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On the Capacity of Multiple-Antenna
Systems in Rician Fading
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Abstract—The effect of Rician-ness on the capacity of multiple-
antenna systems is investigated under the assumption that channel
state information (CSI) is available only at the receiver. The av-
erage-power-constrained capacity of such systems is considered
under two different assumptions on the available knowledge about
fading at the transmitter: the case in which the transmitter has no
knowledge of fading at all, and the case in which the transmitter
has knowledge of the distribution of the fading process but not the
instantaneous CSI. The exact capacity is given for the former case,
while capacity bounds are derived for the latter case. A new sig-
naling scheme is also proposed for the latter case and it is shown
that by exploiting the knowledge of Rician-ness at the transmitter
via this signaling scheme, significant capacity gain can be achieved.
The derived capacity bounds are evaluated explicitly to provide nu-
merical results in some representative situations.

Index Terms—MIMO capacity, multiple-antenna systems, non-
central Wishart distribution, Rician fading, Wishart distribution.

I. INTRODUCTION

PROMPTED by recent results suggesting possible extraor-
dinary capacity gains [1]–[3], multiple transmit and receive

antenna systems have received considerable attention as a means
of providing substantial performance improvement in wireless
communication systems. In such multiple-input/multiple-output
(MIMO) systems, multiple transmit/receiver antenna combina-
tions provide spatial diversity by exploiting channel fading. It
has been shown in [2] and [3] that when the receiver has ac-
cess to perfect channel state information but not the transmitter,
the capacity of a Rayleigh distributed flat fading channel will
increase almost linearly with the minimum of the number of
transmit and receive antennas.

In most previous research on the capacity of multiple-an-
tenna systems, however, the channel fading is assumed to be
Rayleigh distributed. Of course, the Rayleigh fading model is
known to be a reasonable assumption for fading encountered in
many wireless communications systems. However, it is also of
interest to investigate the capacity of multiple-antenna systems
when the Rayleigh fading model is replaced by the more general
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Rician model. Not only does this generalize the previously de-
rived capacity results, since both additive white Gaussian noise
(AWGN) and Rayleigh fading channels may be considered to be
limiting cases of the Rician channel, but Rician fading is also
known to be a better model for wireless environments with a
strong direct line-of-sight (LOS) path [4]. In this paper, we con-
sider the capacity of multiple-antenna systems in Rician fading
for two cases of interest: that in which the receiver has per-
fect channel state information (CSI) but the transmitter has no
knowledge of the fading statistics; and that in which the receiver
has perfect CSI and the transmitter knows the distribution of the
fading process, but not exact CSI.

We begin, in Section II, by introducing the multiple-antenna
system model of interest and the assumptions on the fading
process. Next, in Section III we address the general capacity
problem for the Rician fading channel and obtain an upper
bound for the capacity of multiple-antenna systems under
Rician fading. We explicitly evaluate this upper bound for some
special cases.

In Section IV, we investigate the exact capacity of MIMO
systems in Rician channels under the assumptions of perfect
channel state information at the receiver and no knowledge of
the fading distribution at the transmitter. In addition to providing
a lower bound on the capacity for the case in which the trans-
mitter does know the fading distribution, this result also serves
as a measure of the capacity variation of a system designed
under Rayleigh fading assumption but operating in an environ-
ment where a strong LOS component is present. This is because
the capacity-achieving distribution for the case considered in
this section also achieves the capacity in the Rayleigh channel.
We explicitly evaluate this capacity for some interesting special
cases.

We will see that there is a large capacity gap between the
upper bound of Section III and the lower bound of Section
IV obtained with signals designed to be optimal for Rayleigh
fading. In Section V, we propose a new signaling scheme for
multiple-antenna systems with perfect-CSI at the receiver and
only knowledge of the fading distribution, but not the exact
CSI, at the transmitter. We derive tight upper and lower bounds
for the capacity of a multiple transmit antenna system with this
new input signal choice. By comparing these capacity bounds
with the results obtained in Section IV, we will show that the
exploitation of the knowledge of the fading distribution at the
transmitter can provide significant capacity gains. Finally, we
finish with some concluding remarks in Section VI.

