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6 Multiuser receiver design

6.1 Introduction

The preceding chapter considered the design of receivers for MIMO systems operating
as single-user systems. Increasingly however, as noted in Chapters 2 and 4, wireless
communication networks operate as shared-access systems in which multiple transmitters
share the same radio resources. This is due largely to the ability of shared-access systems
to support flexible admission protocols, to take advantage of statistical multiplexing,
and to support transmission in unlicensed spectrum. In this chapter we will extend the
treatment of Chapter 5 to consider receiver structures for multiuser, and specifically,
multiple-access MIMO systems. We will also generalize the channel model considered
to include more general situations than the flat-fading channels considered in Chapter 5.
To treat these problems, we will first describe a general model for multiuser MIMO
signaling, and then discuss the structure of optimal receivers for this signal model. This
model will generally include several sources of interference arising in MIMO wireless
systems, including multiple-access interference caused by the sharing of radio resources
noted above, inter-symbol interference caused by dispersive channels, and inter-antenna
interference caused by the use of multiple transmit antennas. Algorithms for the mitigation
of all of these types of interference can be derived in this common framework, leading to a
general receiver structure for multiuser MIMO communications over frequency-selective
channels. As we shall see, these basic algorithms will echo similar algorithms that have
been described in Chapters 3 and 5. Since optimal receivers in this situation are often
prohibitively complex, the bulk of the chapter will focus on useful lower complexity
sub-optimal iterative and adaptive receiver structures that can achieve excellent
performance in mitigating interference in such systems. This discussion is organized as
follows.

Section 6.2 will introduce a simple, yet useful, model for the signals received by
the receiver in a MIMO system. This model is rich enough to capture the important
behavior of most wireless communication channels, while being simple enough to allow
for the straightforward motivation and understanding of the basic receiver elements arising
in practical situations. This section also derives a canonical multiuser MIMO receiver
structure, discusses several specific receivers that can be explained within this structure,
and provides a digital receiver implementation that will be useful in the discussion of
adaptive systems later in the chapter.
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As noted above, complexity is a major issue in multiuser receiver design and
implementation, and the remainder of this chapter addresses the problem of complexity
reduction in multiuser MIMO systems. This complexity takes two forms: computational,
or implementational, complexity; and informational complexity.

The first type of complexity refers to the amount of resources needed to implement
a given receiver algorithm. Optimal MIMO multiuser receiver algorithms are typically
prohibitively complex in this sense, and thus a major issue in this area is complexity
reduction. Sections 6.3 and 6.4 address the principal method for complexity reduction in
practical multiuser receivers, namely the use of iterative algorithms in which tentative
decisions are made and updated iteratively. There are a number of basic iterative
techniques, involving different tradeoffs between complexity and performance, and
depending on the type of system under consideration, and these are described in
Section 6.3. In Section 6.4, we tackle the additional complexity that arises in receiving
space–time coded transmissions, such as those described in Chapter 4, in multiuser MIMO
systems. Here, iterative algorithms similar to those discussed in Chapter 5 provide the
answer to finding algorithms that can exploit the space–time coded structure with only
moderate increases in complexity.

The second type of complexity refers to the amount of knowledge that a given receiver
needs to have about the structure of received signals in order to effect signal reception.
Although, as we will see shortly, optimal MIMO multiuser reception requires knowledge
of the waveforms being transmitted by all users sharing the channel and the structure
of the physical channel intervening between transmitters and the receiver, this type of
knowledge is rarely available in practical wireless multiuser systems. Thus, it is necessary
to consider adaptive receiver algorithms that can operate without such knowledge, or with
only limited such knowledge. Such algorithms are the topic of Section 6.5, in which the
structure of adaptive MIMO multiuser receivers is reviewed.

The chapter will conclude in Sections 6.6 and 6.7 with a summary and pointers to
additional reading of interest in this general area.

6.2 Multiple-access MIMO systems

As noted above, this section will provide a general treatment of the multiuser MIMO
receiver design problem. Here we will focus on modeling and on the structure of optimal
receivers. In doing so, we will expose the principal issues underlying the reception
of signals in multiuser MIMO systems, and also will set the stage for more practical
algorithms developed in succeeding sections.

6.2.1 Signal and channel models

In order to discuss multiuser MIMO receiver structures, it is useful to first specify a
general model for the signal received by a MIMO receiver in a multiuser environment
(see Fig. 6.1.) In doing so, we will build on the signaling model developed in Chapter 1,
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Figure 6.1. A multiuser MIMO system.

and in particular our model is an abstraction of the physical channel described there that
is especially useful for the purposes of this chapter. Specifically, a useful received signal
model for a multiuser MIMO system having K active users, MT transmit antennas and
MR receive antennas, and transmitting over a frame of B symbol periods, can be written
as follows:

rp�t� =
K∑

k=1

MT∑
m=1

B−1∑
i=0

bk�m�i�gk�m�p�t − iTs�+np�t�� p = 1� � � � �MR� (6.1)

where the various quantities are as follows:

• rp�·� = the signal received at the output of the pth receive antenna,
• bk�m�i� = the symbol transmitted by user k from its mth antenna in the ith symbol

interval,
• gk�m�p�·� = the waveform on which symbols from the mth antenna of user k arrive at

the output of the pth receive antenna,
• Ts = the symbol period, and
• np�·� = ambient noise at the pth receive antenna.

Each of the waveforms gk�m�p�·� can be modeled as

gk�m�p�t� =
∫ �

−�
sk�m�u�fk�m�p�t −u�du� (6.2)

where

• sk�m�·� = the signaling waveform used by user k on its mth antenna and
• fk�m�p�·� = the impulse response of the channel between the mth transmit antenna of

user k and the pth receive antenna output.

Thus, we are assuming linear modulation and a linear channel model, both of which are
reasonable assumptions for wireless systems. Note that, since gk�m�p�·� does not depend
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on the symbol index i in this model, we are implicitly assuming here that the channel is
stable (and time-invariant) over the transmission frame (which is BTs seconds long) and
that the transmitters use the same signaling waveforms in each symbol-period. The first
of these assumptions is valid for the coherence times and signaling parameters arising in
most systems of interest, while the latter is often violated, particularly in cellular systems.
However, with the exception of the adaptive methods of Section 6.5, this time variation is
not difficult to incorporate into any of the results described in this chapter, and is omitted
here for the sake of notational simplicity (see, e.g., [46]).

In order to minimize the number of parameters in this model, we will assume that the
signaling waveforms are normalized to have unit total energy, i.e.,∫ �

−�

[
sk�m�t�

]2
dt = 1� k = 1� � � � �K� m = 1� � � � �MT � (6.3)

In reality, the actual transmitted waveforms will carry differing and non-unit energies,
reflecting the transmitted powers of the various users’ terminals. However, from the
vantage point of receiver design, the critical scale parameter is the received power of a
user, which will depend on the user’s transmitter power and the gain of the intervening
channel. Thus, it is convenient to lump all scaling of the signals into the channel impulse
response fk�m�p�·�� and to simply assume normalized waveforms (6.3) at the transmitter.
Again, from the receiver’s point of view, it is impossible anyway to separate the effects
of channel gain and transmit power on the received power. Also for convenience, we
will assume that the transmitted waveforms have a duration of only a single symbol
interval; i.e.,

sk�m�t� = 0� t � �0� Ts�� (6.4)

As with the normalization constraint (6.3), this assumption does not remove any generality
since received waveforms that extend beyond a single symbol interval can be modeled
via dispersion in the channel response.

A typical and useful model for the channel response is as a discrete multipath model:

fk�m�p�t� =
L∑

	=1

hk�m�p�	
�t − �k�m�p�	�� (6.5)

where 
�·� denotes the Dirac delta function, and where hk�m�p�	 and �k�m�p�	 ≥ 0 denote the
channel gain and propagation delay, respectively, of the 	th path of the channel between
the mth transmit antenna of user k and the output of the pth receive antenna.1 In this
case, the waveforms gk�m�p�·� are of the form

gk�m�p�t� =
L∑

	=1

hk�m�p�	 sk�m�t − �k�m�p�	�� (6.6)

1 For simplicity, we lump the effects of the radio channel itself and the antenna response into the same term
hk�m�p�	� Often these two terms can be separated (see, e.g., [46]). However, no generality is lost in lumping
these effects together for the purposes of analysis and exposition.



August 24, 2006 Page-234 0521873284c06

234 Multiuser receiver design

That is, in this model, the waveform received at a given receive antenna p from a
given transmit antenna m of a particular user k is the superposition of L scaled and
delayed copies of the waveform sk�m�·� transmitted from that antenna. Except where noted
otherwise, we will assume this particular model for the channel response in the following.

The signaling waveforms sk�m�·� can take many forms. Although these waveforms
can be thought of as being generic in our discussion, a quintessential example is the
case in which the transmitted signals are in direct-sequence code-division multiple-access
(DS/CDMA) format. This is a very widely used signaling format in wireless systems (used
notably in both major 3G cellular standards), and is the example used in the simulations
discussed in succeeding sections of this chapter. In the notation of this section, this format
can be described as follows.

DS/CDMA signaling

In the DS/CDMA format, the signaling waveforms used by all transmitters are in the
form of spread-spectrum signals; i.e., the waveforms

{
sk�m�·�} of (6.1) are of the form

sk�m�t� = 1√
N

N−1∑
j=0

c
�j�
k�m��t − �j −1�Tc�� 0 ≤ t ≤ Ts� (6.7)

where N is the spreading gain of the system, c
�0�
k�m� c

�1�
k�m� � � � � c

�N−1�
k�m is the spreading code

(or signature sequence) associated with the mth transmit antenna of user k� Tc = Ts/N

is the chip interval, and ��·� is a chip waveform having unit-energy and approximate
duration Tc� (For a general discussion of spread-spectrum signaling, see, e.g., [48].) In
studying this format, the chip waveform ��·� is often modeled as a unit-energy pulse of
duration Tc i.e.,

��t� =
⎧⎨⎩

1√
Tc

� t ∈ �0� Tc�

0� otherwise�
(6.8)

Again, most of the results of this chapter apply to general signaling waveforms, and it
is not necessary to particularize to this specific format except where noted. It should also
be mentioned that these signaling waveforms, the symbols, the noise, and the channel
responses may be taken to be complex (rather than real as is tacitly assumed here). We
will not need this generality here until Section 6.5, and so we will defer discussions
of needed modifications (which are minor) until then. A complex version of the above
model can be found in [46], which allows for two-dimensional signaling constellations,
such as QPSK and QAM, to fit within this model.

As an additional assumption, we assume that the ambient noise processes
np�·��p = 1� � � � �MR� are mutually independent white Gaussian processes with common
spectral height �2� We also assume that the transmitted symbols take values in a finite
alphabet � containing ��� elements. Beginning in Section 6.3, we will specialize this to
the binary antipodal case � = �−1�+1�� This is primarily for convenience, as most of
the results in this chapter hold for more general signaling alphabets.
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Finally, we note that MT �B and L in the above model could vary from user to user,
while L could also vary from antenna pair to antenna pair. However, again for simplicity,
we will assume them to be constants, as the extensions of the discussions in the chapter
to these non-constant cases are quite straightforward.

6.2.2 Canonical receiver structure

A basic MIMO multiuser receiver structure can be usefully decomposed into two parts:
a front-end (or hardware) part and a decision algorithm (or software) part. In practice,
these pieces may not be completely distinct, as much of the front-end may be implemented
in software; but for the purposes of exposition, it is a useful decomposition.

A canonical front-end for such a system can be derived based on the theory
of statistical inference. In particular, it is of interest to examine the so-called
likelihood function of the observations (6.1) given the collection of transmitted symbols:{
bk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1

. Owing to the assumption of white, Gaussian noise,
the logarithm of this likelihood function is given (up to a scalar multiple) by the Cameron–
Martin formula [29] to be

K∑
k=1

MT∑
m=1

B−1∑
i=0

bk�m�i�zk�m�i�− 1
2

K∑
k�k′=1

MT∑
m�m′=1

B−1∑
i�i′=0

bk�m�i�bk′�m′ �i′�C�k�m� i k′�m′� i′�� (6.9)

where, for k = 1� � � � �K�m = 1� � � � �MT � and i = 0� � � � �B−1�

zk�m�i� =
L∑

	=1

P∑
p=1

hk�m�p�	

∫ �

−�
rp�t�sk�m�t − �k�m�p�	 − iTs�dt� (6.10)

and for k�k′ = 1� � � � �K�m�m′ = 1� � � � �MT � and i� i′ = 0� � � � �B−1�

C�k�m� i k′�m′� i′� =
P∑

p=1

L∑
	�	′=1

hk�m�p�	hk′�m′�p�	′

×
∫ �

−�
sk�m�t − �k�m�p�	 − iTs�sk′�m′�t − �k′�m′�p�	′ − i′Ts�dt� (6.11)

Although the expression (6.9) may seem somewhat complicated, the key thing to note
about it is that the antenna outputs, r1�t�� r2�t�� � � � � rP�t�� enter into the likelihood function
only through the collection of “observables”

{
zk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1�

This
means that this collection of variables is a sufficient statistic [29] for making inferences about
the corresponding set of transmitted symbols

{
bk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1�

which
implies in turn that all attention can be restricted to this set of observables when designing
and building systems or algorithms for demodulating and detecting the transmitted symbols.
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Before turning to some types of algorithms that we might use for this purpose, it
is worthwhile to examine the structure of this set of observables a bit more closely. In
particular, it can be seen that (6.10) consists of three basic operations:

1. integration to obtain: xk�m�p�	�i� = ∫ �
−� rp�t�sk�m�t − �k�m�p�	 − iTs�dt

2. correlation to obtain: yk�m�	�i� =∑P
p=1 hk�m�p�	 xk�m�p�	�i� and

3. summation to obtain: zk�m�i� =∑L
	=1 yk�m�	�i��

The first operation is a matched filtering operation, so that we see that each received
antenna output is filtered with a filter that is matched to the waveform received on each
path from each transmit antenna in each symbol interval of each user. Thus, there are
K ×MR ×B ×L×MT matched filter outputs, which we can think of as being produced
by a bank of linear filters, each of which is sampled at the end of each signaling interval;
i.e., samples are taken at times iTs for i = 0� � � � �B−1�

The second operation, in which the matched filter outputs
{
xk�m�p�	�i�

}
are correlated

across the receive antenna array with the channel/antenna gains
{
hk�m�p�	

}
� can be viewed

as a form of beamforming, through which the spatial dimension afforded by the receive
array is exploited. Since the terms hk�m�p�	 also incorporate channel gains, this is not
strictly a simple beamforming operation in general, but it has a similar effect of coherently
collapsing the spatial dimension of the array. Note that, after beamforming, there are
K ×B×L×MT observables.

Finally, the third operation, in which the beamformer outputs
{
yk�m�	�i�

}
are added, is a

multipath combiner, or Rake operation through which the spatial dimension introduced by
the multipath channel is exploited. Typically a Rake receiver also includes a correlation
with the channel multipath coefficients. This is being done here as part of the beamforming
operation. So, the combination of the second and third operations is equivalent to
beamforming followed by Rake combining, and this combination might be decomposed
in other ways in practice. After this third operation, there are K ×MT ×B observables,
one for each symbol in the frame of each user.

