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Signal Design for Non-coherent PPM Modulation
with Applications to UWB Communications

Sudharman K. Jayaweera, Member, IEEE

Abstract— By deriving the probability of error of a bi-
nary pulse-position modulated (PPM), ultra wide-band (UWB)
impulse-radio system under non-coherent detection, it is shown
that the optimal value for time shift parameter δ for PPM
is fundamentally different from that for coherent reception.
In particular, the optimal choice of δ is one that results in
zero correlation between the two waveforms used in PPM
modulation. By examining the performance sensitivity around
possible optimal δ solutions for a commonly used UWB mono-
pulse, we also show that it is still possible to employ δ < Tw,
where Tw is the UWB mono-pulse width, yet achieve optimal
and robust performance.

Index Terms— Marcum’s Q-function, non-coherent detection,
signal design, UWB, ultra wide-band communication.

I. INTRODUCTION

THIS letter addresses the signal design problem for binary
pulse-position modulation (PPM) with non-coherent de-

tection. Due to wide use of PPM in ultra wide-band (UWB)
communication our results directly leads to the signal design
for non-coherent UWB impulse-radio (IR) systems in flat
fading. The results in [1] showed that in additive white
Gaussian noise (AWGN) with coherent reception, the optimal
(in the sense of minimum probability of error) performance is
achieved by choosing the modulation time shift parameter δ
to minimize the correlation ρw(δ) between the received UWB
mono-pulse w(t) and its shifted version w(t−δ). In particular,
the optimal choice is not to use orthogonal signalling (i.e.
δ ≯ Tw where Tw is the width of the mono-pulse) waveforms
for PPM modulation. The observation that δ ≯ Tw is also
important since it allows the use of very small chip period
Tc’s in a time-hopping UWB multiple-access system so that
more users can be supported.

In this letter, however, we show that in the case of non-
coherent UWB the orthogonal signalling is the optimal choice
for PPM. Moreover, this is also true for narrow-band (NB)
systems. In both cases, we derive exact probability of error
expressions for non-coherent, binary PPM modulation. For
a commonly used UWB mono-pulse we investigate possible
modulation time shift parameter δ values that result in the
optimal performance. Our results show that although there
are very small (compared to mono-pulse width Tw) δ values
that provide the optimal performance, these operating points
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can be extremely sensitive to even a small timing mismatch.
However, while a safer choice is to use δ > Tw, we also show
that there still exist possible optimal choices such that δ < Tw,
that can provide robust performance in the presence of timing
mismatches.

The remainder of this letter is organized as follows: In
Section II we present our PPM-based communication system
model. Next, in Section III we present the minimum proba-
bility of error, non-coherent detector for a PPM modulated
system, derive a closed form expression for the minimum
probability of error and obtain the optimal signal design in the
case of non-coherent detection. Section IV uses a commonly
employed UWB mono-pulse to demonstrate the effect of opti-
mal and sub-optimal modulation time shift parameter choices
on the performance of a UWB system and the sensitivity of
the performance to timing mismatches. Finally, we conclude
in Section V by summarizing our results.

II. SYSTEM MODEL AND DESCRIPTION

We consider a single-user, binary, PPM modulated com-
munication system in a flat fading channel. The received
continuous-time signal can be written as

r(t) =
∑

i

A(i)√
Ns

Ns−1∑
j=0

w(t − iTs − jTf − δd(i)) + n(t) (1)

where w(t), Ts, Ns, Tf , A(i) and δ are the received UWB
mono-pulse (normalized to have unit energy), symbol time,
number of mono-pulses per data symbol, pulse repetition
period, the fading coefficient at symbol time i and the time-
shift parameter for pulse position data modulation, respec-
tively. For analytical reasons, we assume real Gaussian fading
coefficients so that A(i) ∼ N (0, Eb) where Eb is the average
received energy per bit (while some measurement campaigns
have shown fading in UWB systems should be modeled either
as log-normal or Nakagami-m distributed [2], the above model
of Gaussian fading coefficients has also commonly been used
in recent literature [3], [4]). These fading coefficients are
independent with respect to time index i. In (1), n(t) is
the zero-mean, white Gaussian noise with variance σ2 and
d(i) ∈ {0, 1} is the i-th information bit.

Assuming no inter-symbol interference, the detection of
the i-th information bit can be performed based only on the
received signal {r(t) : iTs ≤ t ≤ (i + 1)Ts}. Without loss
of any generality, below we consider the detection problem
for i = 0 case and drop the index i. Note that, if we were to
define a transmit waveform c(t) as c(t) = 1√

Ns

∑Ns−1
j=0 w(t−

jTf ) then the binary PPM data modulation corresponds to
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transmitting c(t) when d = 0 and transmitting c(t − δ) when
d = 1 (here we do not consider random time hopping since it
does not effect the results obtained for a single-user channel).