Some mathematical results that we will need in the rest of the
paper are given in the Appendix.
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II. MODEL DESCRIPTION

We consider a single-user narrowband MIMO communica-
tion link in which the transmitter and receiver are equipped with

and antennas, respectively. We consider the ideal case
in which the antenna elements at both transmitter and receiver
are sufficiently far apart so that the fading corresponding to dif-
ferent antenna elements is uncorrelated. The discrete-time re-
ceived signal in such a system can be written in matrix form as

(1)

where , and are the complex -vector of re-
ceived signals on the receive antennas, the (possibly) com-
plex -vector of transmitted signals on the transmit an-
tennas, and the complex -vector of additive receiver noise,
respectively, at symbol time . The components of are in-
dependent, zero-mean, circularly symmetric complex Gaussian
random variables with independent real and imaginary parts
having equal variances, i.e., , where de-
notes the identity matrix. The noise is also assumed
to be independent with respect to the time index.

The matrix in the model (1) is the matrix
of complex fading coefficients. The -th element of the
matrix , denoted by , represents the fading co-
efficient value at time between the -th receiver antenna and
the -th transmitter antenna. The fading coefficients in each
channel use are considered to be independent from those of
other channel uses, i.e., is an independent sequence. As
noted in [3], this gives rise to a memoryless channel, and thus
the capacity of the channel can be computed as the maximum
mutual information

where is the probability distribution of the input signal
vector that satisfies a given power constraint at the transmitter
and is the mutual information between the input and
output . In this case, we may also drop the explicit time index

, in order to simplify notation.
The main purpose of this paper is to extend the previ-

ously known capacity results for multiple-antenna systems in
Rayleigh fading to Rician channels. Thus, we will assume that
the elements of are Gaussian with independent real and
imaginary parts each distributed as . Moreover,
the elements of are assumed to be independent of each other.
So, the elements of are independent and identi-
cally distributed (i.i.d.) complex Gaussian random variables

, for
and , and the distribution of the magnitudes
of the elements of have the following Rician probability
density function (pdf):

(2)

where is the zeroth order modified Bessel function of the first
kind [5] and we have introduced the Rician factor defined as

(3)

For notational convenience, we have also introduced the normal-
ization . Note that (2) reduces to the Rayleigh
pdf when (which implies that ).

When elements of are distributed as described above we
say that is a complex normally distributed matrix, denoted as

where is the Hermitian covariance
matrix of the columns (assumed to be the same for all columns)
of and . For the assumed model

(4)

(5)

where denotes the matrix of all ones.
Next, let us define

and

if
if

(6)

Then, is always an square matrix. It is known that
when is a complex normally distributed matrix as described
above, the distribution of is given by the noncentral Wishart
distribution [6]–[8] with pdf

(7)

where in (7) denotes the (central) Wishart pdf

(8)

which results when the elements of are i.i.d. zero-mean
Gaussian random variables, and where the complex multi-
variate gamma function and the Bessel function of matrix
argument are defined in the Appendix [see (42) and (45)].1

Note that in (7) we have assumed, without loss of generality,
that . We will continue to use this assumption
throughout unless stated otherwise. We use the shorthand no-
tations and
to denote that has the Wishart distribution with pdf (8) and
that has the noncentral Wishart distribution with pdf (7),
respectively.

III. CAPACITY OF THE MULTIPLE-ANTENNA

RICIAN FADING CHANNEL

It is shown in [3] that, for the Rayleigh flat fading channel
(i.e., the model of Section II with ) under the total
average power constraint , the capacity of the
channel (1) is achieved when has a circularly symmetric
complex Gaussian distribution with zero-mean and covariance

1Note that (45) applies in this case by noting that � MM � W =
� MM � HH and the trace relationship tr(AB) = tr(BA).
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, and that this capacity is given by the expression
.

