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Capacity of Multiple-Antenna Systems With Both Receiver [10]-[12] considered the capacity of multiple transmit and receiver an-

and Transmitter Channel State Information tenna systems when CSl is available only at the receiver, and [13] in-
vestigated the capacity of such systems when neither the transmitter

Sudharman K. Jayaweer&tudent Member, IEEENd nor the receiver knows the channel coefficients. The capacity of mul-
H. Vincent Pooy Fellow, IEEE tiple receiver antenna systems (with a single transmit antenna) when

CSl is available at both transmitter and receiver has also been previ-
) ) ~ ously considered in [14].

Abstract—The capacity of multiple-antenna systems operating in - \yhen poth transmitter and receiver have access to the CSl, the op-
Rayleigh flat fading is considered under the assumptions that channel . . L .
state information (CSI) is available at both transmitter and receiver, and ~timal strategies would make use of this information at both ends of the
that the transmitter is subjected to an average power constraint. First, the link. Intuitively, one would expect the transmitter to adjust its power
capacity of such systems is derived for the special case of multiple transmit and rate depending on the instantaneous value of the observed CSI. This
antennas and a single receive antenna. The optimal power-allocation regy)jts jn adaptive transmission techniques. However, such an optimal
scheme for such a system is shown to be a water-filling algorithm, and scheme could easily become too comblicated to implement. for ex
the corresponding capacity is seen to be the same as that of a system y - p p o o
having multiple receive antennas (with a single transmitter antenna) ample, when the fadingis correlated. In order to overcome this possible
whose outputs are combined via maximal ratio combining. A suboptimal transmitter complexity, it is also of interest to investigate low-com-
adaptive transmission technique that transmits only over the antenna plexity adaptive transmission techniques and determine the capacities

having the best channel is also proposed for this special case. It is shown,,, o g1ych suboptimal adaptive transmission techniques. As mentioned
that the capacity of such a system under the proposed suboptimal adaptive . . . .
transmission scheme is the same as the capacity of a system havingearher, this problem has been treated previously in [3] for the case of

multiple receiver antennas (with a single transmitter antenna) combined Single-antenna systems and in [14] for the case of receiver diversity.
via selection combining. ] ] With recent interest in multiple transmit antenna systems for wireless
Next, the capacity of a general system of multiple transmitter and re- - communications, it is also of interest to consider this problem in the

ceiver antennas is derived together with an equation that determines the context of multiple antennas at both transmitter and receiver. In this cor
cutoff value for such a system. The optimal power allocation scheme for p : B

such a multiple-antenna system is given by a matrix water-filling algorithm. ~ réspondence, we investigate the capacity of such systems under adap-
In order to eliminate the need for cumbersome numerical techniques in tive transmission techniques.
solving the cutoff equation, approximate expressions for the cutoff trans- First, we obtain the capacity of the optimal power and rate alloca-

mission value are also provided. It is shown that, compared to the case in .. . . .
which there is only receiver CSlI, large capacity gains are available with op- tion §cheme for a system ha"'f‘g multlp!e .transmlt antgnna§ but one
timal power and rate adaptation schemes. The increased capacity is shown l€C€iver antenna and, not surprisingly, this is seen to be identical to the

to come at the price of channel outage, and bounds are derived for this capacity of a receiver diversity scheme with maximal ratio combining.
outage probability. We also derive the capacity of a multiple transmit antenna system with

Index Terms—Adaptive transmission, channel capacity, matrix water- & Suboptimal adaptive transmission technique which is seen to be math-
filling, multiple-antenna systems, outage probability, Wishart distribution. ~ ematically equivalent to a receiver diversity system with selection com-

bining.
Next we consider a general system with multiple antennas at both
|. INTRODUCTION the receiver and the transmitter. The capacity of the optimal power and

The capacity of fading channels varies depending on the assumptitai€ allocation scheme for such a system is derived and this capacity
one makes about fading statistics and the knowledge of fading coeffi-evaluated for several representative situations. As we will show, the
cients. Over the years, the capacity of single-antenna systems (whegacity of such systems could be much larger than corresponding sys-
both transmitter and receiver are equipped with only one antenna edéfiys with only receiver channel state information. The increased ca-
has been considered for various assumptions on knowledge of fadi@gity comes at the price of channel outage which we characterize in
coefficients. For example, [1], [2] have treated the case where the terms of the outage probability. We also derive simple upper bounds
ceiver has access to channel state information (CSlI), [3], [4] have cd@r this outage probability.
sidered the capacity under the assumption that both transmitter and rén all these situations, we also provide approximate expressions for
ceiver have access to CSlI, and [5]-[9] have all treated the case witle@ capacity, which are easy to evaluate and thus eliminate the need
neither the transmitter nor the receiver knows the channel fading cofsfc any numerical integration or root finding techniques that might be
ficients. required otherwise.

