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Large System Decentralized Detection Performance
Under Communication Constraints

Sudharman K. Jayaweera, Member, IEEE

Abstract— The problem of decentralized detection in a sensor
network subjected to a total average power constraint and
all nodes sharing a common bandwidth is investigated. The
bandwidth constraint is taken into account by assuming non-
orthogonal communication between sensors and the data fusion
center via direct-sequence code-division multiple-access (DS-
CDMA). In the case of large sensor systems and random
spreading, the asymptotic decentralized detection performance
is derived assuming independent and identically distributed (iid)
sensor observations via random matrix theory. The results show
that, even under both power and bandwidth constraints, it is
better to combine many not-so-good local decisions rather than
relying on one (or a few) very-good local decisions.

Index Terms— Data fusion, distributed detection, large-system
analysis, sensor networks.

I. INTRODUCTION

THIS PAPER considers decentralized detection in energy-
constrained, large wireless sensor networks in noisy,

band-limited channels. Although there is a considerable
amount of previous work on the subject of distributed detec-
tion, most of it used to ignore the effect of noisy channels be-
tween the local sensors and data fusion center. Even less is the
attention received by bandlimited noisy channels in the context
of decentralized detection. For example, while distributed de-
tection performance of an energy-constrained wireless sensor
network over a noisy channel has been considered recently [1],
it assumes orthogonal sensor-to-fusion center communication
leading to an infinite bandwidth assumption. However, in
applications involving dense, low-power, distributed wireless
sensor networks it is more likely that all nodes will share a
common available bandwidth. In this case, the assumption of
large sensor systems implies non-orthogonal communication
between the sensor nodes and the fusion sensor.

An important design objective in low-power wireless sensor
systems is to extend the whole network lifetime. Thus, a sen-
sible constraint on the sensor system is a finite total power [1].
In this paper, the bandwidth constraint is taken into account
by assuming non-orthogonal direct-sequence code-division
multiple-access (DS-CDMA) communication between sensors
and the data fusion center. The main contribution of this paper
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is the derivation of the decentralized detection performance,
in closed-form, under a total power constraint when the
communication channel between the local sensors and the
fusion center is both bandlimited and noisy. As we will see, for
any finite-size sensor network the performance is a function
of the exact signaling codes used by the distributed sensors.
However, in the case of random spreading we are able to
derive an elegant and simple closed-form expression that is
independent of the exact spreading codes once we consider
asymptotically large sensor systems. This is our main result
and, as we will see, it allows us to draw general conclusions
regarding the design of a wireless sensor system under a total
power constraint in a noisy and bandlimited channel.

The remainder of the paper is organized as follows: In
Section II we present our system model. Next, in Section
III we use random matrix theory to derive a closed-form
expression for the decentralized detection performance in a
large sensor system followed by a discussion of our analysis.
Finally, in Section IV we conclude by summarizing our results.

II. SYSTEM MODEL DESCRIPTION

We consider a binary hypothesis testing problem in an
Ns-node wireless sensor network connected to a data fusion
center via distributed parallel architecture. Let us denote by
H0 and H1 the null and alternative hypotheses, respectively,
having corresponding prior probabilities P (H0) = p0 and
P (H1) = p1. We will consider that the observed stochastic
process under each hypothesis consists of one of two possible
Gaussian signals, denoted by X0,n and X1,n, corrupted by
additive white Gaussian noise. Under the two hypotheses the
n-th local sensor observation zn, for n = 1, · · ·Ns, can be
written as

H0 : zn = X0,n + vn

H1 : zn = X1,n + vn (1)

where the observation noise vn is assumed to be zero-
mean Gaussian with the collection of noise samples having
a covariance matrix Σv . Each local sensor processes its
observation zn independently to generate a local decision
un(zn) which are sent to the fusion center. Let us denote
by r(u1(z1), u2(z2), · · · , uNs

(zNs
)) the received signal at

the fusion center. The fusion center makes a final decision
based on the decision rule u0(r). The problem at hand is to
choose u0(r), u1(z1), u2(z2), · · · , uNs