However, it is also easily shown that the capacity achieving
transmit signal distribution for a multiple-antenna system
under the average power constraint above is circularly sym-
metric, zero-mean complex Gaussian regardless of the actual
fading distribution, as long as the receiver, but not the trans-
mitter, knows the channel fading coefficients. Thus, only the
covariance matrix of the capacity-achieving
distribution depends on the fading distribution, and the capacity
of the multiple-antenna system is given by

(9)

In the case of deterministic fading where the matrix has all
its elements equal to unity (i.e., the Rician model with

) and this is known to the transmitter, the so-called water-
filling algorithm [9] specifies the covariance matrix structure of
this capacity achieving Gaussian distribution to be of the form

where denotes the
matrix of all ones [3]. In this case, the capacity is given by

(10)

Alternatively, in the case where the fading is Rician but without
knowledge of at the transmitter, the capacity achieving distri-
bution is the same as that in the Rayleigh case [1]–[3], i.e., its
covariance matrix is .

Thus, for a channel with Rician distributed fading having a
general value of , which is known to the transmitter, one would
expect the covariance matrix of the capacity achieving distri-
bution to lie in between these two extremes. Although the ca-
pacity-achieving for this case is unknown, in the following
paragraphs we have derived an upper bound for the capacity of
this channel.

Observe that for any the matrix is positive
definite, and that the function is concave on the set of
positive definite matrices. Thus, applying Jensen’s inequality to
(9) we have

(11)

where we have used the determinant identity
and introduced the notation

(12)

It is easy to show that the matrix is given by

...
...

. . .
...

(13)

We observe that for any such that the matrix
is nonsingular and thus all the eigenvalues of are nonzero. In
fact, if we denote the eigenvalues of by for ,
then it can be shown that

if
if

for

(14)
We may decompose as where is the

diagonal matrix having the eigenvalues in (14) as
its diagonal entries, and is a unitary matrix. Substituting this
into the right-hand side of (11), we have

(15)

where we have let . Now it is easy to see that the
right-hand side of (15) is maximized by a diagonal and the
diagonal entries are again given by the well-known water-filling
algorithm. Indeed, one can show that the maximizing diagonal
matrix is given by the formula located at the bottom of the
page, where .

Thus, for , the capacity of a multiple-antenna
system in Rician fading, subjected to the average transmit power
constraint , with perfect CSI at the receiver and knowledge
only of at the transmitter is upper bounded as in (16), located
at the bottom of the page. [For , the exact capacity is
given by (10).]

Next, we will illustrate the above bound for some special
cases.

if

if
for

(16)
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Case 1: : It is easily seen that for , which is the
Rayleigh fading case, the above bound reduces to

for (17)

From (17), we see that when the capacity upper
bound is a linear function of . In fact, it was shown in [3]
that in this case the capacity can be approximated by a linear
function of asymptotically for large numbers of antennas.

In addition, if in (17), then

for (18)

Again, it was shown in [3] that the capacity of the Rayleigh
fading channel in this case is asymptotic to for
large .

Case 2: : When , the capacity upper bound
in (16) becomes

for (19)

From (19), we see that the bound (18) is in fact valid not only
for the Rayleigh channel but for any Rician channel with an
arbitrary value of , in the case of .

Case 3: : The capacity of the Rician channel is
bounded in this case as in (20), located at the bottom of the page.

Case 4: : In this case, the capacity upper
bound of (16) reduces to the equation located at the bottom of
the page.

Note that the exact capacity as equals
in this case.

IV. CAPACITY OF THE RICIAN CHANNEL WHEN

THE TRANSMITTER DOES NOT KNOW THE

FADING DISTRIBUTION

In this section, we investigate the capacity of the av-
erage-power-constrained Rician channel when the receiver (but
not the transmitter) has perfect CSI, and the transmitter does
not know the fading distribution. Of course, this capacity pro-
vides a lower bound for the capacity in the situation where the
transmitter does know the fading distribution. Recall from the
preceding section that the optimal transmitted signal distribu-
tion when the transmitter does not know the fading distribution
is a circularly symmetric complex Gaussian distribution with

. Since this distribution is also
optimal for the average-power-constrained Rayleigh channel,
evaluation of the capacity with this signal distribution in the
Rician channel also quantifies the capacity variation of a system
designed to be optimal for Rayleigh fading but operating in a
Rician channel (i.e., a channel with a line-of-sight component).

