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Abstract—The capacity of multiple-antenna systems operating in
Rayleigh flat fading is considered under the assumptions that channel
state information (CSI) is available at both transmitter and receiver, and
that the transmitter is subjected to an average power constraint. First, the
capacity of such systems is derived for the special case of multiple transmit
antennas and a single receive antenna. The optimal power-allocation
scheme for such a system is shown to be a water-filling algorithm, and
the corresponding capacity is seen to be the same as that of a system
having multiple receive antennas (with a single transmitter antenna)
whose outputs are combined via maximal ratio combining. A suboptimal
adaptive transmission technique that transmits only over the antenna
having the best channel is also proposed for this special case. It is shown
that the capacity of such a system under the proposed suboptimal adaptive
transmission scheme is the same as the capacity of a system having
multiple receiver antennas (with a single transmitter antenna) combined
via selection combining.

Next, the capacity of a general system of multiple transmitter and re-
ceiver antennas is derived together with an equation that determines the
cutoff value for such a system. The optimal power allocation scheme for
such a multiple-antenna system is given by a matrix water-filling algorithm.
In order to eliminate the need for cumbersome numerical techniques in
solving the cutoff equation, approximate expressions for the cutoff trans-
mission value are also provided. It is shown that, compared to the case in
which there is only receiver CSI, large capacity gains are available with op-
timal power and rate adaptation schemes. The increased capacity is shown
to come at the price of channel outage, and bounds are derived for this
outage probability.

Index Terms—Adaptive transmission, channel capacity, matrix water-
filling, multiple-antenna systems, outage probability, Wishart distribution.

I. INTRODUCTION

The capacity of fading channels varies depending on the assumptions
one makes about fading statistics and the knowledge of fading coeffi-
cients. Over the years, the capacity of single-antenna systems (where
both transmitter and receiver are equipped with only one antenna each)
has been considered for various assumptions on knowledge of fading
coefficients. For example, [1], [2] have treated the case where the re-
ceiver has access to channel state information (CSI), [3], [4] have con-
sidered the capacity under the assumption that both transmitter and re-
ceiver have access to CSI, and [5]–[9] have all treated the case when
neither the transmitter nor the receiver knows the channel fading coef-
ficients.

Recently, there has been a surge of interest in multiple-antenna com-
munications systems. Naturally, this has led to capacity investigation of
fading channels with multiple antennas either at the receiver or at the
transmitter or at both ends of the communication link. For example,
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[10]–[12] considered the capacity of multiple transmit and receiver an-
tenna systems when CSI is available only at the receiver, and [13] in-
vestigated the capacity of such systems when neither the transmitter
nor the receiver knows the channel coefficients. The capacity of mul-
tiple receiver antenna systems (with a single transmit antenna) when
CSI is available at both transmitter and receiver has also been previ-
ously considered in [14].

When both transmitter and receiver have access to the CSI, the op-
timal strategies would make use of this information at both ends of the
link. Intuitively, one would expect the transmitter to adjust its power
and rate depending on the instantaneous value of the observed CSI. This
results in adaptive transmission techniques. However, such an optimal
scheme could easily become too complicated to implement, for ex-
ample, when the fading is correlated. In order to overcome this possible
transmitter complexity, it is also of interest to investigate low-com-
plexity adaptive transmission techniques and determine the capacities
under such suboptimal adaptive transmission techniques. As mentioned
earlier, this problem has been treated previously in [3] for the case of
single-antenna systems and in [14] for the case of receiver diversity.
With recent interest in multiple transmit antenna systems for wireless
communications, it is also of interest to consider this problem in the
context of multiple antennas at both transmitter and receiver. In this cor-
respondence, we investigate the capacity of such systems under adap-
tive transmission techniques.

First, we obtain the capacity of the optimal power and rate alloca-
tion scheme for a system having multiple transmit antennas but one
receiver antenna and, not surprisingly, this is seen to be identical to the
capacity of a receiver diversity scheme with maximal ratio combining.
We also derive the capacity of a multiple transmit antenna system with
a suboptimal adaptive transmission technique which is seen to be math-
ematically equivalent to a receiver diversity system with selection com-
bining.

Next we consider a general system with multiple antennas at both
the receiver and the transmitter. The capacity of the optimal power and
rate allocation scheme for such a system is derived and this capacity
is evaluated for several representative situations. As we will show, the
capacity of such systems could be much larger than corresponding sys-
tems with only receiver channel state information. The increased ca-
pacity comes at the price of channel outage which we characterize in
terms of the outage probability. We also derive simple upper bounds
for this outage probability.

In all these situations, we also provide approximate expressions for
the capacity, which are easy to evaluate and thus eliminate the need
for any numerical integration or root finding techniques that might be
required otherwise.

The rest of this correspondence is organized as follows. In Section II,
we outline our system model and the assumptions; Section III con-
siders the special case of capacity of multiple transmit antenna sys-
tems with a single receiver antenna. Next, in Section IV, we treat the
capacity of a general system having multiple antennas at both trans-
mitter and receiver. We obtain the capacity of such systems under op-
timal power adaptation as well as the cutoff equation associated with
the optimal transmission scheme. In Section IV, we also derive simple
upper bounds for the outage probability of the optimal adaptive trans-
mission scheme for a multiple-antenna system. Finally, in Section V,
we give some concluding remarks.