Recently, there has been a surge of interest in multiple-antenna comFhe rest of this correspondence is organized as follows. In Section I,
munications systems. Naturally, this has led to capacity investigationve¢ outline our system model and the assumptions; Section Il con-
fading channels with multiple antennas either at the receiver or at iders the special case of capacity of multiple transmit antenna sys-
transmitter or at both ends of the communication link. For exampligms with a single receiver antenna. Next, in Section 1V, we treat the

capacity of a general system having multiple antennas at both trans-
mitter and receiver. We obtain the capacity of such systems under op-

timal power adaptation as well as the cutoff equation associated with
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respectively. The discrete-time received signal in such a system carlthe also worth mentioning that the distribution of the matHX is

written in matrix form as given by the well-known Wishart distribution [18]. In the present case
of Nv = nandNr = m = 1, itis easily seen that a singular value
y(i) = H(i)z(i) + n(i) (1)  decomposition off is defined by
wherey(7) is the complexVr vector of received signals at th€r U=1
receive antennas at symbol timer(¢) is the (possibly) compled'r A= [\/v 0, ..., 0]
vector of transmit signals on th¥, transmit antennas at timeand V=[v vy - v,] (4)

n(7) is the complexVr vector of receiver noise at timie The compo-
nents ofn (i) are zero mean, circularly symmetric, complex Gaussian
with independent real and imaginary parts having equal variance. It is \ - ” P2 d v = H?
assumed that noise on each receiver antenna is independent of that on T Z' g and = VAL
all others and thusg {n(i)n(i)""} = NoIn,, wherel v, denotes the =
N x Ny identity matrix. We also assume thati) is a sequence of  Defining the transformatiorg= Uy, # = V"' z, andn = U,
uncorrelated (and thus independent) random vectors. we see that the channel in (1) is equivalent to

The matrix H(i) in (1) is the N x N7 matrix of complex 7= Az +n. (5)
fading coefficients which are assumgd tq be stationary and e_rgodlchc the average transmit power is constrained as
The (nr, n7)th element of the matrid (i) represents the fading (oH o Ha
coefficient value at time between thenxth receiver antenna and Ea"a} = u[E{aa”}] = P
the ns th transmitter antenna. These fading coefficients are assuniB@n we also have that
to be slowly varying over the duration of a codeword. We assume E{&"#} =tr [E{:i::i}” }] =P (6)
that_elemeqt§ of the matriﬂ(z’)_are independt_ant and_identically From (4) and (5) we see that, for the present casd pf= 1, the
distributed (i.i.d.) complex Gaussian random variables with zero megRannel is equivalent to the following scalar channel:
and 1/2-variance per dimension. Of course, this gives rise to the G = Vi 47 )
so-called Rayleigh-fading channel model, which has often been used i Y AL
to model land-mobile wireless communication channels without "§1€reZ1 is the first component of the vectar o
direct line-of-sight path [15]. Hen(_:e, we see that on_Iy that energy contained in the compfbmemt

We assume that the instantaneous value of the fading coefficient Hg€fUl in detecting the signal, and thus we may as weltset s =
trix H (i) is known to both the transmitter and the receiver. This as:" = “~r = 0. Then, from (6) we have that
sumption can be satisfied, for example, by employing a channel es- E{i{} =P (8)
timation scheme such as pilot symbol insertion or training bits. The
transmitter may be assumed to be informed of those receiver estimatedOptimal Adaptive Transmission

CSl via a delay- and error-free feedback path. This is a reasonable ag-et ys define the received signal-to-noise ratio (SNR)) for a
sumption when the channel varies at a much slower rate compareg{gan value of the channel coefficient matrix as ‘

the data rate of the system. In a time-duplexed system, the transmitter ) P
may also estimate its own CSI values using the reverse link received (1) = M) Ny ©)
signals. We let the transmitter adapt its instantaneous transmit power

As we will see shortly, the capacity will be dependent on the number(~(;)) according to the channel variations, subject to the average
of transmitter and receiver antennas only through the relative paramgwer constraint
ters defined ag = max{Ng, Ny} andm = min{Ng, Nr}.

[Porrrar <P (10)
I1l. SINGLE RECEIVER ANTENNA SYSTEMS ¥
We start by considering the capacity of a multiple transmit and singféere P(7) denotes the time-varying instantaneous adaptive power

receiver antenna system with adaptive transmission techniques; 84/~ (7) is the probability distribution function of(i).
Ny = nandNyz = m = 1. In this case, the received signals a Note that the channel (5) with this adaptive transmission is mathe-

scalar which we denote as Note that, for convenience, we will drop Matically equivalent to the scalar channel treated in [3] with the same

the time index whenever this causes no confusion. average received SNR. Thus, observing that the instantaneous received
In general, we may decompose the fading coefficient m&frissing SNR is given_byP(qw(i))M, the average capacity of the channel in
the singular value decomposition [16], [17] (7), and also in (1), can be defined similarly to [3] as
P(y)y
B " C = max /log (1 + fr(mdy. (11)
H=UAV @) P(7): fﬂ/ PN fy(v) dy=P J~ P !