Applying this signal distribution, from (9) the capacity of the
Rician channel (arbitrary ) with no transmitter knowledge of
is given by

(21)

where the expectation is with respect to

with pdf (7).
Since in (21) is an Hermitian matrix, if we denote

its (nonnegative) eigenvalues by , then we have
. Hence,

the capacity in (21) can be given in terms of the eigenvalue dis-
tribution of the noncentral Wishart distributed matrix as

(22)

(23)

where in (23) we have taken to be any unordered eigenvalue
of the noncentral Wishart distributed random matrix .

A. Special Case 1: Capacity in the Limit of Large

Before attempting to evaluate the capacity exactly, it is in-
structive to investigate its behavior in the limit as the number of
transmit antennas increases without bound. This will also allow
us to compare the asymptotic capacity in this Rician case with
that of the Rayleigh case given in [3], thereby illustrating the ef-
fect of the nonzero mean of fading coefficients on the capacity.

Note that for a fixed , the elements of the matrix are
the sums of i.i.d. random variables with finite moments, and
thus by the strong law of large numbers (SLLN) we have, almost
surely, where the matrix is
defined in (13) (it is now taken to be an square matrix).
Thus, for a fixed number of receive antennas, when the number

(20)
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of transmit antennas becomes very large, the capacity of this
channel is given by

(24)

The following two cases illustrate the dependence of the
above asymptotic capacity on the Rician factor

(25)

(26)

Note that (25) is the asymptotic capacity of the Rayleigh
channel given in [3]. It is easily seen that in (24) is a
monotonically decreasing function of for and
and is constant for . Thus, we observe that when
is very large and , increasing the determinism of the
channel lowers the capacity if the transmitter is not aware of
this increase, and moreover the Rician fading environment will
degrade the capacity of a system that is designed to achieve the
Rayleigh channel capacity. Of course, this does not necessarily
mean that the capacity of the Rician fading channel is less than
that of the Rayleigh fading channel when the transmitter knows

. In fact, from (10) we may recall that in the deterministic case,
which is the limiting case of Rician fading with , the
capacity of the channel, as achieved by the water-filling algo-
rithm, is known to be , for any and .
Similarly, it is reasonable to expect that the capacity of a mul-
tiple-antenna system in Rician fading, with an arbitrary , to be
greater than that in a Rayleigh fading channel when transmitter
knows the value of .

Figs. 1 and 2 show the dependence of the asymptotic capacity
(24) on the Rician factor for dB and dB,
respectively. These graphs illustrate our conclusion about the
asymptotic capacity degradation of the Rician channel with in-
creasing when the transmitter has no knowledge of .

In Fig. 3 we show the asymptotic capacity (24) versus the
number of receiver antennas for . Fig. 3 shows the
almost linear dependence of this capacity on the number of re-
ceiver antennas (which is the smaller of and in this
case), similarly to the previously established linear dependence
for the Rayleigh fading environment [1], [3].

B. Special Case 2:

In this section we will evaluate the exact capacity of
the Rician fading channel (subject to the signal choice
assumed throughout this section) in the special case

. In this special case (4) reduces
to a scalar , and thus the pdf of in (7) (which is a
scalar) can be written as

(27)

Fig. 1. Asymptotic capacity for a large number of transmit antennas versus
Rician factor. SNR = 0 dB.

Fig. 2. Asymptotic capacity for a large number of transmit antennas versus
Rician factor. SNR = 10 dB.

where we have used the fact that and (46) from
the Appendix.

From (21) the capacity in this special case is

(28)

where is given in (27) above. As noted by Telatar in
[3] for the Rayleigh fading channel, from (28) we observe that
the capacity is not symmetric in and also in the Rician
case. Thus, we have two cases to consider as below.