Let us define the vector c(t) as c(t) = [c(t), c(t − δ)]T .
Then, it is easy to see that a sufficient statistic for detecting
information bit d based on the signal {r(t) : 0 ≤ t ≤ Ts} is
given by y = [y1, y2]T =

∫ Ts

0
r(t)c(t)dt.

III. MINIMUM PROBABILITY OF ERROR NON-COHERENT

DETECTION FOR PPM AND OPTIMAL SIGNAL DESIGN

We may formulate the non-coherent detection problem
based on the decision statistic y as a binary hypothesis testing
problem between H0 and H1 where H0 corresponds to d = 0
and H1 corresponds to d = 1. The observations under the two
hypotheses can then be written as

H0 : y =
[

A
Aρw

]
+ n and H1 : y =

[
Aρw

A

]
+ n. (2)

where we have defined ρw =
∫ ∞
−∞ w(t)w(t − δ)dt and the

two element noise vector n ∼ N (0, σ2R) with (assuming

Tw � Ts) R =
[

1 ρw

ρw 1

]
. The non-coherent maximum

likelihood detector (which is also the minimum probability of
error detector for equally likely information bits) is then given
by

d̂ = max
{

0, sgn

(
yT

(
Σ−1

1 − Σ−1
0

)
y + log

|Σ1|
|Σ0|

)}
, (3)

where |Σ| denotes the determinant of matrix Σ and we have
defined the two covariance matrices of y under the two
hypotheses as Σ0 and Σ1. It can be shown that

Σ0 =
[

σ2 + Eb ρw(σ2 + Eb)
ρw(σ2 + Eb) σ2 + ρ2

wEb

]
, (4)

and

Σ1 =
[

σ2 + ρ2
wEb ρw(σ2 + Eb)

ρw(σ2 + Eb) σ2 + Eb

]
. (5)

Substitution of (4) and (5) in (3) and some simplifications
lead to the following equivalent representation of the optimal
non-coherent detector:

d̂ = max {0, sgn (|y2| − |y1|)} . (6)

Note that (6) shows that, regardless of the signal waveform
correlation ρw, the optimal non-coherent detector is just a sim-
ple envelope detector. However, the resulting error probability
of course depends on the value of ρw.

Under the assumption of equally likely information bits we
can show that the probability of error of the above detector is

Pe = P (|X2| > |X1|) , (7)

where we have defined the two random variables X1 = A+n1

and X2 = ρwA + n2. If we define a random vector X =
[X1, X2]T , then it is easy to see that X ∼ N (0,Σ0) where
Σ0 was defined in (4). Then conditioned on X1 = x1, the
distribution of X2 is of the form of N (

ρwx1, (1 − ρ2
w)σ2

)
and

thus Pe = EX1

{
Q

(
|X1|−|ρw|X1√

1−ρ2
wσ

)
+ Q

(
|X1|+|ρw|X1√

1−ρ2
wσ

)}
where EX {.} denotes the expectation with respect to X . Since

X1 ∼ N (0, σ2+Eb), the probability of error of non-coherent,
PPM modulated UWB in flat fading becomes:

Pe =
1
π

[
arctan

(
γ

√
1 + ρw

1 − ρw

)
− arctan

(
γ

√
1 − ρw

1 + ρw

)]
. (8)

where we have defined γ = 1√
2(1+λ)

and the signal-to-noise

ratio λ as λ = Eb

σ2 .
For the above fading model we can easily show that the

corresponding coherent detector error probability is given by
P c

e = 1
π arctan

(
(λ(1 − ρw))−1/2

)
which essentially leads to

optimizing Pe being equivalent to minimizing ρw, so that the
optimal value δc in the case of coherent reception corresponds
to the δ that results in minimum possible value for ρw [1].
However, (8) show that the dependence of Pe on the signal
correlation ρw in non-coherent PPM is fundamentally different
from that in coherent detection case and the unique optimal
choice that minimizes Pe is ρnc

w = 0. Thus, the best signal
design for PPM-UWB with non-coherent detection should use
a time shift parameter value δ that results in ρw = 0. Fig. 1
shows the dependence of Pe of non-coherent PPM in (8) on
signal correlation parameter ρw.