II. SYSTEM MODEL DESCRIPTION

We consider a single-user flat-fading communications link in which
the transmitter and receiver are equipped withNT andNR antennas,
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respectively. The discrete-time received signal in such a system can be
written in matrix form as

yyy(i) = HHH(i)xxx(i) + nnn(i) (1)

whereyyy(i) is the complexNR vector of received signals at theNR

receive antennas at symbol timei, xxx(i) is the (possibly) complexNT

vector of transmit signals on theNT transmit antennas at timei and
nnn(i) is the complexNR vector of receiver noise at timei. The compo-
nents ofnnn(i) are zero mean, circularly symmetric, complex Gaussian
with independent real and imaginary parts having equal variance. It is
assumed that noise on each receiver antenna is independent of that on
all others and thus,Efnnn(i)nnn(i)Hg = N0IIIN , whereIIIN denotes the
NR � NR identity matrix. We also assume thatnnn(i) is a sequence of
uncorrelated (and thus independent) random vectors.

The matrix HHH(i) in (1) is the NR � NT matrix of complex
fading coefficients which are assumed to be stationary and ergodic.
The (nR; nT )th element of the matrixHHH(i) represents the fading
coefficient value at timei between thenRth receiver antenna and
thenT th transmitter antenna. These fading coefficients are assumed
to be slowly varying over the duration of a codeword. We assume
that elements of the matrixHHH(i) are independent and identically
distributed (i.i.d.) complex Gaussian random variables with zero mean
and 1=2-variance per dimension. Of course, this gives rise to the
so-called Rayleigh-fading channel model, which has often been used
to model land-mobile wireless communication channels without a
direct line-of-sight path [15].

We assume that the instantaneous value of the fading coefficient ma-
trix HHH(i) is known to both the transmitter and the receiver. This as-
sumption can be satisfied, for example, by employing a channel es-
timation scheme such as pilot symbol insertion or training bits. The
transmitter may be assumed to be informed of those receiver estimated
CSI via a delay- and error-free feedback path. This is a reasonable as-
sumption when the channel varies at a much slower rate compared to
the data rate of the system. In a time-duplexed system, the transmitter
may also estimate its own CSI values using the reverse link received
signals.

As we will see shortly, the capacity will be dependent on the number
of transmitter and receiver antennas only through the relative parame-
ters defined asn = maxfNR; NT g andm = minfNR; NT g.

III. SINGLE RECEIVER ANTENNA SYSTEMS

We start by considering the capacity of a multiple transmit and single
receiver antenna system with adaptive transmission techniques; i.e.,
NT = n andNR = m = 1. In this case, the received signalyyy is a
scalar which we denote asy. Note that, for convenience, we will drop
the time indexi whenever this causes no confusion.

In general, we may decompose the fading coefficient matrixHHH using
the singular value decomposition [16], [17]

HHH = UUU���VVV H (2)

whereUUU , ���, andVVV are matrices of dimensionNR �NR, NR �NT ,
andNT �NT , respectively. The matricesUUU andVVV are unitary matrices
satisfyingUUUUUUH = UUUHUUU = IIIN andVVV VVV H = VVV HVVV = IIIN . The
matrix ��� = [�i; j ] is a diagonal matrix with diagonal entries being
equal to the nonnegative square roots of the eigenvalues of eitherHHHHHHH

or HHHHHHH, and, thus, are uniquely determined. For later use, we may
also define the followingm �m matrix:

WWW =
HHHHHHH ; if NR � NT

HHHHHHH; if NR > NT :
(3)

Note thatWWW can have at mostm nonzero eigenvalues and thus cor-
respondingly at mostm diagonal entries of the matrix��� are nonzero.

It is also worth mentioning that the distribution of the matrixWWW is
given by the well-known Wishart distribution [18]. In the present case
of NT = n andNR = m = 1, it is easily seen that a singular value
decomposition ofHHH is defined by

UUU = 1

��� =
p
�1; 0; . . . ; 0

VVV = [vvv1 vvv2 � � � vvvn] (4)

where

�1 =

n

i=1

jhi; j j2 and vvv1 =
HHHH

p
�1
:

Defining the transformations~yyy = UUUHyyy, ~xxx = VVV Hxxx, and~nnn = UUUHnnn,
we see that the channel in (1) is equivalent to

~yyy = ���~xxx+ ~nnn: (5)

If the average transmit power is constrained as

EfxxxHxxxg = tr[EfxxxxxxHg] = P

then we also have that

Ef~xxxH~xxxg = tr Ef~xxx~xxxHg = P: (6)

From (4) and (5) we see that, for the present case ofNR = 1, the
channel is equivalent to the following scalar channel:

~y =
p
�1~x1 + ~n (7)

where~x1 is the first component of the vector~xxx.
Hence, we see that only that energy contained in the component~x1 is

useful in detecting the signal, and thus we may as well set~x2 = ~x3 =
� � � = ~xN = 0. Then, from (6) we have that

Ef~x21g = P: (8)

A. Optimal Adaptive Transmission

Let us define the received signal-to-noise ratio (SNR)
(i) for a
given value of the channel coefficient matrix as


(i) = �1(i)
P

N0
: (9)

We let the transmitter adapt its instantaneous transmit power
P (
(i)) according to the channel variations, subject to the average
power constraint




P (
)f
(
)d
 � P (10)

whereP (
) denotes the time-varying instantaneous adaptive power
andf
(
) is the probability distribution function of
(i).