wherel, A, andV are matrices of dimensiaNz x Nz, Ng x N7, Thus, the coding theorem and converse proven in [3] apply directly to

andNr x N7, respectively. The matricd andV’ are unitary matrices € €guivalent channel model in (5), and the maximizing power adap-
satisfyingUU" = U"U = Iy, andVV" = V7V = I,. The tation rule is thereby easily shown to be the water-filling algorithm [3],
Np Np

matrix A = [\ ,] is a diagonal matrix with diagonal entries beind 1] given as

equal to the nonnegative square roots of the eigenvalues of SitHf P(7) 1L if v > o
or H¥ H, and, thus, are uniquely determined. For later use, we may - = { oo T (12)
also define the followingn x m matrix: 0, ify <
W HH", if Np < Np 3 where the cutoff valuey is chosen to satisfy the power constraint (10)
N {HHH, if Np > Nr. @ as
Note thatW can have at most. nonzero eigenvalues and thus cor- /“’ <i _ l) f(y)dy =1 (13)
respondingly at most: diagonal entries of the matriX are nonzero. o \0 Y LA
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From (11), the capacity of the multiple transmit antenna system undein Fig. 1, we have shown the exact cutoff value and its approximation
this optimal power and rate allocation scheme is then given by given by (18). From Fig. 1 it is clear that the above approximation
oo _ is indeed good for largg and the approximation becomes tighter as
C= / log <—’> Fy () dry. (14) Nr = nincreases. In fact, iV = n > 3, the approximation (18)
70 o becomes tight for all SNR- 0 dB, as one can see from Fig. 1.
In order to evaluate the above capacity, we recall from above\that Fig. 2 plots the exact capacity of the optimal adaptive transmis-
is the sum ofx squared complex Gaussian random variables. Hen&n scheme for the multiple transmit antenna system with a single re-
from (9),~ is ann-Erlang random variable having the distribution funcceiver antenna. Also shown in Fig. 2 is the capacity of a similar system

tion [20] with only receiver channel state information as derived in [12]. Note
_— that the asymptotic capacity of the receiver CSI only system tends to

() = 1 — <%) exp (_%) , v>0, (15) log(l_ + %_) for large N as shown in [12]. We_obs_erve that when the
(n =1\ ¥ v CSl is available at both ends of the communication system, large ca-

pacity gains are possible compared to a system with only the receiver

where we have defined the average SNRyas w% - he ori h for th | . i
From (15), we see that this channel is, in fact, equivalent to% | Of course, the price one has to pay for these large capacity gains

single transmitter antenna system with receiver antenna diversity éﬁqje outagedpgobﬁblllty dete_rmlr?t;q by the Cuﬁﬁ \ll_all_Je'_S.“"’ Whe.Elthe
maximal ratio combining. However, in this case, we are transmitti ay caused by the outage Is within acceptable limits it Is possible to

from multiple antennas. For example, givBn the actual transmission ggin large C?.p&City improvementg in_ multiple transmit antenna systems
scheme is such that if the instantaneous valug(6f defined in (9) is with the optimal adaptive transmission scheme proposed above.

greater thany, satisfying (13H), then the transmitted signals on Ae
antennas are given hy= ﬁi—”i] , Wherez, is the capacity-achieving
signal for the system in (7) with? = P(-L — 1). On the other hand Suppose now that instead of the above scheme we employ the sim-
if the instantaneous value of¢) defined'in (é) is less tham,, then pler technique ofchoosing_thetransmitter antenna cor_responding tothe
transmission from all antennas are cut off; i.e., no signal is transmitt9est channel gain coefficiedi, ., and then transmit only on that
from any antenna. particular antenna. We call this strategy the maximal gain transmission

From the equivalence of the scalar system in (7) to the maximal rafRFhnique. In this subsection, we derive the capacity of this scheme, the
combining receiver diversity system, it then also follows that the pro Qapt've power a"f?cat'on rule that .achle.ves It, and show Fhat, in f§Ct1
erties of the cutoff value, and capacity expression given in [14] for his sc_:h_eme is equivalent to a receiver d_|ver5|ty syste_m w_|th selection
the receiver diversity system holds for this transmitter diversity systef@Mbining [14], [15]. We also provide simple approximations to the
verbatim. In fact, substituting (15) into (13) we get the equation th§fPacity and the cutoff value in this case.

B. Maximal Gain Transmission

the cutoff valuey, must satisfy to be With this new transmission scheme received signal can be written as
n. 1 ) y(1) = h(i)x(t) + n(i 20
L ) _ T(n—1, p) =7(n —1)! (16) y(é) (B)a(?) @ (20)
" wherez(i) is the transmitted signal at time(which can be on any
whereI'(n, 1) denotes the complementary incomplete gamma funantenna) and(:) is the corresponding fading coefficient.
tionT(a, z) = _[;C e te®" 1 dt and Analogously to the previous case, we may define
Yo (1)]?
p= ’:} 17) i) = L?\g”' : (21)
FANI)
It was shown in [14] that there exists a uniqueand thus a unique Since h(i) = max{H; (i), Hi 2(i), ..., Hi .(1)}, it is easily

Y0, that satisfies (16), and that this always satisfie® < 10 < 1.  shown that the probability density function (pdf)pfs given by
Specifically,lim=__, v = 0 andlims__ . v = 1. 1

In general, solution of (16) requires numerical root finding tech- £.(y) = 2 exp (_%) <1 — exp <_%>) ) (22)
nigues. However, it can be shown that folarge (i.e., for large SNR), ' Y Y Y
a reasonable approximation feg is given by