1) Case 1: : From (27) and (28), the capacity
of the Rician fading channel when the transmitter does not know

in this case is

(29)
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Fig. 3. Asymptotic capacity for a large number of transmit antennas versus
number of receiver antennas. � = 10.

where we have introduced the function

(30)

Figs. 4 and 5 show the capacity of the Rician fading channel
when the transmitter does not know in this special case of

, against the number of receiver antennas for
and , respectively. Included on the same graphs are the
corresponding capacity curves for the Rayleigh fading channel

. We observe that the capacity of the Rician channel is
greater than that of the Rayleigh channel and the capacity gap
increases with increasing values of . We can also observe from
Figs. 4 and 5 that the capacity gap is prominent for smaller num-
bers of receiver antennas and, as , the two capaci-
ties converge to the same value. In Figs. 4 and 5 we have also
shown the capacity upper bound for this system given by (19).
It is clear from these figures that the upper bound (19) is very
tight in this case. Indeed, since , in this case the optimal
signal covariance that satisfies the average power constraint is

.
2) Case 2: : The capacity of the Rician

fading channel when the transmitter does not know in this
case is

(31)

where is given by (30).
Figs. 6 and 7 plot the capacity of the Rician fading channel in

this special case of , against the number of transmit an-
tennas for and , respectively. As before, included
on the same graphs are the corresponding capacity curves for
the Rayleigh fading channel (i.e., the case). Again, we
observe that the capacity of the Rician channel is greater than
the capacity of the Rayleigh channel and the capacity gap in-
creases with increasing values of before finally converging to

Fig. 4. Rician channel capacity for single transmit antenna versus receiver
antennas. � = 1.

Fig. 5. Rician channel capacity for single transmit antenna versus receiver
antennas. � = 10.

the same value for large . Particularly, from Fig. 7 we note
that for a smaller number of transmit antennas the capacity gap
is significant.

Shown also on Figs. 6 and 7 is the capacity upper bound for
the case given by (20). From these figures we observe
that, unlike in the case of , the upper bound is very
loose for the case of . However, recall that we are using
a particular input signal distribution which is not necessarily the
capacity achieving distribution for this particular channel under
the assumed conditions on CSI and fading statistics. Rather, we
were assuming a signal distribution that is only optimal for the
Rayleigh fading channel or for a system in which transmitter
does not know the value of . Thus, Figs. 6 and 7 suggest that
scaled identity matrix might not be the form of the covariance
matrix of the capacity achieving input signal distribution for
a multiple-antenna Rician channel when the transmitter knows

, and with better signal choices that exploit the Rician-ness
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Fig. 6. Rician channel capacity for single receiver antenna versus transmit
antennas. � = 1.

Fig. 7. Rician channel capacity for single receiver antenna versus transmit
antennas. � = 10.

inherent in the fading distribution, we may be able to obtain
higher capacities. In Section V, we propose a new choice for
the covariance matrix which offers much higher capacity than
that achieved by the scaled identity matrix.

Using a series representation of the modified Bessel function,
it is straightforward to show that . Thus,
in the limit , (29) and (31) reduce to the corresponding
capacity expressions for the Rayleigh channel given in [3], as
one would have expected.

C. General Capacity Expression for the Rician Channel

In order to compute the capacity of the Rician channel for
an arbitrary number of transmit/receiver antennas, as given in
(23), we need to find the latent root distribution of the noncentral
Wishart distributed matrix . This latent root distribution has

been studied previously [6], [7], [10], [11], and, in particular,
we have the following result from [7].

Theorem 1: If has the noncentral Wishart dis-
tribution given in (7), then the pdf of the latent roots

of depends only on the
latent roots of ,
and is given by

(32)

Due to the scaled identity matrix structure of the covariance
matrix in our case [see (4)], it is easily seen that the la-
tent root distribution of the matrix , as required in (22),
can be obtained from the distribution given in (32) by noting
that and for , and thus

and , where we have denoted the latent
roots matrix of by . Hence, by applying this change of
variables to (32), we get the required eigenvalue distribution of
the matrix as

(33)