Note that the channel (5) with this adaptive transmission is mathe-
matically equivalent to the scalar channel treated in [3] with the same
average received SNR. Thus, observing that the instantaneous received
SNR is given byP (
(i))
(i)

P
, the average capacity of the channel in

(7), and also in (1), can be defined similarly to [3] as

C = max
P (
): P (
)f (
) d
=P 


log 1 +
P (
)


P
f
(
)d
: (11)

Thus, the coding theorem and converse proven in [3] apply directly to
the equivalent channel model in (5), and the maximizing power adap-
tation rule is thereby easily shown to be the water-filling algorithm [3],
[19] given as

P (
)

P
=

1


� 1



; if 
 � 
0

0; if 
 � 
0
(12)

where the cutoff value
0 is chosen to satisfy the power constraint (10)
as

1




1


0
� 1



f
(
)d
 = 1: (13)
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From (11), the capacity of the multiple transmit antenna system under
this optimal power and rate allocation scheme is then given by

C =
1




log




0
f
(
)d
: (14)

In order to evaluate the above capacity, we recall from above that�1
is the sum ofn squared complex Gaussian random variables. Hence,
from (9),
 is ann-Erlang random variable having the distribution func-
tion [20]

f
(
) =
1

(n� 1)!








n�1

exp �





; 
 > 0; (15)

where we have defined the average SNR as
 = P

N
.

From (15), we see that this channel is, in fact, equivalent to a
single transmitter antenna system with receiver antenna diversity and
maximal ratio combining. However, in this case, we are transmitting
from multiple antennas. For example, givenHHH , the actual transmission
scheme is such that if the instantaneous value of
(i) defined in (9) is
greater than
0 satisfying (13), then the transmitted signals on theNT

antennas are given byxxx = HHH

kHHHk
~x1, where~x1 is the capacity-achieving

signal for the system in (7) with~x21 = P ( 1



� 1



). On the other hand,

if the instantaneous value of
(i) defined in (9) is less than
0, then
transmission from all antennas are cut off; i.e., no signal is transmitted
from any antenna.

From the equivalence of the scalar system in (7) to the maximal ratio
combining receiver diversity system, it then also follows that the prop-
erties of the cutoff value
0 and capacity expression given in [14] for
the receiver diversity system holds for this transmitter diversity system
verbatim. In fact, substituting (15) into (13) we get the equation that
the cutoff value
o must satisfy to be

�(n; �)

�
� �(n� 1; �) = 
(n� 1)! (16)

where�(n; �) denotes the complementary incomplete gamma func-
tion �(a; x) =

1

x
e�txa�1 dt and

� =

0



: (17)

It was shown in [14] that there exists a unique�, and thus a unique

0, that satisfies (16), and that this
0 always satisfies0 � 
0 � 1.
Specifically,lim
�!0 
0 = 0 andlim
�!1 
0 = 1.

In general, solution of (16) requires numerical root finding tech-
niques. However, it can be shown that for
 large (i.e., for large SNR),
a reasonable approximation for
0 is given by


0 �
n� 1

1



+ n� 1

; for 
 � 1: (18)

Substituting (15) into (14) and following the same steps as in [14]
we can also obtain the equivalent capacity formula for the multiple
transmit antenna system with optimal power adaptation to be

C = log
2
(e)

n�1

k=1

Pk(�)

k
+ E1(�) bits/channel use (19)

where� is given in (17),E1(�) is the exponential integral function
[21], [22] defined as

E1(�) =
1

�

e�t

t
dt

and the Poisson sumPk(�) is

Pk(�) = e
��

k�1

j=0

�j

j!
:

In Fig. 1, we have shown the exact cutoff value and its approximation
given by (18). From Fig. 1 it is clear that the above approximation
is indeed good for large
 and the approximation becomes tighter as
NT = n increases. In fact, ifNT = n > 3, the approximation (18)
becomes tight for all SNR> 0 dB, as one can see from Fig. 1.

Fig. 2 plots the exact capacity of the optimal adaptive transmis-
sion scheme for the multiple transmit antenna system with a single re-
ceiver antenna. Also shown in Fig. 2 is the capacity of a similar system
with only receiver channel state information as derived in [12]. Note
that the asymptotic capacity of the receiver CSI only system tends to
log(1+ P

N
) for largeNT as shown in [12]. We observe that when the

CSI is available at both ends of the communication system, large ca-
pacity gains are possible compared to a system with only the receiver
CSI. Of course, the price one has to pay for these large capacity gains
is the outage probability determined by the cutoff value. Still, when the
delay caused by the outage is within acceptable limits it is possible to
gain large capacity improvements in multiple transmit antenna systems
with the optimal adaptive transmission scheme proposed above.

B. Maximal Gain Transmission

Suppose now that instead of the above scheme we employ the sim-
pler technique of choosing the transmitter antenna corresponding to the
largest channel gain coefficientH1; n and then transmit only on that
particular antenna. We call this strategy the maximal gain transmission
technique. In this subsection, we derive the capacity of this scheme, the
adaptive power allocation rule that achieves it, and show that, in fact,
this scheme is equivalent to a receiver diversity system with selection
combining [14], [15]. We also provide simple approximations to the
capacity and the cutoff value in this case.