These three operations constitute the (hardware) front-end of a canonical multiuser
receiver, as illustrated in Fig. 6.2. This front-end is sometimes known as a space–time
matched filter. Note that, although this structure may seem complicated, it is essentially
composed of standard communication-system components: matched filters, beamformers,
and Rake receivers.
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Figure 6.2. A canonical MIMO multiuser receiver structure.
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It is noteworthy that this formalism and general front-end structure encompasses three
standard interference-mitigation problems in communications. To discuss this point, it is
useful to define the parameter

� =
⌈

maxk�m�p�	

{
�k�m�p�	

}
Ts

⌉
� (6.12)

where 
x� denotes the smallest integer not less than x� � is the maximum delay spread of
the wireless channels (6.5) in units of symbol intervals, and is thus the maximum extent to
which symbols of a given user interfere with one another. Returning to the general receiver
structure, the case in which K = MT = 1 and � > 1 is the channel equalization problem
studied notably in the 1970s; the case MT = � = 1 and K > 1 is the traditional multiuser
detection problem, studied notably in the 1980s; and finally the case in which K = � = 1
and MT > 1 is the standard MIMO communications problem, exemplified by the BLAST
architecture studied notably in the 1990s. Combinations of these problems and refinements
on them have been mainstays of research and development in digital communications
throughout the past few decades and continuing to the present day. The applicability of
the results in this chapter to these various problems, both individually and jointly, is worth
keeping in mind in the subsequent discussions. Thus, the receiver architectures described
herein can be applied other than in the multiuser MIMO communications setting, and
many of them generalize solutions to the more particular cases noted above.

6.2.3 Basic MUD algorithms

As illustrated in Fig. 6.2, the KMT B outputs of the canonical multiuser front-end are
operated upon by a decision algorithm whose purpose is to infer the values of the KMT B

transmitted symbols
{
bk�m�i�

}
� This decision algorithm can take many forms, ranging

through the full toolbox of statistical signal processing: optimal algorithms based on
maximum-likelihood or maximum a posteriori probability criteria, linear algorithms,
iterative algorithms, and adaptive algorithms. Each of these techniques will be discussed
briefly in the following paragraphs, and counterparts to these algorithms are discussed in
Chapters 6.3 and 6.5. However, before discussing these types of algorithms, it is useful
to first examine the relationship between the observables

{
zk�m�i�

}
and the corresponding

symbols
{
bk�m�i�

}
to be inferred. To do so, it is convenient to collect the symbols into a

KMT B-long column vector b by sorting the symbols
{
bk�m�i�

}
first by symbol number,

then by user number, and finally by antenna number. That is,

b =

⎛⎜⎜⎜⎜⎝
b�0�

b�1�
���

b�N −1�

⎞⎟⎟⎟⎟⎠ (6.13)
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where

b�i� =

⎛⎜⎜⎜⎜⎝
b1�i�

b2�i�
���

bK�i�

⎞⎟⎟⎟⎟⎠ (6.14)

with

bk�i� =

⎛⎜⎜⎜⎜⎝
bk�1�i�

bk�2�i�
���

bk�MT
�i�

⎞⎟⎟⎟⎟⎠ � (6.15)

Similarly, we can denote by z the set of observations
{
zk�m�i�

}
collected into a KMT B-

long column vector indexed conformally with b� We can also define a KMT B ×KMT B

cross-correlation matrix R whose �n�n′�th element is given by the cross-correlation
C�k�m� i k′�m′� i′� from (6.11) where the indices are determined by matching with the
corresponding elements of b (or, equivalently, z); i.e., bn = bk�m�i� and bn′ = bk′�m′ �i′� with
n = �iK + �k−1��MT +m and n′ = �i′K + �k′ −1��MT +m′�

With these definitions, the observables and transmitted symbols can be related to one
another through the relationship

z = Rb+n� (6.16)

where n denotes a KMT B-long noise vector having the �
(
0��2R

)
distribution. (Here, 0

denotes a KMT B-long vector having all components equal to zero.)
As a simple example, we can consider the flat-fading, synchronous case, in which all

signals arrive at the receive array with the same symbol timing. This corresponds to the
discrete multipath model of (6.5) with L = 1 and �k�m�p�	 ≡ 0�

fk�m�p�t� = hk�m�p�1
�t�� (6.17)

In this case, the matrix R is a block-diagonal matrix having B identical blocks along
its diagonal, each of dimension KMT × KMT � These square sub-matrices contain the
cross-correlations between the signals received from the different antennas of the different
users. So, for example, in this case, the first block is given by

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt ×

P∑
p=1

hk�m�p�1hk′�m′�p�1� n�n′ = 1� 2� � � � �KMT � (6.18)

where the indices n and n′ correspond, respectively, to antenna m of user k and antenna
m′ of user k′, both in the zeroth symbol interval. This block is then repeated B times
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along the diagonal of R� This example is further illuminated by considering the single-
receive-antenna case (MR = 1), in which this first diagonal block simplifies to

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt Ak�mAk′�m′ � n�n′ = 1� 2� � � � �KMT � (6.19)

with Ak�m = hk�m�1�1 for k�m = 1� � � � �K�MT � n = �k − 1�MT + m� and n′ = �k′ − 1�

MT +m′� This block is thus of the form

ARA (6.20)

where A is a diagonal matrix having the received amplitudes A1�1� � � � �A1�MT
�A2�1� � � � ,

A2�MT
� � � � �AK�1� � � � �AK�MT

on its diagonal, and where R is the normalized cross-
correlation matrix of the signaling multiplex:

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt� n�n′ = 1� 2� � � � �KMT � (6.21)

For example, in the DS/CDMA case of (6.7) and (6.8), this normalized cross-matrix is
given by

Rn�n′ = 1
N

N−1∑
j=0

c
�j�
k�mc

�j�
k′�m′ � n�n′ = 1� 2� � � � �KMT  (6.22)

that is, the normalized cross-correlation matrix is determined by the cross-correlations
of the spreading sequences used by the system. The specific structure of this matrix
depends on how the spreading sequences are allocated to the various users’ antennas.
In some systems, all antennas of the same user use the same spreading code, while
in others, different spreading codes are used for all antennas. As an example, if the
spreading codes are so-called m-sequences (see, e.g., [48]), then Rn�n′ = 1 for antennas
using identical spreading codes and Rn�n′ = −1/N� for antennas (and users) using different
spreading codes.

In the general case in which the channel is not flat or the users are not synchronous, the
block diagonal form of this example becomes a block Toeplitz form, as will be discussed
in Section 6.3. From (6.16) we see that the basic relationship between z and b is that of
a noisy linear model, and so the basic problem to be solved by the decision algorithm
in Fig.6.2 is that of fitting such a model. At first glance, this appears to be a rather
straightforward problem, as the fitting of linear models is a classical problem in statistics.
However, the difficulty in this problem arises because the vector b to be chosen in this
fit has discrete-valued elements (e.g., ±1), and this significantly increases the complexity
of fitting this model (6.16).

In general, the most powerful techniques for data detection are maximum-likelihood
(ML) and maximum a posteriori probability (MAP) detection. ML detection makes
inferences about the transmitted symbols in (6.1) by choosing those symbol values that
maximize the log-likelihood function of (6.9). To get a sense of this task, it is useful to
use the compact notation of (6.16) to re-write the log-likelihood function (6.9) as

bT z − 1
2

bT Rb� (6.23)
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So, the ML symbol decision solve the optimization problem:

max
b∈�

[
bT z − 1

2
bT Rb

]
� (6.24)

where � = �KMT B� The optimization problem (6.24) is an integer quadratic program,
which is known to be an NP-complete computational problem. Since the size of the search
set � is potentially enormous at ���KMT B� solving this problem appears to be impossible.2

However, for most practical wireless channels, the matrix R has many zero elements
which reduces the complexity of this problem significantly. In particular, assuming that
the signaling waveforms �sk�m�·�� are limited in duration to a single symbol interval,
and given the finite multipath channel model (6.5), the matrix R is a banded matrix,
meaning that all of its elements are zero except on a certain number of diagonals; i.e.,
Rn�n′ = 0 if �n−n′� > KMT �� where again � is the maximum delay spread of the wireless
channels (6.5) in units of symbol intervals (6.12). This bandedness allows for a complexity
reduction from the order of ���KMT B needed to exhaustively search for the ML solution,
to the order of ���KMT � (per symbol) to search via dynamic programming (see, e.g., [30]).
Although in most wireless channels the maximum delay spread � is much less than the
frame length B� even this reduced complexity is prohibitive for most applications as the
exponent KMT � could still be fairly large in a typical situation with dozens of users, a
few antennas per user, and a few symbols of delay spread. The ML detector is sometimes
referred to as the jointly optimal (JO) detector.

MAP detection is applicable to situations in which the receiver knows a prior
probability distribution governing the values that the transmitted symbols may assume.
In this situation, it is possible to consider the posterior probability distribution of a given
symbol, conditioned on the observations, and to infer that value for each symbol that has
maximum a posteriori probability (APP). That is, a given symbol, say bn is detected as
b̂n according to the following criterion:

b̂n = arg
{

max
a∈�

P�bn = a�z�
}

� (6.25)

Using Bayes’ formula, we can write the APP as

P�bn = a�z� =
∑

b∈�n�a
	�z�b�w�b�∑

b∈� 	�z�b�w�b�
� (6.26)

were �n�a denotes the subset of � in which the nth coordinate is fixed at a, w�b� is the
prior probability of b� and 	�y�b� denotes the likelihood function of z given b �

	�z�b� = e�bT z− 1
2 bT Rb�/�2

� (6.27)

Commonly, it is assumed that the symbol vector b is uniformly distributed in its range
�; i.e., that

w�b� ≡ ���−KMT B� (6.28)

2 Typically, K might be dozens, MT several, and B hundreds.
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This assumption is equivalent to assuming that all the symbols are independent and
identically distributed (i.i.d.) from time to time, from user to user, and from antenna to
antenna, and that each symbol is chosen equiprobably among the elements of �. This
assumption is not always valid, as we will discuss below. However, when it is valid,
the prior distribution drops out of the computation of the APP, and the MAP criterion
becomes

b̂n = arg

{
max
a∈�

∑
b∈�n�a

	�z�b�

}
� (6.29)

(Note that the denominator in the APP (6.26) is irrelevant to the maximization since it
does not depend on the value of any individual symbol.) The MAP detector is sometimes
termed the individually optimal (IO) detector since it chooses each symbol decision
according to a single-symbol criterion.

Like the ML detector, the computation of symbol decisions using (6.29) is generally
prohibitively complex. In particular, we note that computation of the APP for each
individual symbol value involves a summation over ���KMT B−1 values of the symbol
vector. Also like ML detection, however, this complexity can be reduced via dynamic
programming to the order of ���KMT � operations per symbol when the channel has delay
spread of � symbol intervals [30, 39].

As we see from the above discussion, the basic complexity of ML (JO) or MAP (IO)
data detection is quite complex, on the order of ���KMT � operations per detected symbol.
So, the complexity grows with the number of users, the number of antennas, and the
channel length. It is noteworthy that this issue is present even in the single-user (K = 1)
case, the single-antenna case (MT = 1), or in the flat-fading case (� = 1). Only if all of
these conditions is missing do we get a simple detector structure, which reduces in either
the ML or MAP case to a simple quantization:

b̂n = Q�zn�� (6.30)

where the quantizer Q � R → �� For example, in the case of binary antipodal symbols
(� = �−1�+1�), we take Q to be the signum function:

Q�z� = sgn�z� =
{ −1 z < 0

+1 z ≥ 0�
(6.31)

Since data detection must be performed on a relatively limited computing platform
(i.e., a communications receiver) at essentially the rate of data transmission (i.e., tens to
thousands of kilobits per second), it is of interest to consider alternatives to the optimal
detectors described above. One family of such detectors are the linear multiuser detectors,
which seek to balance the simplicity of the simple detector (6.30) with the power of IO or
JO detection. In linear detection, this is accomplished by first multiplying the sufficient
statistic z by a suitably chosen square matrix, and then quantizing the result:

b̂n = Q�vn�� (6.32)
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Figure 6.3. Linear multiuser algorithm.

where

v = Mz (6.33)

and where M is a KMT B×KMT B matrix. This type of detector is illustrated in Fig. 6.3.
Various types of detectors can be implemented through different choices of the matrix
M� Three key ones can be described as follows.

Space–time matched filter/rake receiver

The simplest example of a linear detector arises from choosing M to be the KMT B ×
KMT B identity matrix I, in which case the linear detector reduces to the simple detector
of (6.30). This detector is a classical space–time matched filter receiver which is optimal
in an additive white Gaussian noise (AWGN) channel. A flaw of this receiver is that
it addresses only the ambient noise, while ignoring the cross-correlations between the
signals affecting different symbols; i.e., it ignores the off-diagonal elements of R�

Decorrelating (zero-forcing) receiver

Noting from (6.16) that the mapping from transmitted symbols b to the observables z is
in the form of a (square) linear transformation plus noise, a natural detection strategy is
a zero-forcing detector that eliminates the interference embodied in the cross-correlation
matrix R� Assuming that R is non-singular, this can be implemented as a linear detector
with M = R−1� The resulting detector is known as the decorrelator. The decorrelator thus
quantizes the variables v = R−1z� which are given by

v = b+R−1n� (6.34)

Note that, as expected, these transformed observables are free of (inter-user, inter-antenna,
and inter-symbol) interference. However, this receiver is the opposite extreme of the
matched filter receiver, in that it is tantamount to ignoring the ambient noise to suppress
the interference. Using standard properties of the multivariate Gaussian distribution, the
noise terms in (6.34) is distributed according to

R−1n ∼ �
(
0��2R−1

)
� (6.35)
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Depending on the structure of R the inverse R−1 can have very large diagonal values,
leading to noise enhancement and consequently a high error rate. (This problem is well-
known in the context of equalization [33].) The assumption that R be invertible is not
overly restrictive in general, as R is at least non-negative definite. However, there are
non-trivial situations in which R can be singular, in which case the decorrelator is not a
viable structure.

MMSE receiver

While the matched filter addresses the ambient noise and the decorrelator addresses
the interference, the minimum-mean-square-error (MMSE) multiuser detector effects a
compromise between these two impairments by selecting the transformation M such as
the vector v = Mz is an MMSE estimate of the symbol vector b� For this criterion to make
sense, it is necessary to provide a prior model for b� On making the common assumption
that the elements of b are of zero-mean and mutually uncorrelated, the MMSE detector
corresponds to the following choice of the matrix M:

M = (
R +�2I

)−1
(6.36)

where, as before, I denotes the KMT B×KMT B identity matrix. Note that, it is clear from
this form that the MMSE detector represents a compromise between the matched filter
(M = I) and the decorrelator (M = R−1), in which the action of each is tempered with the
action of the other. The relative mix of these two is controlled by the noise level (or more
properly by the signal-to-noise ratio (SNR), as the signal strength is incorporated into R).
When the interference is dominant (i.e., for high SNR), the MMSE detector mimics the
decorrelator, while when the ambient noise is dominant (i.e., for low SNR) it mimics the
matched filter. More generally, it balances between these two.

In general, the complexity of linear multiuser detectors is that of matrix inversion,
which is on the order of �KMT B�3� As with the ML and MAP solutions, this complexity
can be reduced by exploiting bandedness in the case of short delay spread. In some cases,
this complexity may also be amortized over many frames. However, for most wireless
systems, such amortization is not possible as the signaling waveforms, the user population,
or the channel parameters may change from frame to frame. Thus, although the order of
complexity here has been reduced from exponential to polynomial, complexity is still a
concern for practical systems. Moreover, in both linear and nonlinear cases, constraints
on the transmitted symbols imposed by space–time coding or temporal channel coding
can add to this complexity substantially [30].

For these reasons, a number of other techniques for multiuser reception have been
developed, with the objective of reducing computational complexity while maintaining
good performance in the presence of multiple-access interference. The principal technique
for doing this is to make use of iterative algorithms to fit the linear model (6.16). This
can be done either linearly with a final quantization (i.e., iterative linear detection),
or nonlinearly with inter-iteration quantization (sometimes known as interference
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cancellation). Section 6.3 will address this issue in some detail for multiuser MIMO
systems. When further complexity is introduced by channel coding, iterative algorithms
such as those described in Chapter 5 (in this case “turbo” style algorithms) again
allow for excellent performance with moderate complexity. This topic is addressed in
Section 6.4.