/

Comparing the pdf in (22) with the pdf of the received SNR of a re-
n—1 _ ceiver diversity system with selection combining, given in [14], we ob-
R T T fory > 1. (18)  serve that, in fact, they are identical. Thus, substituting (22) into (13),
7 we obtain an equation that must be satisfied by the cutoff value of the

Substituting (15) into (14) and following the same steps as in [14Haptive transmission rule that achieves the capacity in the maximal
we can also obtain the equivalent capacity formula for the multiplgain transmission scheme to be

transmit antenna SyStEIII witt Opti nal power adaptatio 1 to be !
7Zl frn—1 xp(—(1 + k E Y
( 1)A<IL k > |:e p( ( )N) 1((1 A),u) - )

n—1

C = log,(e) <Z 73/@]1(//,) + El(u)> bits/channeluse  (19)  i=o (1+k)u "’( |
= d 23
k=1
wherep is given in (17),E:(u) is the exponential integral function \év:rireer” Is given by (17) andt’s (1) is the exponential integral defined
(21], [22] defined as Again, (23) is identical to the equation that determines the cutoff for
5 (et It the selection combining receiver diversity system obtained in [14]. As
1p) = . -+ a result, properties of the cutoff value given in [14] directly applies to
) ) this system as well. Specifically, < v, < 1.
and the Poisson suf, (1) is Substituting the series representation [21], [22]
- = (—a)
Pe(p)=e""Y" R Ei(x) = —F —log(a) = y_ 7

J=0 " k=1
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Approximation to the Cut off

; Exact cut off -
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Fig. 1. Approximation to the optimal cut-off value versus SNR (in decibé¥g).= 1.

of the exponential integral function, whefg is the Euler’'s constant  Using the results derived in [14] for the selection combining receiver
(F = 0.5772156649015325 - - -) [22], and after some manipulations,diversity scheme, we have the capacity of maximal gain transmission
we may obtain the following.th-order approximation to (23): scheme

n—1 " . n—1 ~ . 1 L
+ﬂ<2( D* ( >log<1+k)> ﬁ C= #;< 1) ( )J (14 F)p), (25)

wherepis given in (17) and the integral, (1) is defined as in [14] to
Hence, fory large, an(n — 1)th-order approximation to the cutoff be

value~, can be given as L .
Tp(p) = / P log(t)e * dt, forp=1,2,.... (26)
1 - 1
Yo~ Mo 1’ fory>1 @4 Using the fact that7, (1) = F”’” , We may write the capacity in (25)
as
where we have defined the constad}, as oo nnz_:l(—l)"'“ v =1\ Er((1+ k)p) 27
n—1 =0 k 1 + k

M, = —1)k! log(1 + k). L

o ;( ) k og(1+k) It can also be shown that far > 1 and¥ > 1, the above capacity is

well approximated by

Thus, the capacity of a maximal gain transmission system with n—1 n— 1) log(1 + F)
Ny = n antennas and a single receiver antenna is equal to that af'ax log(¥) — | E + log(vw) +n Z(-l)“( )g ,
selection combining receiver diversity system wi¥lx = n receiver k=0 k 1+ k
antennas. However, it should be noted that in this case the codewords forn > 1, andy > 1. (28)

are transmitted from different transmitter antennas at each time inst
depending on which antenna corresponds to the largest fading g
This is somewhat similar to a particular implementation of Bell Labs

layered space—-time (BLAST) architecture [10] where one periodically lim C =log(®) — [E +log(7o)]

rotates the transmit antennas. However, BLAST does not assume T ~ log(7) fors > 1 (29)
knowledge of fading coefficients at the transmitter and thus there is no 7 ’
associated cutoff value, and the order of antenna rotation is predeterig. 3 plots the exact capacity expression in (27), evaluated with both
mined. exact and approximate cutoff value. The figure shows that unless

%nbartlcular fory > 1, the capacity asymptote for largér is given
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Capacity with Optimal Adaptive Transmission
7 T T T T

0

H

Capacity per Channel Use in Bits
w

N

> - |e——o Adaptive ca aC|t?/

3 .......... & : O o Receiver CSI only capacity

0$ """" ! | | |

-10 -5 0] 5 10 15

SNR in dB
Fig. 2. Exact and approximate capacities for the optimal adaptive transmission versus SNR (in dé€jpeis})..
both SNR andVr = n are small, the capacity deviation due to the uddling formula to be, fori = 1, ..., m
of the approximate cutoff value given by (24) is not significant. In fact, -
from these plots it is evident that fo¥, as low ast, the error due to Q. Wl_o - % ity > 7o 32
the approximation is negligible. Also, comparison of Fig. 3 with Fig. 2 (P/m) — 0, if % <o (32)
illustrates the capacity loss due to the suboptimal transmission scheme. '
where~; fori = 1, ..., m are defined as
IV. CAPACITY WITH MULTIPLE ANTENNAS AT BOTH TRANSMITTER
AND RECEIVER Vi =T (33)