With this new transmission scheme received signal can be written as

y(i) = h(i)x(i) + n(i) (20)

wherex(i) is the transmitted signal at timei (which can be on any
antenna) andh(i) is the corresponding fading coefficient.

Analogously to the previous case, we may define


(i) =
P jh(i)j2

N0

: (21)

Sinceh(i) = maxfH1; 1(i); H1; 2(i); . . . ; H1; n(i)g, it is easily
shown that the probability density function (pdf) of
 is given by

f
(
) =
n



exp �






1� exp �







n�1

: (22)

Comparing the pdf in (22) with the pdf of the received SNR of a re-
ceiver diversity system with selection combining, given in [14], we ob-
serve that, in fact, they are identical. Thus, substituting (22) into (13),
we obtain an equation that must be satisfied by the cutoff value of the
adaptive transmission rule that achieves the capacity in the maximal
gain transmission scheme to be

n�1

k=0

(�1)k
n� 1

k

exp(�(1 + k)�)

(1 + k)�
� E1((1 + k)�) =




n

(23)
where� is given by (17) andE1(�) is the exponential integral defined
earlier.

Again, (23) is identical to the equation that determines the cutoff for
the selection combining receiver diversity system obtained in [14]. As
a result, properties of the cutoff value given in [14] directly applies to
this system as well. Specifically,0 � 
0 � 1.

Substituting the series representation [21], [22]

E1(x) = �E � log(x)�

1

k=1

(�x)k

k:k!
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Fig. 1. Approximation to the optimal cut-off value versus SNR (in decibels).N = 1.

of the exponential integral function, whereE is the Euler’s constant
(E = 0:5772156649015325 � � �) [22], and after some manipulations,
we may obtain the followingnth-order approximation to (23):


0

n
�

1

n
+ �

n�1

k=0

(�1)k
n� 1

k
log(1 + k) +

�n

n(n� 1)
:

Hence, for
 large, an(n � 1)th-order approximation to the cutoff
value
0 can be given as


0 �
1

M



+ 1

; for 
 � 1 (24)

where we have defined the constantMn as

Mn = n

n�1

k=0

(�1)k+1
n� 1

k
log(1 + k):

Thus, the capacity of a maximal gain transmission system with
NT = n antennas and a single receiver antenna is equal to that of a
selection combining receiver diversity system withNR = n receiver
antennas. However, it should be noted that in this case the codewords
are transmitted from different transmitter antennas at each time instant
depending on which antenna corresponds to the largest fading gain.
This is somewhat similar to a particular implementation of Bell Labs
layered space–time (BLAST) architecture [10] where one periodically
rotates the transmit antennas. However, BLAST does not assume
knowledge of fading coefficients at the transmitter and thus there is no
associated cutoff value, and the order of antenna rotation is predeter-
mined.

Using the results derived in [14] for the selection combining receiver
diversity scheme, we have the capacity of maximal gain transmission
scheme

C = n�

n�1

k=0

(�1)k
n� 1

k
J1((1 + k)�); (25)

where�is given in (17) and the integralJp(�) is defined as in [14] to
be

Jp(�) =
1

1

t
p�1 log(t)e��t dt; for p = 1; 2; . . . : (26)

Using the fact thatJ1(�) =
E (�)
�

, we may write the capacity in (25)
as

C = n

n�1

k=0

(�1)k+1
n� 1

k

E1((1 + k)�)

1 + k
: (27)

It can also be shown that forn � 1 and
 � 1, the above capacity is
well approximated by

C � log(
)� E + log(
0) + n

n�1

k=0

(�1)k
n� 1

k

log(1 + k)

1 + k
;

for n� 1; and
 � 1: (28)

In particular, for
 > 1, the capacity asymptote for largeNT is given
by

lim
n�!1

C = log(
)� [E + log(
0)]

� log(
); for 
 � 1: (29)

Fig. 3 plots the exact capacity expression in (27), evaluated with both
exact and approximate cutoff value
0. The figure shows that unless
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Fig. 2. Exact and approximate capacities for the optimal adaptive transmission versus SNR (in decibels).N = 1.

both SNR andNT = n are small, the capacity deviation due to the use
of the approximate cutoff value given by (24) is not significant. In fact,
from these plots it is evident that forNT as low as4, the error due to
the approximation is negligible. Also, comparison of Fig. 3 with Fig. 2
illustrates the capacity loss due to the suboptimal transmission scheme.

IV. CAPACITY WITH MULTIPLE ANTENNAS AT BOTH TRANSMITTER

AND RECEIVER

We now turn to the situation in which there are multiple antennas
at both transmitter and receiver ends. In this case, applying singular
value decomposition of the matrixHHH in (2), we still have the equivalent
channel model given in (5). In analogy with (9) we may define

���0(i) =
P

mN0
���(i) (30)

and, as before, let the transmit power vary with the observed channel
state information subject to the average power constraintP . If we de-
fine ~QQQ = ~xxx~xxxH , then the instantaneous transmit power can be written as
~xxxH~xxx=tr[ ~QQQ], and the average power constraint becomesEftr[ ~QQQ]g�
P: Hence, in this case the adaptive transmission strategy based on the
observed channel state information can be achieved by letting~QQQ be
a function of���0(i). Thus, we denote the instantaneous value of~QQQ(i)
as ~QQQ(���0(i)). Then, we may define the average capacity of the vector,
time-varying channel with adaptive transmission scheme to be