As noted above, another form of complexity is informational complexity, which arises
from the need to know the received waveforms

{
gk�m�p�·�

}
in the model (6.1) for the

received signal. There are two potential problems with this requirement. One is that the
channels intervening the transmitters and receiver are typically dynamic and behave in
an apparently random fashion. So, the channel parameters (assuming the channel can
be parameterized) are not readily known to the receiver. Another problem is that the
signaling waveforms of all users may also not be known to the receiver, because, for
example, the receiver may only be intended to receive a subset of the users. In either
case, it is thus necessary for the receiver to be able to adapt itself to those properties
of the signaling environment that it does not know. Receiver structures for this purpose
are described in Section 6.5. In preparation for this latter treatment, we turn briefly, in
the following subsection, to a discrete-time model for the received signals considered
above that is more suitable for developing and discussing such adaptive receiver
algorithms.

6.2.4 Digital receiver implementation

For receiver implementation, and particularly for the adaptive algorithms to be discussed
in Section 6.5, it is useful to consider a digital representation of the signals and observables
that we have described in the preceding paragraphs. This type of representation is typically
obtained by projecting the received signals (6.1) onto a finite set of functions arising
from a model in which there are finitely many degrees of freedom in the signals of
interest. (Most practical signaling methods have this property.) In this subsection, we will
particularize the above structures for this situation, and in particular will consider the
common case in which the signaling waveforms are in the DS/CDMA format, described
above and in Chapter 1. This model will then be used exclusively in Section 6.5. It
should be noted, however, that similar techniques can be applied in any system allowing
for a finite-degree-of-freedom model. A notable alternative example to DS/CDMA is
the case of orthogonal frequency-division multiple-access (OFDMA) systems, in which
the incoming signal can be decomposed along orthogonal sub-carrier signals using the
discrete Fourier transform (DFT).

Recall that, in the DS/CDMA format, the signaling waveforms used by all transmitters
are in the form (6.7). Here, we consider this format in the particular case where the chip
waveform is the unit pulse of (6.8). For this type of system, a natural set of observables
can be obtained by projecting the received signals of (6.1) onto time shifts of the chip
waveform ��·�:

rp�j� =
∫ �

�
rp�t���t − jTs�dt =

∫ �j+1�Tc

jTc

rp�t�dt� j = 0� 1� � � � � (6.37)
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If the system delays are all integer multiples of a chip interval (this is termed the “chip-
synchronous” case), then no information is lost in this operation, as the outputs of the
matched filter bank of Fig. 6.2 and hence the sufficient statistic z can be extracted from
these observables. In the chip-asynchronous case, inferential information may be lost in
performing this operation. However, this loss is often minimal and the signal-processing
advantages of reducing the observations to a discrete-time sequence outweigh this. (An
alternative for the chip-asynchronous case is to integrate over shorter time intervals and
thus effectively to over-sample the signal; however, we will not consider this level of
detail here. For further discussion, see [46].)

As noted above, in the chip-synchronous case, the sufficient statistic z can be written
as a function of the observables

{
rp�j�

}
and thus the ML and MAP detectors are functions

of these observables, as are the linear detectors described in the preceding subsection. In
the latter case it is sometimes convenient to combine all of the linear processing of the
receiver front end and the decision algorithm of Fig. 6.2 into a single linear transformation,
in which case symbol detection is of the form

b̂k�m�i� = Q

(
MR∑
p=1

∑
j

w
�j�
k�m�p�i�rp�j�

)
� (6.38)

where the coefficients
{
w

�j�
k�m�p�i�

}
are chosen appropriately. This structure is one that

can be adapted using standard adaptive algorithms to adjust the weighting coefficients.
Although there are a number of issues surrounding such an adaptation, such as the
decomposition of spatial and temporal combining, this structure is the essence of many
adaptive algorithms for multiantenna, multiuser receiver design. An extensive treatment
of this problem can be found in [46], and we will consider particularly the MIMO case
in Section 6.5.

6.3 Iterative space–time multiuser detection

Advanced signal processing such as multiuser detection, typically improves system
performance at the cost of computational complexity. As noted in Section 6.1, the optimal-
maximum-likelihood multiuser detector has prohibitive computational requirements for
most current applications, and consequently a variety of linear and nonlinear multiuser
detectors have been proposed to ease this computational burden while maintaining
satisfactory performance [38, 46]. However, in many situations where the combined
system has large dimensions (e.g., large array size, large delay spread, large user
population, and combinations of these conditions), direct implementation of these sub-
optimal techniques still proves to be very complex. In this section, we discuss iterative
techniques for efficient space–time multiuser detection in MIMO systems [7, 8, 45].
Iterative methods are among the most practical techniques for multiuser detection. For
example, an implementation for 3G cellular systems is described in [19].
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6.3.1 System model

As noted in Section 6.1, we can restrict attention to the following system model (i.e., Eq.
(6.16)):

z = Rb+n� (6.39)

where R is the cross-correlation matrix, b is the symbol vector, and n is the background
noise at the input to the decision algorithm of Fig. 6.2. An optimal ML space–
time multiuser detector will maximize the log-likelihood function of (6.23), and the
computational complexity of this maximization is a major concern, particularly when the
system dimension is large. In the following, we will use a multipath CDMA channel
for illustration purpose, but the techniques discussed can be readily applied to other
equivalent MIMO scenarios as well. In principle, the computational complexity of ML
detection grows exponentially with the size of R, which for a multipath MIMO multiuser
channel is proportional to the number of users K� the number of transmit antennas MT �

and the data frame length B. As the data frame length is typically much larger than the
multipath delay spread �, R exhibits a block-Toeplitz structure exemplified as

R ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R�0� R�1� · · · R���

R�−1� R�0� R�1� · · · R���

R�−�� · · · R�0� · · · R���

R�−�� · · · R�−1� R�0� R�1�

R�−�� · · · R�−1� R�0�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (6.40)

As noted in Section 6.1, dynamic programming can be used to reduce the computational
complexity of ML detection to O����KMT �� per transmitted symbol. This computational
requirement is still prohibitive except for very small values of ���, MT � �, and K.

6.3.2 Iterative linear space–time multiuser detection

In this section, we consider the application of iterative processing to the implementation
of various linear space–time multiuser detectors in algebraic form. After an introduction
to the general form of linear space–time multiuser detection (ST MUD), we go on to
discuss two general approaches to solving large systems of linear equations iteratively.
Subsequent sections will treat nonlinear iterative methods.

As noted in Section 6.1, linear multiuser detectors in the framework of (6.39) are of
the form

b̂ = sgn�Re�Mz��� (6.41)

where M is a linear detection matrix. For the linear decorrelating (zero-forcing) detector,
this matrix is given by

Md = R−1� (6.42)
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while for the linear minimum-mean-square-error (MMSE) detector, we have

Mm = �R +�2I�−1� (6.43)

Direct inversion of the matrices in (6.42) and (6.43) (after exploiting the block Toeplitz
structure) is of complexity O��KMT �2B�� per user per symbol.

The linear multiuser detection estimates of (6.41) can be seen as the solution of a
linear equation

Cv = z� (6.44)

with C = R for the decorrelating detector and C = R+�2I for the MMSE detector. Jacobi
and Gauss–Seidel iteration are two common low-complexity iterative schemes for solving
linear equations such as (6.44) [14]. If we decompose the matrix C as C = CL +D+CU ,
where CL denotes the lower triangular part, D denotes the diagonal part, and CU denotes
the upper triangular part, then Jacobi iteration can be written as

vm = −D−1�CL +CU �vm−1 +D−1z� (6.45)

and Gauss–Seidel iteration is represented as

vm = −�D+CL�−1CU vm−1 + �D+CL�−1z� (6.46)

From (6.45), Jacobi iteration can be seen to be a form of linear parallel interference
cancellation, the convergence of which is not guaranteed in general. One of the sufficient
conditions for the convergence of Jacobi iteration is that D − �CL + CU � be positive
definite. In contrast, Gauss–Seidel iteration, which (6.46) reveals to be a form of linear
serial interference cancellation, converges to the solution of the linear equation from any
initial value, under the mild conditions that C be symmetric and positive definite, which
is always true for the MMSE detector.

Another general approach to solving the linear equation (6.44) involves the use of
gradient methods, among which are steepest descent and conjugate gradient iteration [14].
Note that solving (6.44) is equivalent to minimizing the cost function

��v� = 1
2

vHCv −vHz� (6.47)

The idea of gradient methods is to successively minimize this cost function along a set
of directions �pm� via

vm = vm−1 +�mpm� (6.48)

with

�m = pH
mqm−1/pH

mCpm� (6.49)
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and

qm = −���v��v=vm
= z−Cvm� (6.50)

Different choices of the set �pm� give different algorithms. If we choose the search
direction pm to be the negative gradient of the cost function qm−1 directly, this algorithm is
the steepest descent method, global convergence of which is guaranteed. The convergence
rate may be prohibitively slow, however, due to the linear dependence of the search
directions, resulting in redundant minimization. If instead we choose the search direction
to be C-conjugate as follows

pm = arg min
p∈�⊥

m−1

�p−qm−1�� (6.51)

where �m = span�Cp1� · · · � Cpm�, then we have the conjugate gradient method, whose
convergence is guaranteed and performs well when C is close to identity either in the
sense of being a low-rank perturbation or in the sense of a norm. The computational
complexity of Gauss–Seidel and conjugate gradient iteration are similar, which is on the
order of O�KMT �m� per user per symbol, where m is the number of iterations. The
numbers of iterations required by the Gauss–Seidel and conjugate gradient methods to
achieve a stable solution to the associated large system equations have been found to be
of the same order in simulations.

6.3.3 Iterative nonlinear space–time multiuser detection

Nonlinear multiuser detectors are often based on bootstrapping techniques, which are
iterative in nature. In this section, we will consider the iterative implementation of
decision-feedback multiuser detection in the space–time domain. We also discuss briefly
the implementation of multistage interference canceling ST MUD, which serves as a
reference point for introducing a new expectation-maximization-(EM-) based iterative ST
MUD, to be discussed in the next subsection. For simplicity, we now restrict the signaling
alphabet to the binary antipodal set: � = �−1�+1�.

Cholesky iterative decorrelating decision-feedback ST MUD

Decorrelating decision-feedback multiuser detection (DDF MUD) exploits the Cholesky
decomposition R = FHF, where F is a lower triangular matrix, to determine the
feedforward and feedback matrix for detection via the algorithm

b̂ = sgn�F−Hz− �F−diag�F��b̂��� (6.52)

The discussion here applies readily to the implementation of MMSE decision-feedback
multiuser detection as well.

Suppose we are interested in detecting symbol bn. The purpose of the feedforward
matrix F−H is to whiten the noise and decorrelate against the “future users”
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�sn+1� · · · � sKMT B�; while the purpose of the feedback matrix �F − diag�F�� is to cancel
the interference from “previous users” �s1� · · · � sn−1�. Note that the performance of DDF
MUD is not uniform. While the first “user” is demodulated by its decorrelating detector,
the last detected “user” will essentially achieve its single-user lower bound providing
the previous decisions are correct. There is another form of Cholesky decomposition, in
which the feedforward matrix F is upper triangular. If we were to use this form instead
in (6.52), then the multiuser detection would operate in the reverse order, as would
the performance. The idea of Cholesky iterative DDF ST MUD is to employ these two
forms of Cholesky decomposition alternatively as follows. For lower triangular Cholesky
decomposition F1, first feedforward filtering is applied as

z1 = F−H
1 z� (6.53)

where it is readily shown that z1� i = F1� iibi +
∑i−1

j=1 F1� ijbj + n1� i, i = 1� � � � �KMT B,
with n1�i, i = 1� � � � �KB, being independent and identically distributed (i.i.d.) Gaussian
noise components with zero-mean and variance �2. We can see that the influence of
the “future users” is eliminated and the noise component is whitened. Then we use the
feedback filtering to cancel the interference from “previous users” as

u1 = z1 − �F1 −diag�F1��b̂� (6.54)

where it is easily seen that u1�i = z1� i −
∑i−1

j=1 F1� ij b̂j ≈ F1� iibi +n1� i, i = 1� � � � �KMT B.
Similarly, for upper triangular Cholesky decomposition F2, we have

z2 = F−H
2 z� (6.55)

where z2� i = F2� iibi +
∑KB

j=i+1 F2� ijbj +n2� i, i = KMT B� � � � � 1, and

u2 = z2 − �F2 −diag�F2��b̂� (6.56)

where u2� i = z2� i −
∑KMT B

j=i+1 F2� ij b̂j ≈ F2� iibi +n2� i, i = KMT B� � � � � 1. After the above
operations are (alternately) executed, the following log-likelihood ratio is calculated:

Li = 2 Re�F∗
1/2� iiu1/2� i�/�2� (6.57)

where F1/2 and u1/2 are used to give a shorthand representation for both alternatives. Then
the log-likelihood ratio is compared with the last stored value, which is replaced by the
new value if the new one is more reliable, i.e.,

Lstored
i =

{
Lstored

i if �Lstored
i � > �Lnew

i ��
Lnew

i otherwise�
(6.58)

Finally we make soft decisions b̂i = tanh�Li/2� at an intermediate iteration, which has
been shown to offer better performance than making hard intermediate decisions, and
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Figure 6.4. Cholesky iterative decorrelating decision-feedback ST MUD.

make hard decisions b̂i = sgn�Li� at the last iteration. Several iterations are usually enough
for the system to achieve an improved steady state without significant oscillation. The
structure of Cholesky iterative decorrelating decision-feedback ST MUD is illustrated in
Fig. 6.4.

The Cholesky factorization of the block Toeplitz matrix H (see (6.40) can be performed
recursively. For � = 1 we have

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 1�0� 0 · · · 0 0

F 2�1� F 2�0� · · · 0 0

0

���

0 0 · · · FM�1� FM�0�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (6.59)

where the element matrices are obtained recursively as follows:

V B = R�0�� (6.60)

and, for i = B�B − 1� � � � � 1, we perform Cholesky decomposition of the reduced-rank
matrix V i to get obtain Fi�0�

V i = FH
i �0�F i�0�� (6.61)

while Fi�1� is obtained as

Fi�1� = �FH
i �0��−1R�−1�� (6.62)

Finally we have

V i−1 = R�0� −R�1�V −1
i R�−1� (6.63)

for use in the next iteration. The extension of this algorithm to � > 1 is straightforward
and is omitted here.
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Multistage interference canceling ST MUD

Multistage interference cancellation (IC) is similar to Jacobi iteration except that hard
decisions are made at the end of each stage in place of the linear terms that are fed back
in (6.45). Thus we have

b̂m = sgn�z− �CL +CU �v̂m−1� = sgn�y − �H −D�b̂m−1�� (6.64)

The underlying rationale for this method is that the estimator–subtracter structure exploits
the discrete-alphabet property of the transmitted data streams. This nonlinear hard-
decision operation typically results in more accurate estimates in high SNR situations.
Although the optimal decisions are a fixed point of the nonlinear transformation (6.64),
there are problems with the multistage IC such as a possible lack of convergence and
oscillatory behavior. In the following section we consider some improvements on space–
time multistage IC MUD. Except for the Cholesky factorization, the computational
complexity for Cholesky iterative DDF ST MUD is the same as multistage IC ST MUD,
which is essentially the same as that of linear interference cancellation, i.e., O�KMT �m�

per user per symbol.

6.3.4 EM-based iterative space–time multiuser detection

In this section, expectation-maximization-based multiuser detection is introduced to avoid
the convergence and stability problem of the multistage IC MUD.