(zNs
) so that a chosen

performance metric is optimized.
The solution to this problem is known to be too complicated

under the most general conditions [2]. While optimal local
processing schemes have been derived under certain special
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assumptions, a class of especially important local processers
are those that simply amplify the observations before retrans-
mission to the fusion center [1], [3]. Thus, the local sensor
decisions sent to the fusion center are given by, un = gzn

for n = 1, · · ·Ns where g > 0 is the analog relay amplifier
gain at each node. In our model all sensor nodes share a
common bandwidth and a total available energy. For analytical
reasons, as well as due to their practical relation to DS-
CDMA communications, we consider bandwidth sharing non-
orthogonal communication based on spreading in which each
sensor node is assigned a signature code of length N . If the
n-th sensor node is assigned the code sn, the received chip-
matched filtered and sampled discrete-time signal at the fusion
center can be written as r = g

∑Ns

n=1 snzn + w = gSz + w
where r and w are N -dimensional received signal and receiver
noise vectors, respectively and the n-th column of the N ×Ns

matrix S is equal to the vector sn. We assume that the receiver
noise is a white Gaussian noise process so that the filtered
noise vector w ∼ N (0, σ2

wIN ).Then we have that

H0 : r ∼ N (m0,Σ0)
H1 : r ∼ N (m1,Σ1) (2)

where, for j = 0, 1, mj = gSE{Xj} and Σj =
g2S (Cov(Xj) + Σv)ST + σ2

wIN .
To be specific, consider the detection of a deterministic

signal so that X1 = −X0 = m1 is known (m > 0)
and Σ0 = Σ1 = Σ where (1 is the vector of all ones)
Σ = g2SΣvST +σ2

wIN . With these assumptions we also have
that m1 = −m0 = gmS1 and the radiated power of node
n is then given by E{|un|2} = g2

E{|zn|2} = g2(m2 + σ2
v)

where σ2
v is the observation noise variance. Let us define the

total power constraint the whole sensor system is subjected to
as P , so that the amplifier gain g is given by

g =

√
P

Ns(m2 + σ2
v)

. (3)

Then, it can be shown that the optimal threshold rule at the
fusion center is of the form

u0(r) =

⎧⎨
⎩

1 ≥
if T (r) τ ′

0 <
, (4)

where we have defined the decision variable T as T (r) =
(m1 − m0)

T Σ−1r = 2gm1T ST
(
g2SΣvST + σ2

wIN

)−1
r

and τ ′ is the threshold that depends on the specific optimality
criteria. It can be shown that the false-alarm Pf and miss Pm

probabilities of the detector (4) are given by

Pf = Q

(
τ ′ + 2g2m21T ST Σ−1S1

2gm
√

1T ST Σ−1S1

)
, (5)

and

Pm = Q

(
2g2m21T ST Σ−1S1 − τ ′

2gm
√

1T ST Σ−1S1

)
. (6)

For example, in the case of Neyman-Pearson optimality at
the fusion center, τ ′ is chosen to minimize Pm subject to
an upper bound on Pf . On the other hand under Bayesian
minimum probability of error optimality one would choose

τ ′ to minimize Pe = p0Pf + p1Pm. As one would expect,
the performance of course depends on the particular codes
assigned to each sensor node as seen from (5) and (6). Thus,
while it is possible to evaluate the performance for specific
systems via (5) and (6), it is rather difficult to draw general
conclusions regarding the design of decentralized detection
systems. However, such conclusions can be reached for large
systems through asymptotic analysis, as we show next.

III. LARGE SENSOR SYSTEM PERFORMANCE ANALYSIS

Let us assume that the spreading codes are chosen ran-
domly so that each element of sn takes either 1√

N
or − 1√

N
with equal probability. Moreover, we take independent sensor
observations such that Σv = σ2

vI. Let us assume a large
sensor system such that both Ns and N are large such that
limN−→∞ Ns

N = α. Now using a theorem on the convergence
of the empirical distribution of eigenvalues of a large random
matrix proven in [4], we may prove the following proposition,
which is the main result of this paper:

Proposition 1: With S and Σ defined as above,

g21T ST Σ−1S1 −→
(

σ2
v

Ns
+

m2 + σ2
v

Pβ0

)−1

, (7)

almost surely, as N −→ ∞, where

β0 =

√
(γ + σ2

w)2 α2 + 2γ(σ2
w − γ)α + γ2 − (

γ + σ2
w

)
α + γ

2γσ2
w

(8)

with γ = P
N

(
1 + m2

σ2
v

)−1

and Σv = σ2
vI.