C = max
~QQQ(��� )>0; tr(Ef~QQQ(��� )g)=P

E��� log det III +���0
~QQQ(���0)

(P=m)
���0 :

(31)

It can be shown that the above maximization is achieved by a diag-
onal ~QQQ(���0) and that the diagonal entries are given by a matrix water-

filling formula to be, fori = 1; . . . ; m

~QQQi; i

(P=m)
=

1



� 1


; if 
i � 
i; 0

0; if 
i � 
i; 0
(32)

where
i for i = 1; . . . ; m are defined as


i = 
�i (33)

and�i are the eigenvalues of the Wishart distributed matrixWWW defined
in (3). We have also redefined
 as


 =
P

mN0
: (34)

The cutoff values
i; 0 in (32) are chosen to satisfy the power con-
straint

P =tr(Ef~QQQ(���0)g)

=
P

m

m

i=1

1




1


i; 0
�

1


i
f
 (
i) d
i (35)

wheref
 (
i) denotes the pdf of theith nonzero eigenvalue of the
Wishart matrixWWW . If we let f
(
) denote the pdf of any unordered

i, for i = 1; . . . ; m, then (35) leads to

1




1


0
�

1



f
(
)d
 = 1 (36)

where
0 is the cutoff transmission value corresponding to any eigen-
value.

The probability distribution functionp�(�) of an unordered eigen-
value of a Wishart distributed matrix was given in [12], and can be
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Fig. 3. Capacity of the maximal gain transmission scheme evaluated with both exact and approximate cutoff values versus SNR (in decibels).N = 1.

written as

p�(�) =
e���n�m

m

m

k=1

(k � 1)!

(n�m+ k � 1)!
L
n�m
k�1 (�)

2
(37)

where the associated Laguerre polynomial of orderk, Ln�mk (�), for
k � 0, is defined by [21], [22]

L
a
k(�) =

1

k!
e
�
�
�(a) dk

d�k
e
�
�
a+k

: (38)

Then from the definition in (33) we have that

f
(
) =
1



p�






: (39)

Substituting (39) in (36) and introducing a change of variable we see
that the cutoff value must satisfy

m

k=1

(k � 1)!

(n�m+ k � 1)!

1

�

1

�
�

1



e
�




n�m

L
n�m
k�1 (
)

2
d


= m
 (40)

where�is as defined in (17).
In the following subsection, we show that for
 > 0, (40) has a

unique solution�.

A. Uniqueness of the Cutoff Value

Intuitively one would expect (40) to have a unique solution�. In fact,
by studying the properties of (40) we may show that this indeed holds
true.

For convenience, let us define the integrand in (40) to be

fn�m;k(
; z) =
1

z
�

1



e
�




n�m

L
n�m
k�1 (
)

2
:

Next, define the functionF (z) as

F (z) =

m

k=1

(k � 1)!

(n�m+ k � 1)!

1

z

fn�m;k(
; z)d
 �m
: (41)

Note that (40) is then equivalent to the case ofF (z) = 0. Differenti-
ating (41) with respect toz gives

F
0(z) = �

m

k=1

(k � 1)!

(n�m+ k � 1)!

1

z2

1

z

� e
�




n�m

L
n�m
k�1 (
)

2
d
 (42)

and we immediately notice that, since the integrand in (42) is positive

F
0(z) < 0; for z > 0: (43)

Similarly, one can also show thatF 00(z) > 0 for z > 0.
Next, either relying on the normalization property of a pdf or by

explicitly recalling the integral equation [22, eq. 7.414.9] we have that

lim
z�!0

1

z

e
�




n�m

L
n�m
k�1 (
)

2
d


=
(n�m+ k � 1)!

(k � 1)!
; for n�m � 0: (44)

Using [22, eq. 7.414.12], forn �m > 0, we also have that

lim
z�!0

1

z

e
�




n�m�1

L
n�m
k�1 (
)

2
d


=
�(n�m)�(n�m+ k)

�(n�m+ 1)[(k � 1)!]2

�
dk�1

dhk�1

F n�m

2
; n�m

2
+ 1

2
;n�m+ 1; 4h

(1+h)

(1� h)(1 + h)n�m
h=0

;

for n�m > 0 (45)
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whereF (a; b; c; x) is the hypergeometric function defined as [21],
[22]

F (a; b; c; x) =

1

k=0

(a)k(b)k
(c)k

xk

k!
(46)

where the hypergeometric coefficient(a)k is defined as the product

(a)k = a(a+ 1) � � � (a+ k � 1)

with (a)0 = 1.
Applying a transformation formula for a hypergeometric function

[22, eq. 9.134.2] to (45), we have forn �m > 0

lim
z�!0

1

z

e
�




n�m�1

L
n�m
k�1 (
)

2
d


=
(n�m+ k � 1)!

(n�m)(k� 1)!
; for n�m > 0: (47)

Substitution of (44) and (47) in (41) shows that, forn�m > 0

lim
z�!0

F (z) = +1; for n�m > 0: (48)

Similarly, for n �m = 0

lim
z�!0

F (z) =

m

k=1

(k � 1)!

(n�m+ k � 1)!
lim

z�!0

1

z
� E1(z)

= +1; for n�m = 0 (49)

whereE is Euler’s constant and in the last step we have used the fact
that

lim
z�!0

z log(z) = 0:

Also, from (41), it is easily seen that

lim
z�!+1

F (z) = �m
; for n�m � 0: (50)

Thus, from (43) and (48)–(50) it follows that forz > 0, the function
F (z) has a unique zero for alln�m � 0. From (17), then we see that
for any
 > 0 there exists a unique cutoff value
0 for anyn�m � 0
which satisfies (40), as we expected.