We now turn to the situation in which there are multiple antennagd), are the eigenvalues of the Wishart distributed matixdefined
at both transmitter and receiver ends. In this case, applying singula(3). We have also redefineflas
value decomposition of the matrH in (2), we still have the equivalent

channel model given in (5). In analogy with (9) we may define 7= r ) (34)
mNy
' P . . .
A(i) =/ A A®D) (30) The cutoff valuesy;, o in (32) are chosen to satisfy the power con-
straint
and, as before, let the transmit power vary with the observed channel )
state information subject to the average power constiairt we de- = tr(E{Q(A’)})
fineQ = zz", then the instantaneous transmit power can be written as 1
#7& = tr[Q], and the average power constraint becomi¢sr[Q]} < - Z / < 7) Fri () dvs (35)

P. Hence, in this case the adaptive transmission strategy based on the
observed channel state information can be achieved by lefitme

. where ;) denotes the pdf of thé&h nonzero eigenvalue of the
a function ofA’(i). Thus, we denote the instantaneous valu@of) F: (1) P g

Wishart matrixW. If we let f,(~) denote the pdf of any unordered

asQ(A (i)). Then, we may define the average capacity of the vector, fori = 1 m, then (35) leads to
time-varying channel with adaptive transmission scheme to be T
N /1 1
/ — ) f(dy=1 36
C= max Ear{logdet| T+ A’ Q) A . X,,O <’)"0 ’7") (N dy (36)
QA >0, te(£{QAN Y =P (P/m)

(31) where~, is the cutoff transmission value corresponding to any eigen-
value.
It can be shown that the above maximization is achieved by a diag-The probability distribution functiop (A) of an unordered eigen-
onal@Q(A") and that the diagonal entries are given by a matrix watevalue of a Wishart distributed matrix was given in [12], and can be
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Exact and Approximate Capacities for Max. Gain Trans. with Cut off Approximation

w » (8]
T T T

Capacity per Channel Use in Bits

n

Exact capacity
O o Approximate capacity

0
-10 -5 0 5 10 15
SNR in dB

Fig. 3. Capacity of the maximal gain transmission scheme evaluated with both exact and approximate cutoff values versus SNR (il\deeibels).

written as Next, define the functiorF(:) as
6—)\)\11 m M ]‘z _ 1 1 . 9 B m (k _
pa(A) = - Z o —mtk—1) (L= )] @ Flo)= 1; m / fon—m, k(7, 2) dvy —m7. (41)

Note that (40) is then equivalent to the casefgt) = 0. Differenti-

where the associated Laguerre polynomial of oddeE}; ™ ()), for X ) :
g poly HeE; ™ (V) ating (41) with respect to gives

k > 0, is defined by [21], [22]

m

E—=1)! 1 [
a 1 a dL a v FI(Z) == (— /
Li(\) = e A INE |:(3>\/\ 'H‘]. (38) kz::l(n—m+k—l)! 22 /.
Then from the definition in (33) we have that xe T LI (o ")] dy (42)
1 5 and we immediately notice that, since the integrand in (42) is positive
() = = P <:) . (39) o
J v F'(z) <0, for = > 0. (43)

Substituting (39) in (36) and introducing a change of variable we s

&fmilarly, one can also show that'(z) > 0 for = > 0.
that the cutoff value must satisfy Y (2)

Next, either relying on the normalization property of a pdf or by
/oo <1 1) N [ ( )];) explicitly recalling the integral equation [22, eq. 7.414.9] we have that
- ’77 m LZ JI:H “ y

z’”: (k—1)!

n—m+k—1) P ey - - :

o (n—m+t Mt B lim / e T [L:_I"(q)]z d
=m75y (40) =—0%J;

(n—m+k—1)!
wherepis as defined in (17). = TS forn —m > 0. (44)
In the following subsection, we show that fgr > 0, (40) has a

unique solution..

nooy

Using [22, eq. 7.414.12], for — m > 0, we also have that

. - — n—m—1 n—m 2
A. Uniqueness of the Cutoff Value ;Ln(lﬁf ey [Li~1 (0] dy
Intuitively one would expect (40) to have a unique solutioin fact, _Tn=m)L(n=m+k)
by studying the properties of (40) we may show that this indeed holds ~ T'(n — m + 1)[(k — 1)!]2
true. o n—m n—m 1. _
For convenience, let us define the integrand in (40) to be « a1 | ( 27 tainmmAlh <1+”)2)
dh*=1 (1= h)(1+h)n—m ’

. N 1 1 —y n—m n—mg 2 h=0
from k(7 2) = <g - :/> A GO forn —m > 0 (45)
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where F(a, b; ¢; x) is the hypergeometric function defined as [21], 1) Case 1:n —m > 0: Note that, whem —m > 0, for p+¢ =
[22] 0, ..., 2(m—1),we have that—m+p+g—1>0andn —m+p+q >
1 > 0. Then, we easily have that

I(n —1 1, p ,
Gy, q(2) = (n m—l—ﬁ—i—q—l— ’“)—F(n—m—l—p—l—q,u),

forp+4¢=0,1,...,2(m—=1)andn —m >0 (54)

(a, by ;) = Z (@) f(f)k o (46)

where the hypergeometric coefficigt) . is defined as the product

7 wherel'(a, x) is the complementary incomplete Gamma function and
(@) =ala+1)--(a+k=1) we have also made use of the integral identity

with (a)(] = 1. ) o R n ﬂj
Applying a transformation formula for a hypergeometric function / e 'y dy=nle Z U forn >0
n T

[22, eq. 9.134.2] to (45), we have far— m > 0
which can be verified straightforwardly via repeated application of in-

lim / e Tyl [LZ’:;”(W)]Z d tegration by parts.
207 J2 Substituting (54) into (52) we obtain a closed-form equation that
_ (n—m+k-1)! forn—m>0. (47) can be solved for a unique(which is known to exist by the previous
(n—m)(k—-1)"" section), in general, via numerical root finding.