From the definition of in (5) we see that
where denotes the

matrix of all ones. By decomposing as
where is the -vector and noting
that , we observe that the only nonzero eigenvalue of
the matrix is equal to . It follows that the only nonzero
eigenvalue of the matrix is equal to , and thus

and for . Substituting these
into (33) and using the definition of the Rician factor from
(3) we have

(34)

Note that when , (34) reduces to the distribution of the
Rayleigh fading latent roots, given in [3], since in this case

and .
The general capacity expression for the Rician fading channel

for an arbitrary number of transmit/receiver antennas is then
given from (22) by

(35)

where is given in (34) above.
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V. NEW SIGNALING SCHEME FOR MULTIPLE TRANSMIT

ANTENNA SYSTEMS IN RICIAN FADING

In Section IV-B2, we observed that there is a large gap be-
tween the capacity upper bound for the Rician multiple transmit
antenna system under the assumption of known at the trans-
mitter and the capacity of the system without this assumption.
In this section, we propose a better signaling scheme for mul-
tiple-antenna systems that achieves higher capacity by explicitly
making use of the knowledge of the Rician factor at the trans-
mitter.

Recall from Section III that the optimal signal choice for
such a multiple-antenna system in Rician fading, subjected to
an average transmit power constraint , is zero-mean complex
Gaussian. Thus, the only thing we do not know is the covariance
matrix structure of the optimal input signal distribution. Based
on the discussion at the beginning of Section III, we propose
the following choice for the covariance matrix of the zero-mean
complex Gaussian input signal

(36)

where, as before, is the matrix of all ones. Note
that, when , (36) becomes the optimal covariance for the
Rayleigh channel. On the other hand, as
which is the optimal covariance for the AWGN MIMO channel.
Thus, reduces to the optimal covariance matrices at these
two extremes.

With this choice for the covariance matrix , the capacity of
the multiple-antenna system becomes

Note that we may write where denotes the
-vector of all ones. Since the matrix reduces to an

length row vector when , the capacity of the mul-
tiple-antenna system in this case can be written as

(37)

where as usual and we have
defined . Since the ’s
are independent complex random
variables, it follows that .
Hence, using our earlier notation, it can be easily shown
that and

.
It is clear that these two random variables and are not

independent, and so we do not know their joint distribution,
which is required for evaluating (37). Thus, we resort to capacity
bounds and derive both upper and lower bounds on the capacity
of the multiple-antenna system with the choice (36). In partic-
ular, we obtain a tight lower bound on the capacity which shows
that the proposed choice of the covariance matrix is far superior
to the scaled identity covariance matrix for any nonzero (and,
of course, is the same as that capacity when ).

A. Upper Bound for

Applying Jensen’s inequality to (37) and noting that
and , we

have the following upper bound on the capacity of a multiple
transmit and single receiver antenna system in Rician fading
with the proposed covariance matrix

(38)

It can be shown that in the special cases of and
, the upper bound (38) reduces respectively to

(39)

(40)

From (25) and the results in [3], we know that the right-hand
side of (39) is in fact the exact capacity of the system in this
case as . Hence, in the case of the upper
bound (38) is achieved as . Also, from the remarks
in Section IV-A following (26), we see that the right-hand side
of (40) indeed is the exact capacity of the system in this case for
any value of . Hence, when the upper bound (38)
is achieved for any value of .

B. Lower Bound for

Since both and are nonnegative random variables we
may obtain the following lower bound on the capacity of a
multiple transmit and single receiver antenna system in Rician
fading with the proposed input covariance matrix:

In Figs. 8 and 9, we have shown the derived bounds for the
capacity of a multiple-transmit antenna system along with the
capacity corresponding to the scaled identity covariance matrix.
From the lower bounds shown on these figures it is clear that the
proposed signaling scheme achieves much higher capacity than
that of the scaled identity covariance matrix for sufficiently large
values of or . It is also observed that the difference between
the upper and lower bounds decreases as increases. From
Fig. 9, we note that when is large the upper and lower bounds
are almost the same unless the number of transmit antennas is
very small. Thus, for large , a reasonable approximation to the
capacity of the proposed scheme can be obtained by taking the
large- asymptote of the upper bound (38)

for (41)

In Figs. 8 and 9, we have also shown this large approximation
to the upper bound of the capacity. We observe that indeed (41)
is a very good approximation to the capacity even for relatively
small values of . Note also that (41) gives the exact capacity in
the case .

