
bound for Bayesian detection is the Chernoff upper bound to the probability of error
which (assuming equal priors) can be written as Pe ≤ 1

2e µC , where the Chernoff error
exponent is defined as [11]

µC = min
s∈[0,1]

log E
{
Ls (r)|H0

}
. (6.34)

Although somewhat looser than the Chernoff bound, an easier-to-evaluate related bound
is the Bhattacharyya upper bound. Specifically, analogous to the Chernoff error expo-
nent, we define the Bhattacharyya error exponent as

µB = log E

{
L 1

2 (r)|H0

}
, (6.35)

so that the Bhattacharyya upper bound to the probability of error is given by Pe ≤ 1
2e µB .

The special case in which performance can be characterized in closed form is the
orthogonal signaling: i.e., R = I. In this case, it is easy to show that theȲ ks are a collection
of independent Gaussian random variables such that:

H0 : Ȳ k ∼ N
(
0, σ 2

0

)
H1 : Ȳ k ∼ N

(
0, σ 2

1

)
,

where,

σ 2
j =




g 2σ 2
x

σ 2
w+g 2(σ 2

x +σ 2
v ) if j = 0

g 2σ 2
x

σ 2
w+g 2σ 2

v
if j = 1

=



γ0

1+γ0+ n
γc (1+ γ0

2 ) if j = 0

γ0

1+ n
γc (1+ γ0

2 ) if j = 1
. (6.36)

Hence, the decision variable T is a Gamma random variable of the form T ∼ G
(

n
2 , 1

2σ 2
j

)
under the hypotheses Hj . The false alarm and the miss probabilities of the detector (6.32)
can then be computed as

P f = 1 −
�

(
n
2 ; τ ′

2σ 2
0

)
�

(n
2

) , (6.37)

and

Pm =
�

(
n
2 ; τ ′

2σ 2
1

)
�

(
n
2

) , (6.38)
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where �(a) = ∫ ∞
0 e−y ya−1dy is the Gamma function and �(a, t) = ∫ t

0 e−y ya−1dy is the
incomplete Gamma function. In addition, the threshold τ ′ in (6.33) simplifies to

τ ′ = 2 log τ + n log
(

g 2σ 2
v (1 + γ0) + σ 2

w

g 2σ 2
v + σ 2

w

)

= n log

(
1 + γcγ0

n
(
1 + γ0

2

) + γc

)
, (6.39)

where in the last step we used the fact τ = 1. Substitution of definitions for γc and γ0

gives the minimum error probability achieved by the optimal Bayesian fusion rule for a
random Gaussian signal to be

Pe = 1

2


1 +

�
(

n
2 ; τ ′

2σ 2
1

)
− �

(
n
2 ; τ ′

2σ 2
0

)
�

(n
2

)

, (6.40)

where σ 2
0 and σ 2

1 are given by (6.36).
Note from (6.39) that for minimum probability of error criterion with equal priors is

lim
n−→∞ τ ′ = γc

1
2 + 1

γ0

. (6.41)

Taking the limit in (6.40) with the aid of (6.41), it can be shown that

lim
n−→∞ Pe = 0.5. (6.42)

Moreover, the minimum fusion error probability exhibits the following asymptotic in the
observation SNR:Au:

Missing
word?

lim
γ0−→∞ Pe = 1

2

(
1 − �

(n
2 ; t0

) − �
(n

2 ; t1
)

�
(n

2

)
)

, (6.43)

where t0 = t1 + n
2 log

(
1 + γc

n/2

)
and t1 = n2

4γc
log

(
1 + γc

n/2

)
.

Investigating the fusion error behavior given by (6.40) shows that the final fusion
performance is not monotonic in the number of nodes n. Additionally, (6.42) shows that
in contrast to the deterministic signal fusion considered earlier, dividing the available
total power infinitesimally among many sensors is bound to degrade the performance.
In fact, as can be seen from Figure 6.5, there is an optimal number of sensor nodes for
each γ0 and γc combination beyond which the performance monotonically degrades.
Figure 6.6 shows the convergence of fusion probability of error to the asymptotic bound
(6.43) for large γ0 values.

The exact fusion error probability in (6.40), however, is too complicated for inves-
tigating this optimal number of nodes, n = n0, that leads to the lowest possible error
probability. To that purpose, we resort to the error exponents. It can be shown that the
Chernoff and Bhattacharyya error exponents for this situation are given by [43],

µC = n

2

[
log

1 + σ 2
1

1 + (1 − s0)σ 2
1

− s0 log
(
1 + σ 2

1

)]
(6.44)
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and

µB = n

2

[
1

2
log

(
1 + σ 2

1

) − log
(

1 + σ 2
1

2

)]
, (6.45)

where s0 = 1+ 1
σ 2

1
− 1

log(1+σ 2
1 )

in (6.44). Interestingly, using the fact that σ 2
1 � 1 for n � 1,

one can show that limn−→∞ µB = 0. This indicates that the Bhattacharyya upper bound
to the error probability goes to unity, suggesting that fusion error may also degrade in
large systems. Figure 6.5 includes the behavior of µB as a function of n for a fixed γc.
Clearly there is an optimal value of n for which the µB-based bound is also minimized.
Although the bound could be somewhat loose, the optimal n = n0 for the Bhattacharyya
bound seems to be almost the same as that for the exact error probability. This motivates
the use of the Bhattacharyya exponent as the basis for optimizing the sensor system size
due to its relative simplicity.