However, as we did in the single receiver antenna case, we may also

Substitution of (44) and (47) in (41) shows that, for- m > 0 obtain an approximate solution for the cuteff by investigating small

lim F(z) = +oc forn —m > 0. (48) M behavior of (52). In fact, following a similar procedure as in the case
z—0+ ’ of a single receiver antenna, we may show that
imi , —m = B
Similarly, forn — m = 0 o ~ 13, , for s> 1 (55)
m m 4+ =
lim F(2) = (k—1)! i 1 (s K
m (2) = Z (n—m+k—1) et |z 1(%) where we have defined the constaBtsand B to be the sums
k=1
=+ oo, forn —m=0 (49) = (k—1)! U 1)’7+q
_ _ Bl:Z(1_771+k_1IZZ Plq!
whereFE is Euler’'s constant and in the last step we have used the fact k=1 p=0 =0
that « n—m+k—1\[n—m+k-1
k—1—p k—1-—g¢q
lim zlog(z)=0.
z—0 X (n—m+p+q)!
Also, from (41), it is easily seen that and
m k—1 k—1
_ 3 B (k— 1) (—1)pte
Zil:l_oo F(z) = —m7, forn —m > 0. (50) B = kz_:l m pz:% ; T plgt
Thus, from (43) and (48)—(50) it follows that fer> 0, the function n—-—m+k—-1\[n—-—m+k-1
F(z) has a unique zero for all — m > 0. From (17), then we see that % k—1-—p k—1-—¢

for any¥ > 0 there exists a unique cutoff valye for anyn —m > 0 |
which satisfies (40), as we expected. x(n—=m+ptqg-D
Note that forn > 1 andm = 1, By = 1 andB; = -, and thus,
B. Evaluation of the Cutoff Value for Multiple-Antenna Systems  (55) reduces to (18), as one would expect.
Substituting the polynomial representation 2) Case 22n — m = 0: Whenn —m = 0,forp +¢ =
0, ..., 2(m — 1), we still have thatr — m + p + ¢ > 0. However, in

. ! k +a thiscases —m+p+q—1> —1. Forn — m = 0, (52) reduces to
Li(\) = Z( 1) (51)
SR )0 Jo
Gp,q(pt) =m7y
1,0 L1, 1 P,q
into (40) we obtain oss ve \k-lep J\k-l-g
Z kzjl kzjl (—1)p+a <n 4o 1) and, similarly, the integral?,, ,(x) in (53) becomes
—_ _ _1_ . /1 1\ _.
k=1 (n—m+ k=1t p=0 ¢=0 ' k=1 Gp.a(p) :/ <_ B :) e TP dn,
b1 1 " )
x ( k1+ | )Gn,qm) =m7 (52) forp+q¢=01,....2(m—1).
—1—q
Then, we can easily show that
where we have defined the integra)}, ,(x) to be riw _p, (), ifptqg=0
=9 . (56)
oo ) Tp,q\H) — .
Gy, q(p) = / <l - l) e TynTmArta g W —T(p+gq, p), ifp+q>0.
1 wo
forp+q=0.,1,....,2(m—1). (53) On substituting (56) into (52), again we may obtain a closed-form

equation inu that can be solved for a unique solution. It is also easily
Next, we consider the two casesof— m > 0 andn — m = 0 verified that this general equation reduces to the corresponding equa-
separately in order to obtain an explicit solution to (52). tion given in [14] for the case oVp = Np = 1.
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Approximation to the Cut-off
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Fig. 4. Approximation to the optimal cutoff value versus SNR (in decibels)}= 4.

)

Aswe did earlier forthe case of— m > 0, we may obtainan approx- derived above. Note that, in the casewf m, the cutoff approxima-
imate solution to the cutoff, that satisfies (52), which will eliminate the tion deviates considerably from the true cutoff for small values.of
need to perform numerical root finding. However, due to the singularityowever, as we will see in the next section, even these cutoff values will
of the exponential integral functidi (1) near zero, this becomes morebe effective in approximating the true capacity. It is clear that for all the
involved than the previous case. Still, after some manipulations, we nather cases, derived approximations to the cutoff value do closely esti-
show that a reasonable approximation for layge mate the true cutoff value for reasonably high SNRs and larg@om