The EM algorithm [10] provides an iterative solution of maximum–likelihood
estimation problems such as

�̂�Z� = arg max
�∈�

log f�Z��� (6.65)

where � ∈ � are the parameters to be estimated, and f�·� is the parameterized probability
density function of the observable Z. The idea of the EM algorithm is to consider a
judiciously chosen set of “missing data” W to form the complete data X = �Z� W� as an
aid to parameter estimation, and then to iteratively maximize the following new objective
function:

Q���� = E
[
log f�Z� W ���Z = z�

]
� (6.66)

where it is worth emphasizing again that � are the parameters in the likelihood function,
which are to be estimated, while � represent a priori estimates of the parameters from the
previous iterations. Together with the observations, these previous estimates are used to
calculate the expected value of the log-likelihood function with respect to the complete
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data X = �Z� W�. To be specific, given an initial estimate �0, the EM algorithm alternates
between the following two steps:

1. E-step, where the complete-data sufficient statistic Q���i� is computed;
2. M-step, where the estimates are refined by �i+1 = arg max�∈�

Q���i�.

It has been shown that EM estimates monotonically increase the likelihood, and converge
stably to an ML solution under certain conditions [10].

An issue in using the EM algorithm is the tradeoff between the ease of implementation
and the convergence rate. One would like to add more “missing data” to make the
complete data space more informative so that the implementation of the EM algorithm is
simpler than the original setting (6.65). However, the convergence rate of the algorithm
is inversely proportional to the Fisher information contained in the complete data space.
This tradeoff is essentially due to the simultaneous updating nature of the M-step in the
original EM algorithm [11]. Consequently, the space-alternating generalized EM (SAGE)
algorithm has been proposed in [11] to improve the convergence rate for multidimensional
parameter estimation. The idea is to divide the parameters into several groups (subspaces),
with only one group being updated at each iteration. Thus, we can associate multiple
less-informative “missing data” sets to improve the convergence rate while maintaining
the overall tractability of optimization problems. For each iteration, a subset of parameters
�Si

and the corresponding missing data ZSi are chosen, which is called the definition step.
Then similarly to the EM algorithm, in the E-step we calculate

QSi��Si
�i� = E

[
log f�Z� WSi �Si

��i

S̃i
�Z = z�i�

]
� (6.67)

where �S̃i
denotes the complement of �Si

in the whole parameter set; in the M-step, the
chosen parameters are updated while the others remain unchanged as⎧⎨⎩�i+1

Si
= arg max

�Si
∈�Si

QSi ��Si
�i��

�i+1
S̃i

= �i

S̃i
�

(6.68)

where �Si
denotes the restriction of the entire parameter space to those dimensions indexed

by Si. Like the traditional EM estimates, the SAGE estimates also monotonically increase
the likelihood and converge stably to an ML solution under appropriate conditions [11].

The EM algorithm is applied to space–time multiuser detection as follows. Suppose
we would like to detect a bit bn, n ∈ �1� 2� � � � �KMT B�, which can be viewed as the
parameter of interest, while the interfering users’ bits bk̃ = �bj�j �=n are treated as the
missing data. The complete-data sufficient statistic is given by (Rnm is the element of
matrix R at the kth row and mth column)

Q�bn bi
n� = 1

2�2

(
−Rnnb

2
n +2bn

(
zn −∑

m�=n

Rnmb̃m

))
� (6.69)
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with

b̃m = E
[
bm�Z = z bn = bi

n

]= tanh
(

Rmm

�2
�zm −Rmnb

i
n�

)
� (6.70)

which forms the E-step of the EM algorithm. The M-step is given by

bi+1
n = arg max

bn∈�
Q�bn bi

n� =
⎧⎨⎩sgn�zn −∑m�=n Rnmb̃m�� � = �±1��

1
Rnn

�zn −∑m�=n Rnmb̃m�� � = R�
(6.71)

where � = R (the set of real numbers) means a soft decision is needed, e.g., at an
intermediate stage. Note that in the E-step (6.70), interference from users j �= n is not taken
into account, since these are treated as “missing data.” This shortcoming is overcome by
the application of the SAGE algorithm, where the symbol vector of all users b = �bj�

KMT B
j=1

is treated as the parameter to be estimated and no missing data is needed. The algorithm
is described as follows: for i = 0� 1� � � � �

1. Definition step: Si = 1+ �i mod KMT B�

2. M-step: {
bi+1

n = sgn�zn −∑m�=n Rnmbi
m�� n ∈ Si�

bi+1
m = bi

m� m � Si�
(6.72)

Note that there is no E-step since there are no missing data, and interference from all
other users are recreated from previous estimates and subtracted. The resulting receiver
is similar to the multistage interference canceling multiuser receiver (see (6.64)), except
that the symbol estimates are made sequentially rather than in parallel. However, with this
simple concept of sequential interference cancellation, the resulting multiuser receiver is
convergent, guaranteed by the SAGE algorithm. The multistage interference canceling
multiuser receiver discussed in Section 6.3.3, on the other hand, does not always converge.
The computational complexity of this SAGE iterative ST MUD is also O�K�m� per user
per symbol.

6.3.5 Simulation results

In this section, the performance of the above described space–time multiuser detectors is
examined through simulations on a CDMA example. We assume a K = 8-user CDMA
system with spreading gain N = 16. Each user, equipped with one single antenna, travels
through L = 3 paths before it reaches a base station (or access point), equipped with a
uniform linear array with MR = 3 elements and half-wavelength spacing. The maximum
delay spread is set to be � = 1. The complex gains and delays of the multipath and the
directions of arrival are randomly generated and kept fixed for the whole data frame. This
corresponds to a slow fading situation. The spreading codes of all users are randomly
generated and kept fixed for all the simulations.
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Figure 6.5. Performance comparison of BER versus SNR for five space–time multiuser receivers.

First we compare the performance of various space–time multiuser receivers and
some single-user space–time receivers in Fig. 6.5. Five receivers are considered: the
single-user matched filter (matched filter), the single-user MMSE receiver (SU MMSE),
the multiuser MMSE receiver (MU MMSE) implemented using the Gauss–Seidel or
conjugate gradient iteration method (the performance is the same for both), the Cholesky
iterative decorrelating decision-feedback multiuser receiver (Cholesky iterative MU DF),
and the multistage interference canceling multiuser receiver (MU multistage IC). An
interested reader can refer to [45] for derivations of the single-user-based receivers. The
performance is evaluated after the iterative algorithms converge. Owing to the poor
convergence behavior of the multistage IC MUD, we measure its performance after three
stages. The single-user lower bound is also depicted for reference. We can see that the
multiuser approach greatly outperforms the single-user-based methods; nonlinear MUD
offers further gain over the linear MUD; and the multistage IC seems to approach the
optimal performance (not always though, as is seen in Fig. 6.7(c)), when it has good
convergence behavior. Note that due to the introduction of spatial (receive antenna) and
spectral (RAKE combining) diversity, the SNR for the same BER is substantially lower
than that required by normal receivers without these methods.
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Figure 6.6. Performance comparison of decision-feedback ST MUD and Cholesky iterative ST
MUD.

Figure 6.6 shows the performance of Cholesky iterative decorrelating decision-
feedback ST MUD for two users, which is also typical for other users. We find that the
Cholesky iterative method offers uniform gain over its non-iterative counterpart. This
gain may be substantial for some users and negligible for others due to the individual
characteristics of signals and channels.

Finally, we show the advantage of the EM-based (SAGE) iterative method over the
multistage IC method with regard to the convergence of the algorithms. From Fig. 6.7
we find that, while the multistage interference canceling ST MUD converges slowly and
exhibits oscillatory behavior, the SAGE ST MUD converges quickly and outperforms the
multistage IC method. The oscillation of the performance of the multistage IC corresponds
to performance degradation as no statistically best iteration number can be chosen.

0 1 2 3 4 5

10−4

10−3

10−2

User #7

SNR (dB)

B
it 

er
ro

r 
ra

te

mstage 1
mstage 2
mstage 3
mstage 4
mstage 5
sage 1
sage 2
sage 3

0 1 2 3 4 5 6 7 8
10−4

10−3

10−2

10−1

100
User #8

SNR (dB)
(a) (b)

B
it 

er
ro

r 
ra

te

mstage 1
mstage 2
mstage 3
mstage 4
mstage 5
sage 1
sage 2
sage 3

Figure 6.7. Performance comparison of convergence behavior of multistage interference canceling
ST MUD and EM-based iterative ST MUD.
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6.3.6 Summary

In this section, we have considered several iterative space–time multiuser detection
schemes. It is shown that iterative implementation of these linear and nonlinear multiuser
receivers approaches the optimum performance with reasonable complexity. Among these
iterative implementations the SAGE space–time multiuser receiver outperforms the others
while requiring similar complexity. While we focus on single-cell communications, all
of the techniques discussed here can be extended to the multicell scenario [6], where the
requirement for efficient algorithms only become more stringent.

6.4 Multiuser detection in space–time coded systems

With the invention of powerful space–time coding techniques in the late 1990s as
described in Chapter 4, there has been a growing interest in adapting these to multiple-
access communication systems. Although early space–time code construction was
concerned with single-user channels [1, 36, 37] (see Chapter 4), subsequently it has been
shown that most of the performance criteria developed can still be used effectively in
multiuser channels [21]. Space–time block codes have been applied to multiple-access
communication systems in [9, 24, 25]. The receivers that explicitly take into account the
structure of the space–time block codes have been shown to perform well in this context
[23, 27].

Here we consider multiuser detection for space–time coded multiple-access systems.
As we will see, the joint maximum-likelihood decoder for such systems has prohibitively
large computational complexity, motivating a search for low-complexity, sub-optimal
detector structures. We investigate several partitioned space–time multiuser detectors that
separate the multiuser detection and space–time decoding into two stages. Both linear
and nonlinear schemes are considered for the first stage of the partitioned receiver and
the performance versus complexity trade-offs are discussed.

Inspired by the development of turbo codes [3, 4] that were discussed in Chapter 5,
various iterative detection and decoding schemes for multiple-access channels have been
proposed in recent years. These proposals show that in general iterative receivers can
offer significant performance improvements over their non-iterative counterparts. A good
example is [44], in which a soft interference canceling turbo receiver was proposed
for convolutionally coded CDMA. The performance results obtained via simulations
showed that it is possible to achieve near single-user performance with only a few
iterations in an asynchronous, multipath CDMA channel. In this section, among others,
we will show a generalization of this idea to a space–time coded CDMA system as in
[20, 21, 26].

The development of turbo multiuser receivers for space–time coded systems here
closely follows that of [21]. In particular, we assume a multiple-access system based
on DS-CDMA signaling as opposed to space-division multiple-access as in [26]. There
are two main implementations of CDMA-based multiple transmit antenna systems. One
involves assigning a single spreading code to each user so that the signals transmitted
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from all its antennas are spread by the same code. We will assume a design of this
type. In an alternative implementation, each user is assigned multiple spreading codes
so that the signals transmitted from different antennas are spread by different codes
[9, 17, 18, 28].

Low-complexity multiuser receiver structures for space–time coded systems have been
described in [26, 47]. For example, a multi-stage receiver suitable for a system employing
both turbo and space–time block coding was proposed in [47]. Turbo receiver structures
for multiple-access systems with both space–time block and trellis coded systems have
been presented in [20, 21, 26]. In general these turbo receivers operate by partitioning the
detection and decoding into two separate stages. In the first stage, a multiuser detection
technique is employed and a set of soft outputs is generated for each user. The next stage
of the receiver is equipped with a bank of decoders (either channel, space–time or both)
that decode the individual user channel or space–time codes (or both). These decoders
then generate an updated set of soft information about the code symbols which can then
be fed back to the first stage to be used as a priori information at the next iteration. The
process continues by repeating the same steps.

In Section 6.4.1 we present a simplified signal model for a space–time coded,
synchronous multiuser system, while in Section 6.4.2 we derive the jointly optimal
ML detector/decoder. In Section 6.4.3, we consider low-complexity receiver structures
for space–time coded multiuser systems by separating the multiuser detection stage
from the space–time decoder stage. We consider both linear and nonlinear multiuser
detection stages. In particular, in this section, we consider partitioned space–time
multiuser receivers based on the linear decorrelator and on the linear MMSE
estimator, as well as two partitioned receiver structures based on nonlinear interference
canceling multiuser detection stages. Section 6.4.4 details a soft-input soft-output (SISO)
maximum a posteriori (MAP) decoder [2] that can be used as the second stage
of the interference canceling receivers (for more details on MAP decoding refer to
Chapter 5).

6.4.1 Signal model

Consider a system of K independent users, each employing an independent space–
time code with MT transmitter antennas. The binary information sequence �dk�n���

n=0

of user k, for k = 1� � � � �K, is first encoded by a space–time encoder, and then
the encoded data are divided into MT streams by passing them through a serial-
to-parallel converter. (For simplicity we assume that all the users employ the
same number of transmitter antennas, although generalizing to different numbers of
transmitter antennas is straightforward.) The code bits in each parallel stream are block
interleaved, BPSK symbol-mapped, modulated by an appropriate signature waveform,
sk�t�, and are transmitted simultaneously from the MT transmitter antennas. It should
be emphasized that throughout this section we assume that user k employs the same
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signaling waveform sk�t� in all its MT transmitter antennas (i.e., sk�m�t� = sk�t� for
m = 1� � � � �MT ).

The kth user’s transmitted signal at time t can thus be written as3

xk�t� = Ak√
MT

B−1∑
i=0

MT∑
m=1

bk�m�i�sk�t − iT�� (6.73)

where �bk�m�i� ∈ �+1�−1��B−1
i=0 is the symbol-mapped space–time encoder output of the

kth user on transmitter antenna m at time i, and B is the number of channel symbols
per user in a data frame which is assumed to be the same as the length of a space–
time codeword. We assume that the signature waveform of each user is supported only
on the interval 0 ≤ t ≤ T , and is normalized so that

∫ T

0 s2
k�t�dt = 1, for k = 1� � � � �K.

Thus, A2
k represents the transmitted energy per bit of user k, independent of the number

of transmitter antennas. Note that the model of (6.73) is otherwise general with regard
to the signaling format, and so the following results can be applied to any signaling
scheme. However, we are interested here in non-orthogonal signaling schemes such as
code-division multiple-access (CDMA).

Assuming that the fading is sufficiently slow to be constant over a received data frame,
the corresponding signal received at a single receive antenna can be written as

r�t� =
B−1∑
i=0

K∑
k=1

Ak√
MT

MT∑
nT =1

hk�mbk�m�i�sk�t − iT�+n�t� (6.74)

where n�t� is complex white Gaussian noise with zero-mean and variance N0/2 per
dimension. The complex fading coefficient, hk�m, between the kth user’s mth transmitter
antenna and the receiver, is assumed to be a zero mean unit variance complex Gaussian
random variable with independent real and imaginary parts. Equivalently, hk�m has uniform
phase and Rayleigh amplitude; i.e., the so-called Rayleigh fading model. These fading
coefficients are assumed to be mutually independent with respect to both k and m. In what
follows, we assume that all parameters of the model (6.74) are known to the receiver.
Only the transmitted symbols are unknown.

6.4.2 Joint ML multiuser detection and decoding for space–time coded
multiuser systems

We start by considering the joint maximum-likelihood detection and decoding of the
symbols in the model of Section 6.4.1. To do so, we first establish some notation.