Using standard optimization techniques, it was shown in [43] that in orthogonal sig-
naling (ρ = 0) under a global power constraint P , the optimal number of nodes n0 that
results in the minimum Bhattacharyya upper bound to the fusion error probability is
given by,

n0 = γc

(
1

2x0
− 1

γ0

) (
1

2
+ 1

γ0

)−1

, (6.46)
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where x = x0 is the unique positive solution to the equation fγ0 (x) = 0 with fγ0 (x) =
log

√
1+2x
1+x + (

1 − 2x/γ0
) x 2

(1+x)(1+2x) . This optimal number of sensors can also be approx-
imated as follows (where x̃ 0 ≈ 1.535):

n0 ≈
{

γc/x̃ 0 if γ0 � 1

γc if γ0 � 1
. (6.47)

Figure 6.7 shows the optimal number of nodes n = n0 for distributed detection of a
stochastic signal under a global power constraint obtained via the exact solution to the
zero of fγ0 . Figure 6.7 also shows that the asymptotic solutions given in (6.47) provide a
very good approximation except for a small range of values for the observation SNR γ0. In
the case of nonorthogonal communication with an equicorrelated signaling model, [43]
generalized the above approach to obtain the final fusion performance as well as the
optimal number of sensors to use.

6.5 FUTURE DIRECTIONS

In channel-aware decision fusion, the decentralized detection system needs to be adapted
to the conditions of the sensor-to-fusion center communication channel. Recently, [61]
pointed out how the design of quantizers at distributed nodes could be optimized de-
pending on the channel state information. However, such an optimization procedure is
in general complex, and is restricted to relatively small-size networks. Thus alternative
channel-aware decision fusion techniques are to be developed in the future. In particular,
instantaneous CSI-based low-complexity, adaptive local decision rules at the distributed
nodes as well as adaptive fusion rules are to be investigated.

In large networks, communications between sensors and fusion centers need to be co-
ordinated with a multiple access channel (MAC) algorithm. With bandwidth constraints,
a typical MAC protocol might provide nonorthogonal links thereby causing multiple-
access interference. While this issue was addressed for a DS-CDMA-based sensor system
in [24], as we discussed in Section 6.4, this remains a topic for further research.

The interplay between sensing, signal processing, and communications in wireless
sensor networks is discussed in a recent special issue [62]. Some of the topics presented
there have a direct bearing on the research issues presented here. Other future research
directions include decentralized estimation/detection with correlated sensor data, when
correlation models are derived from realistic physical measurements and a study of
reliability achievable through codes, such as low density parity check (LDPC) codes,
which may be employed in sensor communication links.

6.6 CHAPTER SUMMARY

In this chapter we reviewed the recent advances in distributed signal processing in
resource-constrained wireless sensor networks. The particular attention was on dis-
tributed detection and decision fusion in large sensor systems. However, we also briefly
outlined recent results on distributed estimation.

We first described the basic problem of distributed detection and fusion in the spe-
cific context of wireless sensor networks. The recent work on this topic differs from
that of early work in the sense that, in wireless sensor networks, the communication
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errors between the distributed nodes and the decision fusion center are nonnegligible.
This is due to the unreliable nature of wireless channels (due to fading, shadowing, and
interference) as well as limited resources (limited battery power and finite channel band-
width) in wireless sensor networks. We discussed some important recent work that has
specifically taken into account such channel errors in distributed detection and fusion
system design and performance analysis. We were particularly interested in outlining
large system analysis based results that provide useful insight into the fusion system
performance.

In the final section of this chapter, we distnctly considered a specific wireless sensor
system in which local processing is assumed to be analog-relay amplifier processing. The
fusion center performance was investigated for a distributed binary hypothesis testing
problem assuming that the sensor network is both power as well as bandwidth limited.
We showed one of the interesting conclusions regarding deterministic versus random
signal detection in this context, i.e., while in the case of a deterministic signal it is better
to divide the available power and bandwidth among as many nodes as possible, in the
case of a random signal there is an optimal number of nodes that provides the best
fusion performance. A large system analysis was employed to characterize this fusion
performance and obtain the optimal number of nodes to be used.

Finally, we have outlined several open issues and future research directions in
Section 6.5.
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