may + /m2a2 — 4ya,as Fig. 4, we may also observe that stjll lies in the rang® < v < 1,
Yo & 5a) (57)  and specificallyyy — 1 asy — oc.
where we have defined the constants a-, andas as ) )
1+D C. Evaluation of Capacity
=—m2 1= 1+Ds
ar=m [ - ] Substituting (32) into (31), we obtain the capacity of the multiple-
as = Ds +m [T + log(T) +2— E] antenna system
as =m+ Dy C:m/ log( >f (v)d~. (58)
and wherel is the Euler’'s constant and,, D-, D3 are the following 70
sums: where, is the cutoff transmission value corresponding to any un-
m okl ko el k-1 E_1 ordered eigenvalue derived in the previous section, &rid) is the
D, = Z Z q, hel—p)\E=1—g¢ pdf of any scaled, unordered eigenvalue given in (39).
k=1 p=0 plqio Using the explicit form of the pdf (39) and the representation of as-
x (p+ q), sociated Laguerre polynomial given in (51), we can write (58) as
m k—1 _ p+q b1 b1 m k—1k—1 p+q
D ’ | =Y T S 2
;pzo QZO pq' <k—l—p><k—l—q (n—m—l—k‘ 1‘p 0 ¢=0 'q,
p+q7#0
n—m-k—1 n—m+k—1
(P+ q— 1)’ x < k=1-p ) < k—1—g )jnm+p+q+l(#') (59)
m  k—1 — p+q E_1 E_1 ! !
= Z Z Z I q, E—1—p)\k—1-¢ where 7,(p), forp = 1, 2, ..., is the integral defined in (60). The
k=1 p=0 piqoo integral 7, (1) can be evaluated in closed form and was given in [14]
o P + q . as
p—1
. . ’]) 1
. Fig. 4 shows the typlcal behavior qf the cutoff value for a mul- To(p) = (p =1 |Ei(p) + Z J(f) (60)
tiple-antenna system with = 4, along with the cutoff approximations =




IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2705

Capacity with Optimal Adaptive Transmission for m = N,
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Fig. 5. Capacity of the multiple-antenna system with optimal adaptive transmission versus SNR (in degibel$) N+ = m in the receiver CSl only system).

Substituting (60) into (59) we obtain the capacity of multiple-anin a larger capacity gap compared to the adaptive transmission system.

tenna system However, the capacity of the adaptive transmission scheme is invariant
O — Lo m (k—1)! it (—1)Pte under the swapping of the transmitter and receiver antennas and also
' = logy(e) Z (n—m+k—1) Z Z plg! is larger than either of the cases with only receiver CSI. Further, com-
=t p=0 a=0 paring these results with the capacity plots }og = 1 given earlier,
« ’"'—am +h=1)[n-m+k-1 (n—m+p+q) we see that large capacity gains are available when multiple antennas
k=1-p k—1-g¢ are used at both ends of the communications link.

- n—m+ptq Pi(2) In Fig. 7, we have shown the capacity evaluated with both the exact
1(2) + 2 j cutoff value and the approximate cutoff value given by either (55) or
w (57) for a system withn = 4. This figure shows that the derived ap-

It is easy to verify that forn. = 1, (61) reduces to (19) obtained : : . )
previously for a system with multiple transmit antennas and a Singqéommate cutoff values are indeed reasonable when the SNR is suffi-

receiver antenna, as required. ciently large. Moreover, they confirm the earlier remark that although
Fig. 5 plots the capacity of a multiple-antenna systemifior= 4  the cutoff estimate given in (57) deviates from the true cutoff more than
with different values of. versus the SNR. Shown on the same figuréhat of (55), the approximation (57) nevertheless results in a reason-
is the capacity of the corresponding multiple-antenna system with oriigle capacity estimate. Fig. 7 shows that the capacity computed with
receiver CSI obtained in [12]. While the capacity of a multiple-antenngyproximate cutoff values tend to get closer and closer to the exact ca-

system with CSI at both transmitter and receiver is invariant to Whi‘ﬂhcity either as SNR becomes large or the maximum of the number of

end of the link has the larger number of antennas, this is not the case
antennas: grows.

with only receiver CSI. Thus, Fig. 5 specifically corresponds to the CaseFinaIIy, Fig. 8 plots the capacity versus the minimum number of an-

when the receiver CSI system hds = m and Nr = n. Again, it . )
. . . ._tennasm at one of the ends of the system against a fixed but large
is clear from Fig. 5 that large capacity improvements can be achieved . .

maximum number of antennasat the other end. Fig. 8 corresponds

with adaptive power and rate allocation when CSl is available at b thn — 18. As observed in the case when CSl is available only at the

chﬁazfléhe system as compared to the case when only receiver C re(':Seiver, studied in [10] and [12], from Fig. 8 we see that again the ca-

) . pacity is almost linear in the minimum number of antennadn Fig.

In Fig. 6, we have shown the capacity of the same system as that cgNy;e have also included the capacity approximations computed with
sidered in Fig. 5, but this time comparing it with a receiver-CSl-onlihe estimated cutoff values. Note that these capacity approximations
system withV7 = n andNr = m. In this case, the receiver-CSl-only are in good agreement with the exact capacities for the values of SNR
system has a lower capacity than in the previous case thereby resuling number of antennas considered.

X bits/channel use (61)
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Capacity with Optimal Adaptive Transmission for m = N,
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Fig. 6. Capacity of the multiple-antenna system with optimal adaptive transmission versus SNR (in degikel$Y.Nr = m in the receiver CSI only system).