3 Elsewhere in this chapter, we have assumed that the transmitted signals are normalized, and have absorbed
the transmitter amplitude into the channel response. In this section, we will decompose the channel response to
explicitly show the transmitted amplitude as a separate term, similarly to (6.20).
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As before, we denote the kth user’s transmitted symbol vector (on MT antennas) at
time i by the vector bk�i� = �bk�1�i�� � � bk�MT

�i��T. Define, the BK ×MT K joint codeword
matrix D, of all users, as

D =

⎡⎢⎢⎢⎣
D1 0B×MT

� � � 0B×MT

0B×MT
D2 � � � 0B×MT

���
���

� � �
���

0B×MT
0B×MT

� � � DK

⎤⎥⎥⎥⎦ (6.75)

where we have also introduced the notation, for k = 1� � � � �K,

Dk =
⎡⎢⎣ bT

k�0�
���

bT
k�B−1�

⎤⎥⎦ � (6.76)

Note that Dk ∈ �+1�−1�B×MT , for k = 1� � � � �K. We will call the joint codeword, D, of
all users, the super codeword. The space–time coded output from all the users at time i

is the K ×KMT matrix denoted as D�i�, where

D�i� =

⎡⎢⎢⎢⎣
bT

1�i� 01×MT
� � � 01×MT

01×MT
bT

2�i� � � � 01×MT

���
���

� � �
���

01×MT
01×MT

� � � bT
K�i�

⎤⎥⎥⎥⎦ � (6.77)

The fading coefficients of the kth user can be collected into a vector
hk = [

hk�1� � � � � hk�MT

]T ∈ C
MT ×1, and we can combine all these fading coefficient

vectors into one vector h = [
hT

1 � � � hT
K

]T ∈ C
KMT ×1. With this notation, the output,

z�i� = �z1�i�� � � zK�i��T, of a bank of K matched filters (each matched to a user signature
waveform sk�t�) at the ith symbol interval can be written as

z�i� = RAD�i�h +��i� (6.78)

where the diagonal matrix A is defined as A = diag� A1√
MT

� � � � � AK√
MT

�, R is the (normalized)

cross-correlation matrix of the users’ signature waveforms and ��i� ∼ � �0�N0R�.
Let us denote the B-vector of the kth matched filter outputs corresponding to the

complete received codeword as zk = �zk�0�� � � zk�B−1��T and the BK-vector of outputs
of all the matched filters corresponding to a complete codeword as z = �z1� � � zK�T. Then
we can write

z = �RA⊗ IB�Dh +� (6.79)

where � ∼ � �0�N0R ⊗ IB�, IB denotes the B × B identity matrix and ⊗ denotes the
Kronecker product. The joint ML multiuser decision rule for the space–time coded CDMA
system is then given by

D̂ = arg max
D

p�z�D� h�

= 2 Re
{
hHDT�A⊗ IB�z

}−hHDT�A⊗ IB��R ⊗ IB��A⊗ IB�Dh
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where the maximization is over all the valid super codewords and we have used the fact
that for general matrices A, B, C, and D we have, �A⊗B��C⊗D� = �AC⊗BD� provided
the dimensions of the matrices A� B� C, and D are such that the various matrix products
are well-defined [22]. Note that this joint ML detector and decoder searches over a super
trellis made up by combining all the users’ space–time code trellises.

The asymptotic performance of a space–time code can be quantified by the so-called
diversity gain. The diversity gain determines the asymptotic slope of the probability of
error curve on a log scale. As discussed in Chapter 4, in order to maximize the diversity
gain for a Rayleigh fading channel one should design the space–time code such that the
minimum rank of the codeword difference matrix for any two codewords is as large as
possible [15, 36]. When this minimum rank over all pairs of distinct codewords is the
largest possible value MT , then the space–time code is said to achieve full-diversity.

In [21], it was shown that the space–time codes designed to achieve full-diversity in
single-user channels will also be able to achieve full-diversity asymptotically in CDMA
multiuser channel, at least when the SNR is sufficiently large. That is, if the minimum rank
of all the valid error codewords Ek = Dk − D̂k is rk (where rk ≤ MT ), then the asymptotic
diversity advantage of the kth user’s space–time code in the multiuser channel is equal to
rk. In particular, if the kth user’s space–time code were to achieve the full-diversity MT in
a single-user environment, then it will also achieve the full-diversity MT in the multiuser
channel, at least asymptotically in SNR, as long as the signature cross-correlation matrix
is non-singular.

Figure 6.8 shows the performance results for the joint maximum-likelihood detector
in a space–time coded, synchronous, multiple-access system with two equal-power users
having a cross-correlation of 0�4. We set the number of receiver antennas to one, ignoring
the possibility of exploiting receiver diversity since our primary concern here is to
investigate the transmitter diversity schemes. In Fig. 6.8 we have shown the joint ML
receiver performance results for two systems: one with two transmit antennas and another
with four transmit antennas. We make use of full-diversity BPSK space–time trellis
codes with constraint length � = 5, given in [16], for both systems. Specifically, we
employ space–time codes based on the underlying rate-1/2 convolutional code with octal
generators �46� 72�, and the underlying rate-1/4 convolutional code with octal generators
�52� 56� 66� 76�, both given in [16], for the two- and four-antenna systems, respectively.
We use the frame error rate (FER) as the measure of performance. Also shown in
this figure is the performance of an equivalent system but without space–time coding.
Figure 6.8 reveals the significant gains that can be achieved with space–time coding in
multiuser systems. Moreover, it shows that the joint ML receiver performance is very
close to that of the single-user bound as predicted above.

It is easily seen that the above ML path search can be implemented as a maximum-
likelihood path search over a super trellis formed by combining all the users’ space–time
code trellises using the Viterbi algorithm. This is similar to the optimal decoder for
convolutionally coded CDMA channels derived in [12]. Assuming (for simplicity) that
all the users employ space–time codes based on underlying convolutional codes that have
a constraint length �, this super trellis will have a total of K�� − 1� states, resulting in
a total complexity per user of about ��2K�/K�, which is exponential in K�. Note also
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Figure 6.8. FER performance versus Eb/N0 (in dB) of the joint maximum-likelihood space–time
multiuser detector: K = 2 and � = 0�4.

that, in order to achieve full-diversity gain MT in an MT transmitter antenna system we
must have � ≥ MT [16, 37]. Hence, it is clear that even for a small number of users
this could easily become a prohibitively large computational burden at the receiver. This
motivates us to look for sub-optimal, low-complexity receiver structures for space–time
coded multiuser systems.

In order to reduce the computational complexity of joint multiuser detection and
space–time decoding while still achieving competitive performance against the joint ML
decision rule, one can use partitioned receiver structures. Specifically, the multiuser
detection and the space–time decoding can be separated into two stages, as is done in
[13] for the case of (single-antenna) convolutionally coded CDMA channels. At the first
stage of the partitioned receiver, multiuser detection is performed. The outputs from the
multiuser detection stage are then passed onto a bank of single-user space–time decoders
corresponding to the K users in the system. Thus, each user’s space–time decoder operates
independently from the others. Of course, it is possible to employ either an ML or
a maximum a posteriori probability decoder as the single-user space–time decoder at
the second stage of the receiver. Also, it is possible to use any reasonable multiuser
detection strategy at the first stage of the receiver. In the following we consider both
linear and nonlinear multiuser detectors as the first stage of the partitioned space–time
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multiuser receiver, and compare the performance of these receivers against the best
possible performance.

6.4.3 Partitioned low complexity receivers for space–time coded multiuser
systems

We consider linear multiuser detection based partitioned receivers, followed by the
nonlinear multiuser detection approaches. For linear multiuser detectors, we investigate
both decorrelator and linear MMSE detectors [38]. For nonlinear approaches we consider
both a simple iterative receiver based on interference cancellation and the turbo principle,
and an improved iterative receiver based on instantaneous MMSE filtering after the
interference cancellation step.

Decorrelator-based partitioned space–time multiuser receiver

The decorrelator output at the ith symbol time is given by [38],

ẑ�i� = R
−1

z�i� = AD�i�h + �̂� (6.80)

where �̂ ∼ � �0�N0R
−1

�. The first stage of the receiver computes soft outputs
corresponding to each user’s transmitted symbol vectors at time i. The soft outputs are
the a posteriori probabilities (APPs) of each user’s transmitted symbol vectors, defined
as below for l = 1� � � � � 2MT , k = 1� � � � �K and i = 0� � � � �B − 1 (note that 2MT is the
number of possible transmitted symbol vectors):

pk�l�i� = P �bk�i� = sl�ẑ�i�� h� for sl ∈ �+1�−1�MT ×1�

From (6.80), we can write this a posteriori probability as

pk�l�i� = C1exp

(
− 1

N0�R
−1

�kk

�ẑk�i�−
Ak√
MT

sT
l hk�

2
)

�

where �R
−1

�kk is the �k� k�th element of the matrix R
−1

, ẑk�i� is the kth component of
the vector ẑ�i� and C1 is a normalizing constant.

The second stage of the partitioned receiver employs a bank of single-user space–time
Viterbi decoders that use these a posteriori probabilities as inputs. The kth user’s decoder
uses only the symbol vector probabilities corresponding to the kth user. This results
in a decentralized implementation of the receiver. Clearly this partitioned receiver is
equivalent to a single-user space–time coded system, except for a different noise variance
value. This leads to the following upper bound on the pairwise error probability of the
decorrelator-based partitioned space–time multiuser receiver

Pk��d�
e �Dk → D̂k� ≤ 1∏rk

n=1�k�n�Ek�

(
A2

k/MT

4N0�R
−1

�kk

)−rk

�

where rk is the rank of the codeword error matrix Ek = Dk − D̂k and �k�n �Ek�, for
n = 1� � � � � rk, are the non-zero eigenvalues of the MT ×MT matrix ET

kEk.
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Linear MMSE-based partitioned space–time multiuser receiver

As is well-known, the decorrelator performance degrades when the background noise
is dominant, since it completely ignores the presence of background noise [38]. A
better compromise between suppressing the multiple-access interference (MAI) and the
background noise is obtained by employing a linear MMSE filter at the first stage of
the space–time receiver. The linear MMSE multiuser detector output at symbol time i is
given by [38]

ẑ�i� = A−1�R +N0A−2�−1z�i��

The decision statistic corresponding to the kth user can then be written as

ẑk�i� = Ak

MT

K∑
j=1

MkjAjb
T
j �i�hj + �̂k�i�

= A2
k

MT

MkkbT
k�i�hk + Ak

MT

∑
j �=k

MkjAjb
T
j �i�hj + �̂k�i� (6.81)

where we have defined M = �A2 +N0R
−1

�−1 and �̂k�i� ∼ � �0�
A2

k

MT
N0�MR

−1
M�kk�.

In order to compute the soft output a posteriori probabilities at the end of the first
stage, we make the assumption that the noise at the output of an MMSE multiuser
detector (residual MAI plus the background noise) can be modeled as being Gaussian
[32]. Therefore, we may model (6.81) as

ẑk�i� = A2
k

MT

MkkbT
k�i�hk + �̃k�i�� (6.82)

with �̃k�i� ∼ � �0� �2
k�i��. It can be shown that

�2
k�i� = 4

A2
k

MT

[∑
j �=k

A2
j

MT

M2
kj�hj�i��2 +N0�MR

−1
M�kk

]
� (6.83)

Using this model, the soft output a posteriori probabilities at the output of the linear
MMSE multiuser stage can be written as

pk�l�i� = P �bk�i� = sl�ẑ�i�� h�

= C2exp
(

− 1

�2
k�i�

�ẑk�i�−
A2

k

MT

MkksT
l hk�2

)
�

where C2 is a normalizing constant.
The second stage of this receiver operates exactly the same way as that in the

decorrelator-based partitioned receiver.
Figure 6.9 shows the FER performance of partitioned space–time multiuser receivers

based on linear first-stage multiuser detectors and ML single-user decoders, in a four-
user system with each having two transmit antennas. As before, we make use of the
full diversity BPSK space–time trellis code with constraint length � = 5 and based on
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Figure 6.9. FER performance versus Eb/N0 (in dB) of the linear first stage-based partitioned
space–time multiuser detectors: K = 4, � = 0�4, and MT = 2.

the underlying rate-1/2 convolutional code with octal generators �46� 72� [16]. User
cross-correlations are assumed to be �jk = 0�4 for all k �= j.

From Fig. 6.9 it can be seen that the linear first stage-based partitioned space–time
receivers may offer some diversity gain over single-antenna systems, though they fail
to capture the full gains achievable with space–time coding. This is clear from the
large performance gap between that of linear first stage-based partitioned receivers and
the single-user bound in Fig. 6.9. This performance degradation becomes severe with
increasing user cross-correlations, as one would expect. These results also justify our
iterative approach, which is capable of providing near single-user performance even
in severe MAI environments (as we will see below). We observe that for the given
cross-correlation values, the MMSE first stage performance is no better than that with a
decorrelator first stage. Of course in the case of smaller MAI than what we have simulated,
the MMSE first stage would outperform the decorrelator-based receiver, since in this case
the background noise would be the dominant noise source. In either case, these linear
detectors fail to exploit the large performance gains available with space–time coding.

Iterative MUD with interference cancellation for space–time coded CDMA

In this section we present a simple iterative receiver structure based on interference
cancellation and the turbo principle. Suppose that at the first stage of the receiver, we
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have available a priori probabilities of all users’ transmitted symbol vectors, pk�l�i�
p
2 =

P �bk�i� = sl�, for l = 1� � � � � 2MT , k = 1� � � � �K and i = 0� � � � �B − 1. Note that the
subscript 2 and superscript p indicate that these a priori probabilities were, in fact,
generated by the second stage of the receiver (i.e., the single-user space–time decoders)
at the previous iteration. Using these a priori probabilities pk�l�i�

p
2 , the interference-

canceling multiuser detector at the first stage of the receiver computes soft estimates of
the transmitted symbol vectors of all the users as

b̂k�i� =
2MT∑
l=1

slpk�l�i�
p
2 � (6.84)

These soft estimates are used to cancel the multiple-access interference at the output
of the kth user’s matched filter. The interference cancelled output corresponding to the
kth user is obtained as the kth component of the vector

ẑk�i� = ẑ�i�−RAD̂k�i�h� (6.85)

where D̂k�i� = diag�b̂1�i�� � � � � b̂k−1�i�� 0� b̂k+1�i� � � � � � b̂K�i��. From (6.85), with ẑk�i�

denoting the kth element of ẑk�i�, we have that

ẑk�i� = Ak√
MT

bT
khk +∑

j �=k

�kj

Aj√
MT

�bj − b̂j�
Thj +�k�i�� (6.86)

Since �k�i� ∼� �0�N0�, assuming all the previous estimates of the symbol vectors were
correct, the iterative interference-canceling space–time multiuser detector (IC-ST-MUD)
computes the soft output a posteriori probabilities of the transmitted symbol vectors of
user k, for k = 1� � � � �K, as

P
[
bk�i� = sl�z�i�� �b̂j�

K

j=1�j �=k

]
= C3exp

[
− 1

N0

�ẑk�i�−
Ak√
MT

sT
l hk�2

]
pk�l�i�

p
2

= pk�l�i�1pk�l�i�
p
2�

where C3 is a normalizing constant.
Following turbo decoding terminology, the term pk�l�i�1 is called the extrinsic a

posteriori probability as computed by the space–time multiuser detector. These extrinsic
a posteriori probabilities, pk�l�i�1, are de-interleaved and passed on to a bank of K single-
user soft-input/soft-output space–time MAP decoders, described in Section 6.4.4 below
(for a more general factor graph interpretation refer to Chapter 5). The kth user’s SISO
space–time MAP decoder computes a posteriori probabilities of the transmitted symbol
vectors for all the symbols in a given frame [44]. The extrinsic component of these
symbol vector APPs, pk�l�i�2, are then interleaved and fed back to the first stage of the
IC-ST-MUD, to be used as the a priori probabilities pk�l�i�

p
2 , in the next iteration. At the

final iteration, the space–time MAP decoders output hard decisions on the information
symbols. A block diagram of this iterative, interference-canceling space–time multiuser
detector is shown in Fig. 6.10.
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Figure 6.10. Iterative, interference-canceling, space–time multiuser detector.

FER performance of the iterative receiver based on interference cancellation, but
without instantaneous linear MMSE filtering, is shown in Fig. 6.11 for the same four-
equal-power-user system in which each user has two antennas considered in Fig. 6.9.
From Fig. 6.11 we observe that with about four iterations we can achieve most of the
gain available from the iterative decoding process. Significantly, we see that for medium
values of �, this simple interference cancellation scheme can achieve near single-user
performance with few iterations, which is not possible with linear first stages as we
observed earlier.