B. Evaluation of the Cutoff Value for Multiple-Antenna Systems

Substituting the polynomial representation

L
a
k(�) =

k

p=0

(�1)p
k + a

k � p

�p

p!
(51)

into (40) we obtain

m

k=1

(k � 1)!

(n�m+ k � 1)!

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

n�m+ k � 1

k � 1� p

�
n�m+ k � 1

k � 1� q
Gp; q(�) = m
 (52)

where we have defined the integralGp; q(�) to be

Gp; q(�) =
1

�

1

�
�

1



e
�




n�m+p+q

d
;

for p+ q = 0; 1; . . . ; 2(m� 1): (53)

Next, we consider the two cases ofn � m > 0 andn � m = 0
separately in order to obtain an explicit solution to (52).

1) Case 1:n�m > 0: Note that, whenn�m > 0, for p+q =
0; . . . ; 2(m�1), we have thatn�m+p+q�1�0 andn�m+p+q �

1 > 0. Then, we easily have that

Gp; q(z) =
�(n�m+ p+ q + 1; �)

�
� �(n�m+ p+ q; �);

for p+ q = 0; 1; . . . ; 2(m� 1) andn�m > 0 (54)

where�(a; x) is the complementary incomplete Gamma function and
we have also made use of the integral identity

1

�

e
�




n
d
 = n!e��

n

j=0

�j

j!
; for n � 0

which can be verified straightforwardly via repeated application of in-
tegration by parts.

Substituting (54) into (52) we obtain a closed-form equation that
can be solved for a uniquez (which is known to exist by the previous
section), in general, via numerical root finding.

However, as we did in the single receiver antenna case, we may also
obtain an approximate solution for the cutoff
0 by investigating small
� behavior of (52). In fact, following a similar procedure as in the case
of a single receiver antenna, we may show that


0 �
B1

m+ B




; for 
 � 1 (55)

where we have defined the constantsB1 andB2 to be the sums

B1 =

m

k=1

(k � 1)!

(n�m+ k � 1)!

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

�
n�m+ k � 1

k � 1� p

n�m+ k � 1

k � 1� q

� (n�m+ p+ q)!

and

B2 =

m

k=1

(k � 1)!

(n�m+ k � 1)!

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

�
n�m+ k � 1

k � 1� p

n�m+ k � 1

k � 1� q

� (n�m+ p+ q � 1)!:

Note that forn > 1 andm = 1, B1 = 1 andB2 = 1
n�1

, and thus,
(55) reduces to (18), as one would expect.

2) Case 2:n � m = 0: When n � m = 0, for p + q =
0; . . . ; 2(m� 1), we still have thatn�m+ p+ q � 0. However, in
this casen�m+ p+ q � 1 � �1. Forn�m = 0, (52) reduces to

m

k=1

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

k � 1

k�1�p

k � 1

k�1�q
Gp;q(�) = m


and, similarly, the integralGp; q(�) in (53) becomes

Gp; q(�) =
1

�

1

�
�

1



e
�




p+q

d
;

for p+ q = 0; 1; . . . ; 2(m� 1):

Then, we can easily show that

Gp; q(�) =

�(1; �)
�

�E1(�); if p+ q = 0

�(p+q+1; �)
�

� �(p+ q; �); if p+ q > 0.
(56)

On substituting (56) into (52), again we may obtain a closed-form
equation in� that can be solved for a unique solution. It is also easily
verified that this general equation reduces to the corresponding equa-
tion given in [14] for the case ofNR = NT = 1.
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Fig. 4. Approximation to the optimal cutoff value versus SNR (in decibels).m = 4.

Aswedidearlier for thecaseofn�m > 0,wemayobtainan approx-
imatesolution to thecutoff
0 that satisfies (52),whichwill eliminate the
need to perform numerical root finding. However, due to the singularity
of the exponential integral functionE1(�)near zero, this becomes more
involved than the previous case. Still, after some manipulations, we may
show that a reasonable approximation for large
 is


0 �
ma2 + m2a22 � 4
a1a3

2a1
(57)

where we have defined the constantsa1; a2; anda3 as

a1 =m
2 1�

1 +D3




a2 =D2 +m [
 + log(
) + 2� E]

a3 =m+D1

and whereE is the Euler’s constant andD1; D2; D3 are the following
sums:

D1 =

m

k=1

k�1

p=0

k�1

q=0
p+q 6=0

(�1)p+q

p!q!

k � 1

k � 1� p

k � 1

k � 1� q

� (p+ q)!;

D2 =

m

k=1

k�1

p=0

k�1

q=0
p+q 6=0

(�1)p+q

p!q!

k � 1

k � 1� p

k � 1

k � 1� q

� (p+ q � 1)!;

D3 =

m

k=1

k�1

p=0

k�1

q=0
p+q 6=0

(�1)p+q

p!q!

k � 1

k � 1� p

k � 1

k � 1� q

�
p+ q

2
(p+ q � 1)!:

Fig. 4 shows the typical behavior of the cutoff value for a mul-
tiple-antenna system withm = 4, along with the cutoff approximations

derived above. Note that, in the case ofn = m, the cutoff approxima-
tion deviates considerably from the true cutoff for small values of
.
However, as we will see in the next section, even these cutoff values will
be effective in approximating the true capacity. It is clear that for all the
other cases, derived approximations to the cutoff value do closely esti-
mate the true cutoff value for reasonably high SNRs and largen. From
Fig. 4, we may also observe that still
0 lies in the range0 � 
0 � 1,
and specifically
0 �! 1 as
 �! 1.