Exact and Approximate Capacities for Optimal Adaptation
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Fig. 7. Multiple-antenna system capacity evaluated with both exact and approximate cutoff values versus SNR (in decibdls).
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Exact and Approximate Capacities Vs Minimum No. of Antennas
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Fig. 8. Multiple-antenna system capacity evaluated with both exact and approximate cutoff values versus minimum number ofrafjtenaasq.

D. Outage Probability for m = 1 the right-hand side of (63) reduces to the exact pdf for this

As remarked earlier, the large capacity gains possible with the ad&Se: 9iven by (15). .
tive transmission scheme derived above, compared to the capacity df'9: 9 PIots this upper bound for the outage probability as a func-
a system with CS| available only at the receiver, come at the price 1" of SNR form = 2. As one would expect, the outage probability
channel outage. This is so because the optimal adaptive power and $&fg/€ases with increasing SNR values. Also, it is clear from this plot
allocation scheme would not be transmitting at all if all the observéfi2! the outage probability bound decreases rapidly when the maximum
~;'s were less than the cutoff valye, thus resulting in channel outage.number of antennas increases for a fixed:.
Hence, in order to put the extraordinary capacity gains offered by thenfortunately, though, the above bound becomes very loose when
power and rate adaptation schemes in perspective, itis necessary to {a&e R is low and the maximum number of antennas are large. Espe-
into account the associated outage probability values. In what foIIov%?"y' in some_of these cases the right-hand side of (63) may t_)ecome
we provide a simple upper bound for this outage. larger than unity rendering it completely useless. In order to circum-

We denote the largest eigenvalue of the Wishart distributed mat{gt this shortcoming, we may derive another bound which is always

W asAmax and the outage probability of a multiple antenna system d@ss than or equal to unity. Note that this bound is valid only for the

P™.™ Then, it is easily seen that case ofin = n. , ,
In order to derive this bound, we denote the smallest eigenvalue of

p
P = / Famae (A) dA (62) the Wishart matrix¥ by Ain. It is shown in [24] that whem: = n
0

T i — /7m>\. H
wheref, .. ()\) is the pdf of the largest eigenvalue of the Wishart mat-hge,?fhm‘“(/\) Of Ausin IS gVeN BY £y, (A) = me since,

<P A111i11 [}
trix W. An upper bound for this pdf in the case of real Gaussian randoni**  — ( < ), we have that
variables was derived in [23] for the caserof= n. Following [24], Pt — e
we may generalize this upper bound for anyand» and show that in —
. . =pa2. (65)
the case of complex Wishart matrices

P (V) < F )11“(' ) AnFme2, A 63) Combining (64) and (65) we have that for = n
n m
From (63) and (62), we have the following upper bound for the Pout™ < min{p1, pa}. (66)
outage probability of the multiple-antenna system: Fig. 10 shows this upper bound for = n multiple-antenna system
P < 1 [C(n4+m—1)—T(n+m—1, p)) outage probability versus the SNR for different valuesofThe con-
L(n)L'(m) clusion one can draw by observing these plots is that employing mul-
=D (64) tiple antennas at both ends of the communication link and adapting

Note that, form = 1, this upper bound for the outage probability inpower and rate not only provides large capacity gains but also helps in
fact gives the exact value of the outage. This is clear by observing tllacreasing the outage probability considerably.



2708

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

Outage Probability Upper Bound for Optimal Adaptation
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Fig. 9. Upper bound for outage probability of a multiple-antenna system versusisNR2.

Outage Probability Upper Bound for Optimal Adaptation
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V. CONCLUSION [12]

We have considered the capacity of multiple-antenna systems if 3
Rayleigh flat fading under the assumption that CSl is available at both
ends of the system. First, we derived the capacity of such systems in
the case when only the transmitter is equipped with multiple antenna$t!
We showed that the capacity of this system is, in fact, the same as a
receiver-only diversity system with maximal ratio combining. We also[15]
proposed a transmission diversity scheme (maximal gain transmission)
that is mathematically equivalent to a receiver-only diversity systen{lsl
with selection combining and evaluated its capacity. 17]

Next, we derived capacity expressions for a general system with mu[—
tiple antennas at both transmitter and receiver. We showed that the o8]
timal power allocation is given by a matrix water-filling algorithm. We
obtained an equation that determines the cutoff value for such systerrggl
which can be evaluated via numerical root-finding, and a correspondin
closed-form expression for the capacity with optimal power and ratg20]
adaptation. We evaluated this capacity for some representative situa-
tions and demonstrated similarities with the capacity of such systen@ll
when CSl is available only at the receiver end. [22]

In all these cases, the only step that required numerical techniques
in determining the capacity is the evaluation of the cutoff valyeln [23]
order to circumvent this problem, we also derived approximations to
the cutoff value for all cases considered. Numerical results show thaf?!
these approximations yield good capacity estimates when the SNR or
the number of antennas is sufficiently large.

From these capacity computations for multiple-antenna systems with
adaptive transmission techniques we observe that large capacity gains
are possible compared to the receiver-CSl-only systems. The tradeoff
for these increased capacity values is the outage probability incurre
by the adaptive power and rate allocation schemes. We derived simpl
upper bounds for this outage probability and showed that the channe
outage probability may also be decreased by increasing the number of
antennas.
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