However, this simple interference-cancellation-based iterative detector fails when the
cross-correlations between users is increased. In this case, the performance becomes
almost insensitive to the number of iterations since when the user cross-correlations are
high our estimates at the end of the initial iteration are very poor (which of course is
the same as a system employing a single-user matched filter front end), and thus the
subsequent iterations will be based on these poor estimates.

The conventional matched filter complexity is ��1�. At each iteration, the first stage
of the receiver needs to compute 2MT symbol vector a posteriori probabilities. Hence, the
computational complexity of this partitioned receiver is ��2MT +2�� per user per iteration.
Note that even though both MAP and ML decoding have the same ��2�� complexity
order, the MAP decoding in general requires more computations compared to the ML
decoding. It has been shown that MAP decoding can be done with a complexity roughly
four times that of ML decoding [40].

Iterative MUD with interference cancellation and instantaneous MMSE filtering
for space–time coded multiuser systems

As we mentioned above, the performance of the iterative IC-ST-MUD receiver, proposed
in the previous section degrades considerably for medium to large cross-correlation values.
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Figure 6.11. FER performance versus Eb/N0 (in dB) of the partitioned iterative space–time receiver
based on interference-canceling multiuser detection: K = 4, � = 0�4, and MT = 2.

Especially when the user cross-correlations are high, the soft estimates at the initial
iteration can be very poor and thus the performance does not improve significantly on
subsequent iterations. In order to overcome this shortcoming, in this section we modify
the iterative receiver proposed in the previous section by the addition of an instantaneous
filter. This becomes similar to the iterative decoder proposed in [44] for a convolutionally
coded CDMA channel.

Specifically, we choose a linear MMSE filter that minimize the mean square
error between the interference-suppressed output and the kth user’s fading-modulated
transmitted symbol vector. Clearly, when the soft estimates of the multiple-access
interference are very poor or they are not available at all (as in the case of the first
iteration), this filtering helps the receiver to still maintain an acceptable performance
level, as we will see by the simulation results.

The kth user’s linear MMSE filter at symbol time i applies weights wk�i� to the
interference-suppressed output ẑk�i� of (6.85), where wk�i� is designed so that

wk�i� = argmin
w

E
[�bT

k�i�hk −wHẑk�i��2
]
� (6.87)

It can easily be shown that the solution to (6.87) is given by

wk�i� = E
[
ẑk�i�ẑ

H
k �i�

]−1
E
[
ẑk�i�b

T
k�i�hk

]
� (6.88)
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with

E
[
ẑk�i�ẑ

H
k �i�

]= RVk�i�R +N0R�

and

E
[
ẑk�i�b

T
k�i�hk

]= Ak√
MT

�hk�2Rek�

where we have defined the matrix Vk�i� as

Vk�i� = diag

(
A2

1

MT

MT∑
m=1

�1− b̂2
1�m��h1�m�2� � � � �

A2
k

MT

�hk�2� � � � �
A2

K

MT

MT∑
m=1

�1− b̂2
K�m��hK�m�2

)
�

and ek is the kth unit vector. Denoting the matrix
(
RVk�i�R +N0R

)−1
by Mk�i�, we can

write the instantaneous linear MMSE filter corresponding to the kth user at symbol time
i as

wk�i� = Ak√
MT

�hk�2
(
RVk�i�R +N0R

)−1
Rek

= Ak√
MT

�hk�2Mk�i�Rek� (6.89)

We again model the residual noise at the linear MMSE filter output as having a
Gaussian distribution [32, 44]. Thus, we have the following model for vk�i�, the output of
the linear MMSE filter corresponding to the kth user at symbol time i:

vk�i� = wH
k �i�ẑk�i� = �k�i�b

T
k�i�hk +uk�i�� (6.90)

where uk�i� ∼ � �0� �2
k�i��. It can be shown that

�k�i� = A2
k

MT

�hk�2�Mk�i��k�k (6.91)

and

�2
k�i� = �hk�2

(
�k�i�−�2

k�i�
)
� (6.92)

The soft-output interference-canceling multiuser detector with instantaneous MMSE
filtering makes use of the model in (6.90) in order to compute the a posteriori probabilities
of the transmitted symbol vectors corresponding to the kth user:

P
[
bk�i� = sl � z�i�� �b̂j�

K

j=1�j �=k

]
= C4exp

[
−�vk�i�−�k�i�slhk�2

�2
k�i�

]
pk�l�i�

p
2

= pk�l�i�1pk�l�i�
p
2�

where C4 is a normalizing constant.
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Figure 6.12. FER performance versus Eb/N0 (in dB) of the partitioned iterative space–time receiver
based on interference canceling and linear MMSE filtering multiuser detection stage. K = 4,
� = 0�75, and MT = 2.

The second stage of this modified iterative receiver is a SISO space–time MAP decoder
which operates in exactly the same way as the receiver described in the previous section.
This decoder is described briefly in the following section.

Figure 6.12 shows the FER performance of the interference-canceling space–time
multiuser receiver with instantaneous linear MMSE filtering assuming the same four-user
system but with the cross-correlation between any pair of users being equal to 0�75. We
observe that this modified iterative receiver provides excellent performance and is able to
achieve near single-user performance with only a few iterations (two to three iterations),
even in the presence of considerable MAI.

The complexity of this MMSE-based interference-canceling partitioned receiver is
roughly about ��K2 +2MT +2�� per user per iteration. Note also that this iterative receiver
does not rely on spatial diversity for interference suppression but exploits the multiuser
signal structure, which is likely to be available at a base station receiver.

6.4.4 Single-user soft input soft output space–time map decoder

In the following we briefly outline the single-user soft-input soft-output space–time MAP
decoder assumed in the iterative receivers above. The space–time encoder of each user is
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assumed to append zero bits to a given information bit block of size B′, so that the trellis
is always terminated in the zero state. Thus, the actual space–time code block length is
B = B′ +�−1 (since we assume that the rate of the space–time code is 1), where � is the
constraint length of the underlying convolutional code. In this section, we use the MAP
decoding algorithm [2] to compute the a posteriori probabilities of all the symbol vectors
and the information bits.

Similarly to the notation in [44], we will denote the state of the space–time trellis
at time i by a �� −1�-tuple, as Si = �s1

i � � � � � s�−1
i � = �di−1� � � � � di−�−1�, where di is the

input information bit to the space–time encoder at time i. The corresponding output code
symbol vector is denoted by bi. (Note that here we are using the subscripts to denote
the time index.) Let d�s′� s� be the input information bit that causes the state transition
from Si−1 = s′ to Si = s and b�s′� s� be the corresponding output bit vector, which is of
length MT .

Define the forward and backward recursions [2] as

�i�s� =∑
s′

�i−1�s
′�P�bi�s

′� s��� i = 1� � � � �B� (6.93)

and

�i�s� =∑
s′

�i+1�s
′�P�bi+1�s

′� s��� i = B−1� � � � � 0� (6.94)

where P�bi�s
′� s�� = P�bi = b�s′� s��. Initial conditions for (6.93) and (6.94) are given as

�0�0� = 1, �0�s �= 0� = 0, ���0� = 1, and ���s �= 0� = 0. The summations are over all the
states s′ where the state transition �s′� s� is allowed in the code trellis. Normalization of
forward and backward variables is done as in [44] to avoid numerical instabilities, though
we do not elaborate them here.

Let �l denote the set of state pairs �s′� s� such that the output symbol vector
corresponding to this transition is sl. The SISO ST MAP decoder of user k updates the a
posteriori symbol vector probabilities as

P�bk�i� = sl��pk�l′ �i�1�
B−1
i=0 � l′ = 1� � � � �L�� = ∑

�s′�s�∈�l

�i−1�s
′��i�s�P�bi�s

′� s��

=
( ∑

�s′�s�∈�l

�i−1�s
′��i�s�

)
P�bk�i� = sl�

= pk�l�i�2pk�l�i�1� (6.95)

The extrinsic part of the above a posteriori symbol vector probability, pk�l�i�2, is
interleaved and fed back to the interference-canceling space–time multiuser detector, to
be used as the a priori probability pk�l�i�

p
2 , in the next iteration.

In the final iteration the SISO ST MAP decoder also computes the a posteriori log-
likelihood ratio (LLR) of the information bits. Again, similarly to the notation in [44], let
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�+ denote the set of state pairs �s′� s� such that the corresponding input information bit
is +1. �− is defined similarly. Then we have that

��dk�i�� = P�dk�i� = +1�

P�dk�i� = −1�

= log
∑

�+ �i−1�s
′��i�s�P�bi�s

′� s��∑
�− �i−1�s

′��i�s�P�bi�s
′� s��

�

Based on these a posteriori log-likelihood ratios, the decoder outputs a final hard decision
on the information bit dk�i� for i = 1� � � � �B′ −1, at the last iteration.

6.4.5 Summary

In this section, we have considered space–time coding for multiple-access systems in
the presence of quasi-static Rayleigh fading. We first obtained the joint ML receiver
for a space–time coded CDMA multiuser channel. This joint ML receiver can be shown
to achieve full-diversity advantage for each user if the individual space–time codes are
of full-diversity. A better trade-off between performance and computational complexity
at the receiver can be obtained by partitioning the multiuser detection and space–time
decoding into two stages at the receiver. In particular, a nonlinear iterative receiver based
on interference cancellation and instantaneous MMSE filtering is capable of capturing
most of the gains available with space–time coding in multiple-access channels, with only
a few iterations.

6.5 Adaptive linear space–time multiuser detection

We now turn to the situation in which some of the parameters of the model of (6.1)
are not known, and thus the receiver must adapt itself to the environment. To examine
this situation, two linear multiuser MIMO reception strategies are presented diversity
and space–time multiuser detection: Citing advantages of the space–time technique,
linear adaptive implementations, including batch and sequential-adaptive algorithms for
synchronous CDMA in flat-fading channels, are then developed. The section concludes
with extensions to asynchronous CDMA in multipath fading. Portions of this work first
appeared in [35].

6.5.1 Diversity multiuser detection versus space–time multiuser detection

We consider a K-user code division multiple-access (CDMA) system with processing
gain N , operating in flat-fading with MR receiver antennas and MT transmitter antennas.
For simplicity of exposition, we will consider only MT = MR = 2 and BPSK modulation
in this section. Extensions to other antenna configurations and modulation techniques are
straightforward. When two antennas are employed at the transmitter, we must first specify
how the information symbols are transmitted across the two antennas. Here we adopt the
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Alamouti space–time block coding scheme [1, 36] discussed in Chapter 1. Specifically,
for each user k, two information symbols bk�1 and bk�2 are transmitted over two symbol
intervals. At the first time interval, the symbol pair �bk�1� bk�2� is transmitted across the
two transmitter antennas; and at the second time interval, the symbol pair �−bk�2� bk�1� is
transmitted. After chip-matched filtering with respect to ��t� and chip-rate sampling, the
received signals at antenna 1 during the two symbol intervals are4

r1�1 =
K∑

k=1

[
hk�1�1bk�1 +hk�2�1bk�2

]
sk +n1�1 (6.96)

and

r2�1 =
K∑

k=1

[−hk�1�1bk�2 +hk�2�1bk�1

]
sk +n2�1� (6.97)

and the corresponding signals received at antenna 2 are

r1�2 =
K∑

k=1

[
hk�1�2bk�1 +hk�2�2bk�2

]
sk +n1�2 (6.98)

and

r2�2 =
K∑

k=1

[−hk�1�2bk�2 +hk�2�2bk�1

]
sk +n2�2� (6.99)

where hk�i�j� i� j ∈ �1� 2� is the complex channel response between transmitter antenna

i and receiver antenna j for user k and sk =
[
c

�0�
k c

�1�
k · · · c�N−1�

k

]T ∈ �±1/
√

N�N is the
spreading code assigned to user k, as discussed previously in this chapter.

The noise vectors n1�1� n1�2� n2�1� and n2�2 are assumed to be independent and identically
distributed with distribution �c�0��2IN �.

Linear diversity multiuser detector

Denote

S
�= �s1 · · · sK�

and

R
�= ST S�

Suppose that user 1 is the user of interest. The combining weights for the linear
decorrelating detector [38] for user 1 can be written as

w1 = SR
−1

e1� (6.100)

4 In this section, we assume complex signaling waveforms and channel coefficients.
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where e1 denotes the first unit vector in R
K . Our first detection strategy, which we call

linear diversity multiuser detection, applies the linear multiuser detector w1 in (6.100) to
each of the four received signals r1�1� r1�2� r1�2� and r2�2 and then performs space–time
decoding. Specifically, denote the filter outputs as

z1�1
�= wT

1 r1�1 = h1�1�1b1�1 +h1�2�1b1�2 +u1�1� (6.101)

z2�1
�= (wT

1 r2�1

)∗ = −h∗
1�1�1b1�2 +h∗

1�2�1b1�1 +u∗
2�1� (6.102)

z1�2
�= wT

1 r1�2 = h1�1�2b1�1 +h1�2�2b1�2 +u1�2� (6.103)

z2�2
�= (wT

1 r2�2

)∗ = −h∗
1�1�2b1�2 +h∗

1�2�2b1�1 +u∗
2�2� (6.104)

with ui�j

�= wT
1 ni�j ∼ �c

(
0�

�2

�2
1

)
� i� j = 1� 2 (6.105)

where �2
1

�= 1/
[
R

−1
]

1�1
.

We define the following quantities:

z
�= �z1�1z2�1z1�2z2�2�

T

u
�= �u1�1u

∗
2�1u1�2u

∗
2�2�

T

h1�1
�= �h1�1�1h1�2�1�

H

h̄1�1
�= �h1�2�1 −h1�1�1�

T

h1�2
�= �h1�1�2h1�2�2�

H

h̄1�2
�= �h1�2�2 −h1�1�2�

T �

Then (6.101)–(6.105) can be written as

z = [h1�1h̄1�1h1�2h̄1�2

]H︸ ︷︷ ︸
HH

1

[
b1�1

b2�1

]
+u� (6.106)

with u ∼�c

(
0�

�2

�2
1

· I4

)
� (6.107)

It is readily verified that

H1HH
1 =

[
E1 0
0 E1

]
� (6.108)

with E1
�= ∣∣h1�1�1

∣∣2 + ∣∣h1�1�2

∣∣2 + ∣∣h1�2�1

∣∣2 + ∣∣h1�2�2

∣∣2 � (6.109)

To form the maximum-likelihood decision statistic, we premultiply z by H1 and obtain[
d1�1

d1�2

]
�= H1z = E1

[
b1�1

b1�2

]
+v� (6.110)

with v ∼�c

(
0�

E1�
2

�2
1

· I2

)
� (6.111)
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The corresponding symbol estimates are given by[
b̂1�1

b̂1�2

]
= sign

(
�
{[

d1�1

d1�2

]})
� (6.112)

The bit error probability is then given by

PD
1 �e� = P

(
��d1�1� < 0 � b1�1 = +1

)
= P

[
E1 +�

(
0�

E1�
2

2�2
1

)
< 0

]
= Q

(√
2E1

�
·�1

)
� (6.113)

which fully exploits the available antenna diversity.