We can also show that the above result of signal design
for PPM systems also holds in the case of narrowband
carrier modulated systems 1. To this end, we can treat the
signal in (1) as the received baseband signal in a narrowband
carrier modulated system by modeling n(t) as a zero-mean,
complex white Gaussian noise with variance σ̃2 (denoted as
Nc(0, σ̃2)) and the fading coefficients as A(i) ∼ Nc(0, Eb)
where Eb is average received energy per bit. The non-coherent
detector will still be given by (6) and the probability of error
PNB

e evaluation will be of the form of (7). However, now
conditioned on X1 = x1, |X2| is Rician distributed. Hence,

we have that PNB
e = EX1

{
Q

(√
2|ρw||x1|

(1−ρ2
w)σ̃2 ,

√
2|x1|

(1−ρ2
w)σ̃2

)}
where

Q(a, b) is the Marcum’s Q-function. Since 0 ≤ |ρw| ≤ 1
we may substitute in (III) the alternative form Q(a, b) =
1
2π

∫ π

−π
(1+β sin φ)e− b2

2 (1+2β sin φ+β2)

1+2β sin φ+β2 dφ of the Marcum’s Q-
function (which is valid when 0 ≤ β = a

b ≤ 1) [5]. Since
X1 is Rayleigh with the parameter σ̃2 + Eb, for non-coherent
PPM in a narrowband system

PNB
e =

1
2

[
1 − λ̃

(
1 + 2(1 + λ̃)

1 + ρ2
w

1 − ρ2
w

+ (1 + λ̃)2
)− 1

2
]

, (9)

where we have defined λ̃ = Eb

σ̃2 . It can be verified from (9) that
the best signal design for PPM narrowband systems with non-
coherent reception also corresponds to a δ value that results in
ρw = 0. However, it is well known that in the case of coherent
detection the best signal design correspond to the value of δ
that results in minimum ρw.

IV. NUMERICAL RESULTS

A commonly used received UWB mono-pulse is the second
derivative of a scaled Gaussian pulse given by w(t) =

1Note that although, perhaps surprisingly, the derivation given here and
the resulting error probability expression (9) for non-coherent PPM are
not available in the existing literature (to the best of our knowledge), the
conclusions are known.
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Fig. 1. Probability of Error as a Function of Signal Correlation ρw for PPM
modulated Non-coherent UWB in the Presence of Fading.

√
8
3τ

[
1 − 4π

(
t
τ

)2
]
exp

(
−2π

(
t
τ

)2
)

. To be concrete, we
may use the pulse parameter τ = 0.7531 ns that was used
in [1] so that Tw ≈ 2 ns. The signal correlation ρw is then

given by ρw =
[
1 − 4π

(
δ
τ

)2
+ 4π2

3

(
δ
τ

)4
]
e−π( δ

τ )2

. Hence,
the best time shift value for the coherent reception can be
seen to be δc = 0.410 which results in the minimum possible
correlation ρ

(min)
w = −0.6181. However, as we observed above

the optimal value δnc for non-coherent reception is any time
shift that results in ρw = 0. Thus, for the above mono-pulse
there are three possible choices for optimal δ:

δnc =

⎧⎪⎪⎨
⎪⎪⎩

τ

√
3
2−

√
3
2

π ≈ 0.2229

τ

√
3
2+

√
3
2

π ≈ 0.7014
∞

(10)

It is easy to see that the most robust performance in the
presence of possible timing mismatches is attained by the last
solution. In practice, δnc = Tw ≈ 2 ns can provide a very
good approximation to the last solution. If we were to plot
the probability of error of non-coherent PPM modulated UWB
with optimal δnc = 0 choice and δnc = δc, it can be seen that
there is an SNR penalty. For error probability values less than
10−1 this SNR penalty is more than 2dB. This shows that it
is important to base signal design for non-coherent PPM on
the optimization of (8).

Finally, in Fig. 2 we have shown the sensitivity of the error
probability to the time shift parameter choice. Figure 2 shows
the SNR penalty that will result in if the value of the time
shift parameter δ were to depart from the each of the three
optimal solutions given in (10) (we have approximated the
third solution by δ = Tw ≈ 2 ns). Clearly, the first solution
δ = 0.2229 is not a good choice since even a slight timing
mismatch could result in a large SNR penalty as is evident
from Fig. 2. The best choice of course is to employ δ = Tw ≈
2 ns. However, if it is desirable to maximize the processing
gain (in a time hopping multiuser UWB system), it may be
desirable to employ the second solution δ = 0.7014 ns. As
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Fig. 2. SNR Penalty Vs. BER for Variations Around the Optimal Time Shift
Parameter Solutions for the Gaussian Mono-pulse.

can be seen from Fig. 2, the error performance is relatively
robust around this value of δ and the SNR penalty for even
about 0.2 ns of timing mismatch is very small.

V. CONCLUSIONS

By deriving a closed form expression for the probability of
error of a binary PPM system with non-coherent detection we
established that in order to minimize the probability of error
for a given SNR the time shift parameter should be chosen
so that the two signalling waveforms w(t) and w(t − δ) are
uncorrelated. By taking the second derivative of the Gaussian
pulse as the received mono-pulse, we also showed that in a
non-coherent UWB system, while it is desirable to employ
δ ≈ Tw in order to avoid large SNR penalties that could
result in due to timing mismatches, there are other optimal
time shift values such that δ < Tw that can provide good
performance trade-offs in terms of maximizing the processing
gain vs. minimizing the SNR penalty.
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