C. Evaluation of Capacity

Substituting (32) into (31), we obtain the capacity of the multiple-
antenna system

C = m
1




log




0
f
(
)d
; (58)

where
0 is the cutoff transmission value corresponding to any un-
ordered eigenvalue derived in the previous section, andf
(
) is the
pdf of any scaled, unordered eigenvalue given in (39).

Using the explicit form of the pdf (39) and the representation of as-
sociated Laguerre polynomial given in (51), we can write (58) as

C =

m

k=1

(k�1)!

(n�m+k�1)!

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

�
n�m+k�1

k�1�p

n�m+k�1

k�1�q
Jn�m+p+q+1(�) (59)

whereJp(�), for p = 1; 2; . . . ; is the integral defined in (60). The
integralJp(�) can be evaluated in closed form and was given in [14]
as

Jp(�) = (p� 1)! E1(�) +

p�1

j=1

Pj(�)

j
: (60)
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Fig. 5. Capacity of the multiple-antenna system with optimal adaptive transmission versus SNR (in decibels).m = 4 (N = m in the receiver CSI only system).

Substituting (60) into (59) we obtain the capacity of multiple-an-
tenna system

C = log2(e)

m

k=1

(k � 1)!

(n�m+ k � 1)!

k�1

p=0

k�1

q=0

(�1)p+q

p!q!

�
n�m+ k�1

k � 1� p

n�m+ k�1

k � 1� q
(n�m+ p+ q)!

� E1(z) +

n�m+p+q

j=1

Pj(z)

j
bits/channel use: (61)

It is easy to verify that form = 1, (61) reduces to (19) obtained
previously for a system with multiple transmit antennas and a single
receiver antenna, as required.

Fig. 5 plots the capacity of a multiple-antenna system form = 4
with different values ofn versus the SNR. Shown on the same figure
is the capacity of the corresponding multiple-antenna system with only
receiver CSI obtained in [12]. While the capacity of a multiple-antenna
system with CSI at both transmitter and receiver is invariant to which
end of the link has the larger number of antennas, this is not the case
with only receiver CSI. Thus, Fig. 5 specifically corresponds to the case
when the receiver CSI system hasNT = m andNR = n. Again, it
is clear from Fig. 5 that large capacity improvements can be achieved
with adaptive power and rate allocation when CSI is available at both
ends of the system as compared to the case when only receiver CSI is
available.

In Fig. 6, we have shown the capacity of the same system as that con-
sidered in Fig. 5, but this time comparing it with a receiver-CSI-only
system withNT = n andNR = m. In this case, the receiver-CSI-only
system has a lower capacity than in the previous case thereby resulting

in a larger capacity gap compared to the adaptive transmission system.
However, the capacity of the adaptive transmission scheme is invariant
under the swapping of the transmitter and receiver antennas and also
is larger than either of the cases with only receiver CSI. Further, com-
paring these results with the capacity plots forNR = 1 given earlier,
we see that large capacity gains are available when multiple antennas
are used at both ends of the communications link.

In Fig. 7, we have shown the capacity evaluated with both the exact
cutoff value and the approximate cutoff value given by either (55) or
(57) for a system withm = 4. This figure shows that the derived ap-
proximate cutoff values are indeed reasonable when the SNR is suffi-
ciently large. Moreover, they confirm the earlier remark that although
the cutoff estimate given in (57) deviates from the true cutoff more than
that of (55), the approximation (57) nevertheless results in a reason-
able capacity estimate. Fig. 7 shows that the capacity computed with
approximate cutoff values tend to get closer and closer to the exact ca-
pacity either as SNR becomes large or the maximum of the number of
antennasn grows.

Finally, Fig. 8 plots the capacity versus the minimum number of an-
tennasm at one of the ends of the system against a fixed but large
maximum number of antennasn at the other end. Fig. 8 corresponds
to n = 18. As observed in the case when CSI is available only at the
receiver, studied in [10] and [12], from Fig. 8 we see that again the ca-
pacity is almost linear in the minimum number of antennasm. In Fig.
8, we have also included the capacity approximations computed with
the estimated cutoff values. Note that these capacity approximations
are in good agreement with the exact capacities for the values of SNR
and number of antennas considered.
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Fig. 6. Capacity of the multiple-antenna system with optimal adaptive transmission versus SNR (in decibels).m = 4 (N = m in the receiver CSI only system).

Fig. 7. Multiple-antenna system capacity evaluated with both exact and approximate cutoff values versus SNR (in decibels).m = 4.
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Fig. 8. Multiple-antenna system capacity evaluated with both exact and approximate cutoff values versus minimum number of antennas (m). n = 18.