Linear space–time multiuser detector

Now consider the quantities:

r̃
�=

⎡⎢⎢⎣
r1�1

r∗
2�1

r1�2

r∗
2�2

⎤⎥⎥⎦ � ñ
�=

⎡⎢⎢⎣
n1�1

n∗
2�1

n1�2

n∗
2�2

⎤⎥⎥⎦ � hk

�=

⎡⎢⎢⎣
hk�1�1

h∗
k�2�1

hk�1�2

h∗
k�2�2

⎤⎥⎥⎦ � h̄k

�=

⎡⎢⎢⎣
hk�2�1

−h∗
k�1�1

hk�2�2

−h∗
k�1�2

⎤⎥⎥⎦ � (6.114)

Then (6.96)–(6.99) may be written as

r̃ =
K∑

k=1

(
bk�1hk ⊗ sk +bk�2h̄k ⊗ sk

)
+ ñ = S̃b+ ñ� (6.115)

where

S̃
�=
[
h1 ⊗ s1� h̄1 ⊗ s1� � � � � hK ⊗ sK� h̄K ⊗ sK

]
4N×2K

(6.116)

b
�=
[
b1�1b1�2b2�1b2�2 · · ·bK�1bK�2

]T

� (6.117)

Since hH
k h̄k = 0 it is easy to show that the decorrelating detector for detecting the symbol

b1�1 based on r̃ is given by

w̃1�1 = h1 ⊗w1

�h1�2
� (6.118)

which we call linear space–time multiuser detection. Hence the output of the linear
space–time detector in this case is given by

z̃1 = w̃H
1�1r̃ = b1�1 +u1 (6.119)

with u1
�= w̃H

1�1ñ ∼ �c

(
0��2�w̃1�1�2

)
(6.120)
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where

�w̃1�1�2 = �w1�2

�h1�2
= 1

E1�
2
1

� (6.121)

Therefore the probability of error is given by

PST
1 �e� = P

(
� �z̃1� < 0 � b1�1 = +1

)
= P

[
1+�

(
0�

1

2E1�
2
1

)
< 0

]
= Q

(√
2E1

�
·�1

)
� (6.122)

Comparing (6.122) with (6.113) it is seen that when two transmitter antennas and two
receiver antennas are employed and the signals are transmitted in the form of a space–
time block code, then the linear diversity receiver and the linear space–time receiver have
identical performance. What, then, are the benefits of the space–time detection technique?
They include the following.

1. The user capacity for CDMA systems is limited by correlations among composite
signature waveforms. This multiple-access interference will tend to decrease as the
dimension of the vector space in which the signature waveforms reside increases.
The signature waveforms for linear diversity detection are of length N , i.e., they
reside in C

N . Since the received signals are stacked for space–time detection, these
signature waveforms reside in C

2N for two transmit and one receive antenna or C
4N

for two transmit and two receive antennas. As a result, the space–time structure can
support more users than linear diversity detection for a given performance threshold.
A specific example of this phenomenon is discussed in Section 6.5.3.

2. For adaptive configurations, linear diversity multiuser detection requires four
independent subspace trackers operating simultaneously since the receiver performs
detection on each of the four received signals, and each has a different signal subspace.
The space–time structure requires only one subspace tracker.

6.5.2 Adaptive linear space–time multiuser detection for flat-fading CDMA

Signal model

Motivated by the above discussion, we now discuss adaptive space–time multiuser
detection algorithms for systems with two transmitter antennas and two receiver antennas.
These algorithms are also blind, in the sense that the receiver requires knowledge only of
the signature waveform of the user of interest, i.e., neither a priori channel knowledge
nor the spreading codes of the interfering users are necessary for detection. As before, the
Alamouti space–time block code is used for transmission, so that during the first symbol
interval of block i, user k transmits �bk�1�i�� bk�2�i�� from the two transmit antennas.
During the second symbol interval, user k transmits �−bk�2�i�� bk�1�i��. Note that inherent
to any blind receiver in multiple transmitter antenna systems is an ambiguity issue. That
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is, if the same spreading waveform is used for a user at both transmitter antennas, the
blind receiver cannot distinguish which symbol is transmitted from which antenna. To
resolve this ambiguity, we use two different spreading waveforms for each user, i.e., sk�j ,
j ∈ �1� 2� is the spreading code for user k for the transmission of symbol bk�j�i�. The
discrete-time received N -vector at base station antenna 1 during the two symbol periods
for block i is

r1�1�i� =
K∑

k=1

(
hk�1�1bk�1�i�sk�1 +hk�2�1bk�2�i�sk�2

)+n1�1�i� (6.123)

and

r2�1�i� =
K∑

k=1

(−hk�1�1bk�2�i�sk�2 +hk�2�1bk�1�i�sk�1

)+n2�1�i�� (6.124)

and the corresponding signals received at antenna 2 are

r1�2�i� =
K∑

k=1

(
hk�1�2bk�1�i�sk�1 +hk�2�2bk�2�i�sk�2

)+n1�2�i� (6.125)

and

r2�2�i� =
K∑

k=1

(−hk�1�2bk�2�i�sk�2 +hk�2�2bk�1�i�sk�1

)+n2�2�i�� (6.126)

We stack the received signal vectors and denote

r̃�i�
�=

⎡⎢⎢⎣
r1�1�i�

r∗
2�1�i�

r1�2�i�

r∗
2�2�i�

⎤⎥⎥⎦ � ñ�i�
�=

⎡⎢⎢⎣
n1�1�i�

n∗
2�1�i�

n1�2�i�

n∗
2�2�i�

⎤⎥⎥⎦ �

hk

�=

⎡⎢⎢⎣
hk�1�1

h∗
k�2�1

hk�1�2

h∗
k�2�2

⎤⎥⎥⎦ � h̄k

�=

⎡⎢⎢⎣
hk�2�1

−h∗
k�1�1

hk�2�2

−h∗
k�1�2

⎤⎥⎥⎦ � (6.127)

Then we have

r̃�i� =
K∑

k=1

(
bk�1�i�hk ⊗ sk�1 +bk�2�i�h̄k ⊗ sk�2

)
+ ñ�i� (6.128)

= S̃b�i�+ ñ�i�� (6.129)

where

S̃
�=
[
h1 ⊗ s1�1� h̄1 ⊗ s1�2� � � � � hK ⊗ sK�1� h̄K ⊗ sK�2

]
4N×2K

b�i�
�=
[
b1�1�i�b1�2�i�b2�1�i�b2�2�i� · · ·bK�1�i�bK�2�i�

]T

2K×1
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and where ⊗ denotes the Kronecker product. The auto-correlation matrix of the stacked
signal r̃�i�, C, and its eigendecomposition are given by

C = E
[
r̃�i�r̃�i�H

]= S̃S̃H +�2I4N (6.130)

= Us�sU
H
s +�2UnUH

n � (6.131)

where �s = diag��1��2� � � � � �2K� contains the largest �2K� eigenvalues of C, the
columns of Us are the corresponding eigenvectors; and the columns of Un are the
�4N −2K� eigenvectors corresponding to the smallest eigenvalue �2.

The blind linear space–time MMSE filter for joint suppression of multiple access
interference and space–time decoding for symbol �b�i��1 = b1�1�i� is given by the solution
to the optimization problem

w1�1
�= arg min

w∈C4N
E
[∣∣b1�1�i�−wH r̃�i�

∣∣2] � (6.132)

It has been shown in [43, 46] that a scaled version of the solution can be written in terms
of the signal subspace components as

w1�1 = Us�
−1
s UH

s

(
h1 ⊗ s1�1

)
� (6.133)

and the decision is made according to

z1�1�i� = wH
1�1r̃�i�� (6.134)

b̂1�1�i� = sign
[
�
(
z1�1�i�

)]
(coherent detection)� (6.135)

and

�̂1�1�i� = sign
[
�
(
z1�1�i−1�∗z1�1�i�

)]
(differential detection)� (6.136)

Before we address specific batch and sequential adaptive algorithms, we note that
these algorithms can also be implemented using linear group-blind multiuser detectors
[41] which, in contrast to their blind counterparts, are constructed with knowledge of the
spreading codes of a subset of the active users. They would be appropriate, for example,
in cellular uplink environments in which the receiver has knowledge of the signature
waveforms of all of the users in its cell, but not those of interfering users outside the cell.
Specifically, we may re-write (6.129) as

r̃�i� = S̆b̆�i�+ S̄b̄�i�+ ñ�i�� (6.137)

where we have separated the users into two groups. The signature sequences of the known
users are the columns of S̆. The unknown users’ sequences are the columns of S̄. Then
the group-blind linear hybrid detector for symbol b1�1�i� is given by [41]

wGB
1�1 = Us�

−1
s UH

s S̆
[
S̆HUs�

−1
s UH

s S̆
]−1 (

h1 ⊗ s1�1

)
� (6.138)

This detector offers a significant performance improvement over blind implementations
of (6.133) for environments in which the signature sequences of some of the interfering
users are known.
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Batch blind linear space–time multiuser detection

Implementation of (6.133) requires knowledge of the signal subspace components and
the channel. The subspace components can be estimated blindly from the received signal
using the sample autocorrelation matrix of the received signal. In order to obtain an
estimate of h1 we make use of the orthogonality between the signal and noise subspaces,
i.e., the fact that UH

n

(
h1 ⊗ s1�1

)= 0. In particular, we have

ĥ1 = arg min
h∈C4

∥∥UH
n

(
h ⊗ s1�1

)∥∥2

= arg max
h∈C4

∥∥UH
s

(
h ⊗ s1�1

)∥∥2

= arg max
h∈C4

(
hH ⊗ sT

1�1

)
UsU

H
s

(
h ⊗ s11

)
= arg max

h∈C4
hH
[(

I4 ⊗ sT
1�1

)
UsU

H
s

(
I4 ⊗ s1�1

)]︸ ︷︷ ︸
Q

h (6.139)

= principal eigenvector of Q� (6.140)

In (6.140), ĥ1 specifies h1 up to an arbitrary complex scale factor �, i.e., ĥ1 = �h1,
but this ambiguity can be circumvented using differential modulation and detection. The
following is the summary of a batch blind space–time multiuser detection algorithm for
the two transmitter antenna/two receiver antenna configuration. The channel is assumed
to be constant for at least the duration of the batch size M .
Algorithm 1 (Batch blind linear space–time multiuser detector: synchronous CDMA, two
transmitter antennas and two receiver antennas)

• Estimate the signal subspace:

Ĉ = 1
M

M−1∑
i=0

r̃�i�r̃�i�H� (6.141)

= Ûs�̂sÛ
H
s + Ûn�̂nÛH

n � (6.142)

• Estimate the channels:

Q̂1 = (I4 ⊗ sT
1�1

)
ÛsÛ

H
s

(
I4 ⊗ s1�1

)
� (6.143)

Q̂2 = (I4 ⊗ sT
1�2

)
ÛsÛ

H
s

(
I4 ⊗ s1�2

)
� (6.144)

ĥ1 = principal eigenvector of Q̂1, (6.145)

ˆ̄h1 = principal eigenvector of Q̂2. (6.146)
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• Form the detectors

ŵ1�1 = Ûs�̂
−1
s ÛH

s

(
ĥ1 ⊗ s1�1

)
� (6.147)

ŵ1�2 = Ûs�̂
−1
s ÛH

s

( ˆ̄h1 ⊗ s1�2

)
� (6.148)

• Perform differential detection:

z1�1�i� = ŵH
1�1r̃�i�� (6.149)

z1�2�i� = ŵH
1�2r̃�i�� (6.150)

�̂1�1�i� = sign
(
�
{
z1�1�i�z1�1�i−1�∗

})
� (6.151)

�̂1�2�i� = sign
(
�
{
z1�2�i�z1�2�i−1�∗

})
� (6.152)

i = 0� � � � �M −1�

A batch group-blind space–time multiuser detector algorithm can be implemented with
simple modifications to (6.147) and (6.148).

Adaptive blind linear space–time multiuser detection

To form a sequential blind adaptive receiver, we need adaptive algorithms for sequentially
estimating the channel and the signal subspace components Us and �s. First, we address
sequential adaptive channel estimation. Denote by z�i� the projection of the stacked signal
r̃�i� onto the noise subspace, i.e.,

z�i� = r̃�i�−UsU
H
s r̃�i� (6.153)

= UnUH
n r̃�i�� (6.154)

Since z�i� lies in the noise subspace, it is orthogonal to any signal in the signal subspace,
and in particular, it is orthogonal to �h1 ⊗ s1�1�. Hence h1 is the solution to the following
constrained optimization problem:

min
h1∈C4

E
[∥∥z�i�H�h1 ⊗ s1�1�

∥∥2
]

= min
h1∈C4

E
[∥∥z�i�H�I4 ⊗ s1�1�h1

∥∥2
]

= min
h1∈C4

E

[∥∥∥∥[ (I4 ⊗ sT
1�1

)
z�i�
]H

h1

∥∥∥∥2
]

s.t.�h1� = 1� (6.155)

In order to obtain a sequential algorithm to solve the above optimization problem, we
write it in the following (trivial) state space form

h1�i+1� = h1�i�� state equation

0 =
[ (

I4 ⊗ sT
1�1

)
z�i�
]H

h1�i�� observation equation�
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The standard Kalman filter can then be applied to the above system as follows. Denote
x�i�

�= (
I4 ⊗ sT

1�1

)
z�i�:

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.156)

h1�i� = (h1�i−1�−k�i�
(
x�i�Hh1�i−1�

))
/
∥∥h1�i−1�−k�i�

(
x�i�Hh1�i−1�

)∥∥� (6.157)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.158)

Once we have obtained channel estimates at block i, we can combine them with
estimates of the signal subspace components to form the detector in (6.133). Subspace
tracking algorithms of various complexities exist in the literature. Since we are stacking
received signal vectors and subspace tracking complexity increases at least linearly with
the signal subspace dimension, it is imperative that we choose an algorithm with minimal
complexity. The best existing low-complexity algorithm for this purpose appears to be
noise-averaged Hermitian–Jacobi fast subspace tracking (NAHJ-FST) [34]. This algorithm
has the lowest complexity of any algorithm used for similar purposes and has performed
well when used for signal subspace tracking in multipath fading environments. Since the
size of Us is 4N ×2K, the complexity is 40 ·4N ·2K +3 ·4N +7�5�2K�2 +7 ·2K floating
point operations per iteration. The algorithm and a multiuser detection application are
presented in [34]. The application to the current tracking problem is straightforward and
will not be discussed in detail.

Algorithm 2 (Blind adaptive linear space–time multiuser detector: synchronous CDMA,
two transmitter antennas, and two receiver antennas)

• Using a suitable signal subspace tracking algorithm, e.g., NAHJ-FST, update the
signal subspace components Us�i� and �s�i� at each block i.

• Track the channel h1�i� and h̄1�i� according to the following:

z�i� = r̃�i�−Us�i�Us�i�
H r̃�i�� (6.159)

x�i� = (I4 ⊗ sT
1�1

)
z�i�� (6.160)

x̄�i� = (I4 ⊗ sT
1�2

)
z�i�� (6.161)

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.162)

k̄�i� = �̄�i−1�x̄�i�
(

x̄�i�H�̄�i−1�x̄�i�
)−1

� (6.163)

h1�i� = (h1�i−1�−k�i�
(
x�i�Hh1�i−1�

))
/
∥∥h1�i−1�−k�i�

(
x�i�Hh1�i−1�

)∥∥ � (6.164)

h̄1�i� = (h̄1�i−1�− k̄�i�
(
x̄�i�H h̄1�i−1�

))
/
∥∥h̄1�i−1�− k̄�i�

(
x̄�i�H h̄1�i−1�

)∥∥ � (6.165)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.166)

�̄�i� = �̄�i−1�− k̄�i�x̄�i�H�̄�i−1�� (6.167)
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form detectors

r [i] Us[i], Λs[i]
gk[i], gk[i]

β1,k[i], β2,k[i]w1,k = Us[i]Λs[i]
−1Us

H[i](g1[i]⊗s1,k)

stack

(1) (1)
r1  [i], r2  [i]

w2,k = Us[i]Λs[i]
−1Us

H[i](g1[i]⊗s2,k)

signal
subspace
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Kalman
channel
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Delay
2Ts

×

(2) (2)
r1  [i], r2  [i]

Figure 6.13. Adaptive receiver structure for linear space–time multiuser detectors.