Finally, it is worth noting that in these figures we have also
included the capacity upper bound for a Rician channel with
receiver CSI derived in Section III. From Fig. 8 we observe that
for relatively small values of there is still a significant gap
between the general upper bound for the Rician channel in this
case given by (20) and the upper bound on the capacity of the
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Fig. 8. Capacity of a multiple transmit antenna system in Rician fading with
proposed new signaling scheme. N = 1 and � = 1.

Fig. 9. Capacity of a multiple transmit antenna system in Rician fading with
proposed new signaling scheme. N = 1 and � = 10.

proposed new design given by (38). However, as increases we
observe from Fig. 9 that this difference also becomes smaller,
although the proposed scheme still does not achieve the upper
bound (20).

VI. CONCLUSION

In this paper we have investigated the average-power-con-
strained capacity of multiple-antenna systems under Rician dis-
tributed fading when the receiver has access to channel state in-
formation, but not the transmitter. We have considered two dif-
ferent cases concerning the knowledge of the fading available
at the transmitter: that in which the transmitter has no knowl-
edge of the fading at all; and that in which the transmitter has
knowledge of the Rician factor but not the exact value of CSI.
While obtaining the exact capacity in the former case, we have

been able to derive lower and upper bounds for the latter case.
The exact capacity in the former case also quantifies the ca-
pacity variation of a multiple-antenna system designed to be
optimal for a Rayleigh fading channel but in fact operating in
a Rician fading environment. For this case, we have derived an
integral expression for the capacity of a general system having
an arbitrary number of transmit/receive antennas. In some spe-
cial cases, we have evaluated this capacity expression numeri-
cally. We specifically investigated the capacity of such systems
for large numbers of transmitter antennas and when only one
end of the system (either transmitter or the receiver) is equipped
with a multiple-antenna array.

A new signaling scheme has been proposed for the case when
the transmitter knows the value of , though not the exact CSI.
We have analyzed the capacity of this new scheme, in terms of
lower and upper bounds, for a multiple transmit antenna system,
and demonstrated that it offers much higher capacity than that
of the unknown- capacity-achieving distribution. We have also
derived a simple approximation to the capacity of this scheme
for sufficiently large values of .

Our results indicate that Rician fading can improve the ca-
pacity of a multiple-antenna system, at least if the transmitter
knows the value of . Moreover, the proposed signaling scheme
provides a mechanism for capturing this improvement.

APPENDIX

In this Appendix we present a few mathematical concepts that
have been used throughout this paper. Most of these are related
to various types of special functions needed in our analysis.

The complex multivariate gamma function, , is defined
as [7]

(42)

Note that, it follows from (42) that .
The generalized hypergeometric function [12], [7], [13] is de-

fined as

(43)

where and are integers, and the hypergeometric coefficient
is defined as the product

(44)

with .
The complex hypergeometric function

of an Hermitian matrix can be defined as [7]

where and are integers, is the zonal polynomial [10],
[14]–[16] of the Hermitian matrix corresponding to the
partition , of
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the integer into not more than parts and is the complex
multivariate hypergeometric coefficient defined as

Note that is a homogeneous symmetric polynomial of
degree in the latent roots of the matrix .

The hypergeometric function with two argument matrices,
and (both ), can then be defined via the relation [6], [7],
[15]

where is the unitary group of all complex unitary
matrices , i.e., and is the invariant (Haar)
measure on normalized to make the total measure unity.

A special case that we need is , which is the Bessel func-
tion of matrix argument [7], [17], [18], which can also be rep-
resented as

(45)

where is an complex matrix with
with being an complex matrix and . Note
that, in (45) and denote the complex conjugate of the
matrix and the normalized invariant measure on the unitary
group , respectively.

It can be shown that for a scalar , (45) reduces to

(46)

where is the th order modified Bessel function of the first
kind [5].
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