D. Outage Probability

As remarked earlier, the large capacity gains possible with the adap-
tive transmission scheme derived above, compared to the capacity of
a system with CSI available only at the receiver, come at the price of
channel outage. This is so because the optimal adaptive power and rate
allocation scheme would not be transmitting at all if all the observed

i ’s were less than the cutoff value
0, thus resulting in channel outage.
Hence, in order to put the extraordinary capacity gains offered by the
power and rate adaptation schemes in perspective, it is necessary to take
into account the associated outage probability values. In what follows,
we provide a simple upper bound for this outage.

We denote the largest eigenvalue of the Wishart distributed matrix
WWW as�max and the outage probability of a multiple antenna system by
P
n;m
out . Then, it is easily seen that

P
n;m
out =

�

0

f� (�) d� (62)

wheref� (�) is the pdf of the largest eigenvalue of the Wishart ma-
trixWWW . An upper bound for this pdf in the case of real Gaussian random
variables was derived in [23] for the case ofm = n. Following [24],
we may generalize this upper bound for anym andn and show that in
the case of complex Wishart matrices

f� (�) �
1

�(n)�(m)
�
n+m�2

e
��

: (63)

From (63) and (62), we have the following upper bound for the
outage probability of the multiple-antenna system:

P
n;m
out �

1

�(n)�(m)
[�(n+m� 1)� �(n+m� 1; �)]

� p1: (64)

Note that, form = 1, this upper bound for the outage probability in
fact gives the exact value of the outage. This is clear by observing that

for m = 1 the right-hand side of (63) reduces to the exact pdf for this
case, given by (15).

Fig. 9 plots this upper bound for the outage probability as a func-
tion of SNR form = 2. As one would expect, the outage probability
decreases with increasing SNR values. Also, it is clear from this plot
that the outage probability bound decreases rapidly when the maximum
number of antennasn increases for a fixedm.

Unfortunately, though, the above bound becomes very loose when
the SNR is low and the maximum number of antennas are large. Espe-
cially, in some of these cases the right-hand side of (63) may become
larger than unity rendering it completely useless. In order to circum-
vent this shortcoming, we may derive another bound which is always
less than or equal to unity. Note that this bound is valid only for the
case ofm = n.

In order to derive this bound, we denote the smallest eigenvalue of
the Wishart matrixWWW by �min. It is shown in [24] that whenm = n

the pdff� (�) of �min is given byf� (�) = me�m�. Since,
P
m;m
out � P(�min < �), we have that

P
m;m
out � 1� e

�m�

� p2: (65)

Combining (64) and (65) we have that form = n

P
m;m
out � min fp1; p2g : (66)

Fig. 10 shows this upper bound form = n multiple-antenna system
outage probability versus the SNR for different values ofm. The con-
clusion one can draw by observing these plots is that employing mul-
tiple antennas at both ends of the communication link and adapting
power and rate not only provides large capacity gains but also helps in
decreasing the outage probability considerably.



2708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

Fig. 9. Upper bound for outage probability of a multiple-antenna system versus SNR.m = 2.

Fig. 10. Upper bound for outage probability of a multiple-antenna system versus SNR.m = n.
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V. CONCLUSION

We have considered the capacity of multiple-antenna systems in
Rayleigh flat fading under the assumption that CSI is available at both
ends of the system. First, we derived the capacity of such systems in
the case when only the transmitter is equipped with multiple antennas.
We showed that the capacity of this system is, in fact, the same as a
receiver-only diversity system with maximal ratio combining. We also
proposed a transmission diversity scheme (maximal gain transmission)
that is mathematically equivalent to a receiver-only diversity system
with selection combining and evaluated its capacity.

Next, we derived capacity expressions for a general system with mul-
tiple antennas at both transmitter and receiver. We showed that the op-
timal power allocation is given by a matrix water-filling algorithm. We
obtained an equation that determines the cutoff value for such systems,
which can be evaluated via numerical root-finding, and a corresponding
closed-form expression for the capacity with optimal power and rate
adaptation. We evaluated this capacity for some representative situa-
tions and demonstrated similarities with the capacity of such systems
when CSI is available only at the receiver end.

In all these cases, the only step that required numerical techniques
in determining the capacity is the evaluation of the cutoff value
0. In
order to circumvent this problem, we also derived approximations to
the cutoff value for all cases considered. Numerical results show that
these approximations yield good capacity estimates when the SNR or
the number of antennas is sufficiently large.

From these capacity computations for multiple-antenna systems with
adaptive transmission techniques we observe that large capacity gains
are possible compared to the receiver-CSI-only systems. The tradeoff
for these increased capacity values is the outage probability incurred
by the adaptive power and rate allocation schemes. We derived simple
upper bounds for this outage probability and showed that the channel
outage probability may also be decreased by increasing the number of
antennas.
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On the Separability of Demodulation and Decoding for
Communications Over Multiple-Antenna Block-Fading

Channels
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Abstract—We study the separability of demodulation and decoding for
communications over multiple-antenna block-fading channels when bit-
linear linear dispersion (BL-LD) codes are used. We assume the channel
is known to the receiver only, and find necessary and sufficient conditions
on the dispersion matrices for the separation of demodulation and decoding
at the receiver without loss of optimality.

Index Terms—Multiple-antenna systems, space–time codes.

I. INTRODUCTION

We consider a multiple-input–multiple-output (MIMO) communica-
tion setup witht transmit antennas andr receive antennas. Information-
theoretic results by Foschini and Gans [1] and Telatar [2] have sparked
tremendous interest and effort in the design of practical channel codes
for communications over multiple-antenna channels (i.e., MIMO chan-
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