• Form the detectors:

ŵ1�1�i� = Us�i��
−1
s �i�Us�i�

H
(

h1�i�⊗ s1�1

)
� (6.168)

ŵ1�2�i� = Us�i��
−1
s �i�Us�i�

H
(

h̄1�i�⊗ s1�2

)
� (6.169)

• Perform differential detection:

z1�1�i� = ŵ1�1�i�
H r̃�i�� (6.170)

z1�2�i� = ŵ1�2�i�
H r̃�i�� (6.171)

�̂1�1�i� = sign
(
�
{
z1�1�i�z1�1�i−1�∗

})
� (6.172)

�̂1�2�i� = sign
(
�
{
z1�2�i�z1�2�i−1�∗

})
� (6.173)

A group-blind sequential adaptive space–time multiuser detector can be implemented
similarly. The adaptive receiver structure is illustrated in Figure 6.13.

6.5.3 Blind adaptive space–time multiuser detection for asynchronous
CDMA in fading multipath channels

Signal model

To extend the previous development to asynchronous multipath channels, we must begin
with a continuous-time baseband signal model. The signal transmitted from antennas 1
and 2 due to the kth user for time interval i ∈ �0� 1� � � � �M −1� is given by

xk�1�t� =
M−1∑
i=0

[
bk�1�i�sk�1�t −2iTs�−bk�2�i�sk�2�t − �2i+1�Ts�

]
(6.174)

xk�2�t� =
M−1∑
i=0

[
bk�2�i�sk�2�t −2iTs�+bk�1�i�sk�1�t − �2i+1�Ts�

]
(6.175)
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where M denotes the length of the data frame, Ts denotes the information symbol interval,
and �bk�i��i is the symbol stream of user k. Although this is an asynchronous system,
we have, for notational simplicity, suppressed the delay associated with each user’s
transmitted signal and incorporated it into the path delays in (6.3). We assume that for each
k, the symbol stream, �bk�i��i, is a collection of independent random variables that take
on values of +1 and −1 with equal probability. Furthermore, we assume that the symbol
streams of different users are independent. The transmitted signature waveforms �sk�m�t��

are described in (6.26). The kth user’s space–time coded signals, xk�1�t� and xk�2�t�,
propagate from transmitter to receiver through the multipath fading channel described
by (6.3), where �k�m�p�l, satisfying �k�m�p�1 ≤ �k�m�p�2 ≤ · · · ≤ �k�m�p�L, is the sum of the
corresponding path delay and the initial transmission delay of user k. It is assumed that
the channel is slowly varying, so that the path gains and delays remain constant over the
duration of one signal frame (MTs).

The received signal component due to the transmission of xk�1�t� and xk�2�t� through
the channel at receiver antennas 1 and 2 is given by

yk�1�t� = xk�1�t� �hk�1�1�t�+xk�2�t� �hk�2�1�t�� (6.176)

yk�2�t� = xk�1�t� �hk�1�2�t�+xk�2�t� �hk�2�2�t�� (6.177)

The total received signal at receiver antenna b ∈ �1� 2� is given by

rb�t� =
K∑

k=1

yk�b�t�+nb�t�� (6.178)

At the receiver, the received signal is match filtered to the chip waveform and sampled
at the chip rate, i.e., the sampling interval is Tc, N is the total number of samples per
symbol interval, and 2N is the total number of samples per time slot. The nth matched
filter output during the ith time slot is given by

rb�i� n�
�=
∫ 2iTs+�n+1�Tc

2iTs+nTc

rb�t���t −2iTs −nTc�dt� (6.179)

Denote the maximum delay (in symbol intervals) by

�k�m�p

�=
⌈

�k�m�p�L +Tc

Ts

⌉
and �

�= max
k�m�p

�k�m�p� (6.180)

Closed-form expressions for the matched filter outputs rb�i� n� are provided in [35].
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To fully exploit available diversity, we stack the matched filter outputs from both
receive antennas, forming the vector

r�i�
�=
[

r1�i�

r2�i�

]
4N×1

� (6.181)

where, for b ∈ �1� 2�,

rb�i�
�=
⎡⎢⎣ rb�i� 0�

���

rb�i� 2N −1�

⎤⎥⎦
2N×1

� (6.182)

Stacking m̄ successive sample vectors, we form

r�i�
�=
⎡⎢⎣ r�i�

���

r�i+m−1�

⎤⎥⎦
4Nm̄×1

(6.183)

= Hb�i�+n�i�� (6.184)

where H is a function of the spreading codes, the channel conditions, and the chip
waveform (see [35] for details), n�i� is additive white Gaussian noise, and where

b�i�
�=

⎡⎢⎢⎣
b�i−
�/2��

���

b�i+m−1�

⎤⎥⎥⎦
r×1

� b�i�
�=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1�1�i�

���

bK�1�i�

b1�2�i�

���bK�2�i�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2K×1

� (6.185)

and r
�= 2K�m̄+
�/2��.

We will see in Section 6.5.3 that the smoothing factor, m̄, is chosen such that

m̄ ≥
⌈

N��+1�+K
�/2�+1
2N −K

⌉
(6.186)

for channel identifiability. Note that the columns of H (the composite signature vectors)
contain information about both the timings and the complex path gains of the multipath
channel of each user. Hence an estimate of these waveforms eliminates the need for
separate estimates of the timing information

{
�k�m�p�l

}
.
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Blind MMSE space–time multiuser detection

Since the ambient noise is white, i.e., E�n�i�n�i�H� = �2I4Nm̄, the auto-correlation matrix
of the received signal in (6.184) is

Cr
�= E�r�i�r�i�H� = HHH +�2I4Nm̄ (6.187)

= Us�sU
H
s +�2UnUH

n � (6.188)

where (6.188) is the eigendecomposition of Cr. Note that Us has size 4Nm̄× r and Un

has size 4Nm̄× �4Nm̄− r�.
The joint MMSE multiuser detector and space–time decoder with corresponding

symbol estimate for bk�a�i�� a ∈ �1� 2� are given by

wk�a�i�
�= arg min

w∈C4Pm̄
E
[∣∣bk�a�i�−wHr�i�

∣∣2] � (6.189)

b̂k�a�i� = sign
[
Re
{
wk�a�i�

Hr�i�
}]

� (6.190)

The solution to (6.189) can be written in terms of the signal subspace components as [42]

wk�a�i� = Us�
−1
s UH

s hk�a� (6.191)

where hk�a

�= HeK�2
�/2�+a−1�+k is the composite signature waveform of user k for symbol
a ∈ �1� 2�. As for the synchronous case, this detector can be implemented in blind mode,
requiring knowledge only of the signature sequence of the user of interest and a (blind)
estimate of the channel.

Blind sequential Kalman channel estimation

The full details of the discrete-time channel model for the asynchronous multipath case
appear in [35]. In summary, the composite signature waveform of user k for symbol a

can be written as

hk�a = Ck�afk�a (6.192)

where Ck�a is a matrix of size 4N�
�/2�+ 1�× �2N��+1�+2� that is constructed from
the ath spreading code assigned to user k. The vector fk�a, with size �2N��+1�+2�×1,
is a function of the channel state information for user k and is also defined in [35]. The
blind channel estimation problem involves the estimation of fk�a�1 ≤ k ≤ K�a = 1� 2�

from the received signal r�i�. As we did for the synchronous case, we will exploit the
orthogonality between the signal subspace and the noise subspace. Specifically, since Un

is orthogonal to the columnspace of H, we have

UH
n hk�a = UH

n Ck�afk�a = 0� (6.193)
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Denote by z�i� the projection of the received signal r�i� onto the noise subspace, i.e.,

z�i� = r�i�−UsU
H
s r�i� (6.194)

= UnUH
n r�i�� (6.195)

Using (6.193) we have

fH
k�aC

H

k�az�i� = 0� (6.196)

Our channel estimation problem, then, involves the solution of the optimization problem

f̂k�a = arg min
f

E
[∣∣∣fHC

H

k�az�i�
∣∣∣2] (6.197)

subject to the constraint �f� = 1. If we denote x�i�
�= C

H

k�az�i�then we can use the Kalman-
type algorithm described in (6.156)–(6.158) where h1�i� is replaced with fk�a�i�.

Note that a necessary condition for the channel estimate to be unique is that the matrix
UH

n Ck�a is tall, i.e., 4Nm̄ − 2K�m̄ + 
�/2�� ≥ 2N�� + 1� + 2. Therefore we choose the
smoothing factor, m̄, such that

m̄ ≥
⌈

N��+1�+K
�/2�+1
2N −K

⌉
� (6.198)

Using the same constraint, we find that for a fixed m, the maximum number of users that
can be supported is

min
{⌊

N�2m̄− �−1�−1
m̄+
�/2�

⌋
�

⌊
N

2

⌋}
� (6.199)

Notice that for reasonable choices of m̄ and �, (6.199) is larger than the maximum number
of users for the linear diversity receiver structure, given by

⌊
N�m̄− ��

2�m̄+ ��

⌋
� (6.200)

This represents a quantitative example of the user capacity benefit of space–time multiuser
detection discussed in Section 6.5.1.

Once an estimate of the channel state, f̂k�a, is obtained, the composite signature vector
of the kth user for symbol a is given by (6.192). Note that there is an arbitrary phase
ambiguity in the estimated channel state, which necessitates differential encoding and
decoding of the transmitted data.
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Algorithm summary

Algorithm 3 (Blind adaptive linear space–time multiuser detector: asynchronous multi-
path CDMA, two transmitter antennas and two receiver antennas)

• Stack matched filter outputs in (6.179) to create r�i�.
• Create Ck�a.
• Using a suitable signal subspace tracking algorithm, e.g., NAHJ-FST, update the

signal subspace components Us�i� and �s�i� at each time slot i.
• Track the channel fk�a�1 ≤ k ≤ K�a = 1� 2� according to the following:

z�i� = r�i�−Us�i�Us�i�
Hr�i�� (6.201)

x�i� = C
H

k�az�i�� (6.202)

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.203)

fk�a�i� = (fk�a�i−1�−k�i�
(
x�i�H fk�a�i−1�

))
/
∥∥fk�a�i−1�−k�i�(

x�i�H fk�a�i−1�
)∥∥ � (6.204)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.205)

• Form the detectors:

wk�a�i� = Us�i��
−1
s �i�Us�i�

HCk�afk�a�i�� (6.206)

• Perform differential detection:

zk�a�i� = wk�a�i�
Hr�i�� (6.207)

�̂k�a�i� = sign
(
�
{
zk�a�i�zk�a�i−1�∗

})
� (6.208)

6.5.4 Simulation results

In this section, we present simulation results to illustrate the performance of blind adaptive
space–time multiuser detection. We first look at the synchronous flat-fading case; then we
consider the asynchronous multipath-fading scenario. For all simulations we use the two-
transmit/two-receive antenna configuration. m-sequences of length 15 and their shifted
versions are employed as user spreading sequences. The chip pulse is a raised cosine with
a roll-off factor of 0.5. For the multipath case, each user has L = 3 paths. The delay of each
path is uniformly distributed on �0� Ts�. Hence, the maximum delay spread is one symbol
interval, i.e., � = 1. The fading gain for each user’s channel is generated from a complex
Gaussian distribution and is fixed for all simulations. The path gains in each users’ channel
are normalized so that all users’ signals arrive at the receiver with the same power. The
smoothing factor is m̄ = 2 and the forgetting factor for the subspace tracking algorithm for



August 24, 2006 Page-287 0521873284c06

6.5 Adaptive linear space–time multiuser detection 287

all simulations is 0.995. The performance measures are the bit-error probability and the
signal-to-interference-plus-noise ratio, defined by SINR

�= E2�wHr�/Var�wHr�, where
the expectation is with respect to the data symbols of interfering users and the ambient
noise. In the simulations, the expectation operation is replaced by time averaging. SINR
is a particularly appropriate figure of merit for MMSE detectors since it has been shown
[32] that the output of an MMSE detector is approximately Gaussian distributed. Hence,
the SINR values (approximately) translate directly and simply to bit-error probabilities,
i.e., Pr�e� ≈ Q

(√
SINR

)
. The labelled horizontal lines on the SINR plot represent bit-

error-probability thresholds. For the SINR plots, the number of users for the first 1500
iterations is four. At iteration 1501, three users are added so that the system is fully
loaded. At iteration 3001, five users are removed.

Figure 6.14 illustrates the adaptation performance for the synchronous, flat-fading
case. The SNR is fixed at 8 dB. Figure 6.15 shows the adaptation performance for the
asynchronous multipath case. The SNR for this simulation is 11 dB. Notice that in both
cases the bit-error probability does not drop below tolerable levels even during transitions,
when users enter or leave the system. Convergence of the SINR to its maximum value is
almost instantaneous when users leave the system, and requires fewer than 500 iterations
when users are added to the system.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

101

Adaptation performance of blind adaptive space−time MUD for synchronous CDMA

SI
N

R

iteration

1e − 2

1e − 3

1e − 4

1e − 5

4 users 7 users 2 users

SNR = 8 dB; processing gain = 15;  ff = 0.995 

Figure 6.14. Adaptation performance of space–time multiuser detection for synchronous CDMA.
The labelled horizontal lines represent bit-error probability thresholds.
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Adaptation performance of blind adaptive space−time MUD for asynchronous multipath CDMA
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Figure 6.15. Adaptation performance of space–time multiuser detection for asynchronous multipath
CDMA. The labelled horizontal lines represent bit-error probability thresholds.

6.6 Summary

In this chapter, we have taken the work of the preceding chapters in several directions.
In Section 6.2, we introduced a general model for multiple-access signaling in MIMO
channels, and used this model to derive canonical receiver structures for multiuser
MIMO systems. This development ties the MIMO multiuser channel models discussed in
Chapter 2 together with receiver designs described in Chapters 3 and 5, and then extends
the latter to the multiple-access, frequency-selective channels arising in many applications.
Section 6.3 also echoes the detection problems discussed in Chapters 3 and 5, notably
by re-emphasizing the importance of iterative algorithms in complexity reduction for
MIMO receivers. Section 6.4 describes how the structure imposed by space–time coding
techniques of Chapter 4 can be exploited, together with the turbo-style iterative methods
of Chapter 5, can be used to significantly enhance the overall receiver performance with
little attendant increase in complexity. Although most of the work of the techniques in
this chapter applies to general interference-type channels (multi-access, inter-symbol, and
inter-antenna), the focus has been on the direct-sequence CDMA channels introduced
in Chapter 1. Section 6.5 specifically deals with such channels, which are particularly
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amenable to adaptive implementation. Moreover, Section 6.5 exploits the Alamouti space–
time coding structure described in Chapters 1 and 4 in its adaptation algorithms.

6.7 Bibliographical notes

As noted in Section 6.2, the methods discussed in this chapter have been developed over
a period of several decades. Early work on receiver design for channel-coded systems
and inter symbol-interference channels dates from the 1960s and 1970s, respectively,
while the techniques for multiple-access and inter-antenna interference channels began
largely in the 1980s and 1990s, respectively. A review of these developments is found in
[30]. Complexity reduction through iterative algorithms and through adaptation have been
major issues throughout this development, with turbo-style algorithms gaining significant
interest in the 1990s. (An overview of iterative techniques is found in [31].) The current
decade has seen a number of developments, particularly in the development of new
analytical tools using methods of statistical physics, and in refinement, analysis and
understanding of adaptive and iterative methods. However, all of these areas are still
areas of active research, and new developments continue today. Perhaps the most critical
open issue lies in the transition of these methods into more widespread practice. Although
current wireless standards and systems do incorporate some of the ideas explored in
this chapter, there is still considerable opportunity for further practical development. The
iterative and adaptive methods are, of course, directed at precisely this goal.

For further additional reading on the subject matter of this chapter, the reader is
referred to the books by Verdú [38], Wang and Poor [46], and Comaniciu et al. [5].
The first of these three books contains an excellent exposition of the fundamentals of
multiuser detection, while the second contains further elaboration and additional examples
illustrating the model of Section 6.2, as well as considerable discussion of various methods
of adaptive and iterative receiver design. Issues not treated in this chapter, such as
fast-fading and OFDM systems, are also considered there. Finally, the impact of these
methods on higher-layer networking issues, such as resource allocation, quality-of-service
provision, and network performance, is discussed in the third of these three books.
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