Proof: See Appendix I.
The proposition 1 leads to the following corollary on the

decentralized detection performance of an asymptotically large
sensor system in a noisy bandlimited channel:

Corollary 1: With all notation as defined above,
when limN−→∞ Ns

N = α, the large sensor network
performance of the decentralized detection is given
by Pf −→ Q

(√
µ(τ ′ + 2m2

µ )/2m
)

and Pm −→
Q

(√
µ( 2m2

µ − τ ′)/2m
)

where µ = σ2
v

Ns
+ m2+σ2

v

Pβ0
.

The above corollary leads to insights on large sensor system
performance of decentralized detection in noisy, bandlimited
channels. For instance, in the special case of minimum prob-
ability of error optimality at the fusion center, according to
corollary 1, the large system probability of error is asymptot-
ically given by

Pe(α) −→ Q (m/
√

µ) , (9)

where convergence is almost surely and µ is as defined above.
Figure 1a shows the convergence of the random-spreading

based decentralized detection performance as predicted by (9).
Note that the exact analysis in Fig. 1a was obtained for a
random choice of the code matrix S. As can be seen from
Fig. 1a, (9) provides a good approximation to the detection
performance for large spreading lengths N , and thus for large-
sensor systems (since Ns = Nα). More importantly, we can
observe from Fig. 1a that for each fixed N , increasing α
improves the decentralized detection performance. Since this
is equivalent to increasing the number of sensors Ns allowed
in the system for a fixed bandwidth we conclude that it is
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Fig. 1. Decentralized Detection Performance in a Noisy, Bandlimited Channel Subjected to a Total Power Constraint (a) Large Sensor System Approximation
(b) Limit of Large Sensor System Approximation when α −→ ∞.

better to allow as many sensors to send their local decisions
to the fusion center.

In fact, for large alpha, one can show that β0 −→ 1
σ2

w
, and

as a result, in this case the error probability in (9) goes to

Pe(α) −→ Q

⎛
⎝

√
P

σ2
w

(
1 +

σ2
v

m2

)−1
⎞
⎠ . (10)

On the other hand, if one were to allocate all available power
P and the total bandwidth to just one sensor node the fusion
center performance will be given by

Pe,1 = Q

⎛
⎝

√
P

σ2
w

(
P/σ2

w

m2/σ2
v

+
(

1 +
σ2

v

m2

))−1
⎞
⎠ .(11)

Comparison of (10) and (11) shows that allowing more
sensor nodes in the network is better even if the channel is
both noisy and bandlimited. This comparison is shown in Fig.
1b. First, we can observe from Fig. 1b that as N increases the
fusion center performance improves. Secondly we see that as
N −→ ∞, the performance for large α indeed goes to (10).
Third, Fig. 1b confirms that combining more local decisions is
better than allocating all available power and bandwidth to one
sensor. Moreover, the performance improves monotonically
with increasing α (for a fixed N ) showing that it is better
to combine as many local decisions as possible at the fusion
center. We should divide the available power among all nodes
and allow all of them to share the available bandwidth even if
they are to interfere with each other due to non-orthogonality.

IV. CONCLUSIONS

We analyzed the decentralized detection performance of a
total average power constrained wireless sensor network in a
noisy and bandlimited channel. Assuming that the sensors-
to-fusion center communication is based on DS-CDMA, a
closed form expression for the fusion performance, and its
large system asymptotic under random spreading were de-
rived. It was shown that in a noisy, bandlimited channel it
is beneficial to combine as many sensor local decisions as
possible even if this leads to non-orthogonal sensor-to-fusion
center communication.

APPENDIX I
THE PROOF OF PROPOSITION 1

Proof: Using the definitions of S and 1, we can write

g21T ST Σ−1S1 = g2

⎛
⎜⎜⎝

Ns∑
n=1

sT
nΣ−1sn +

Ns∑
n=1

Ns∑
n′=1
n′ �=n

sT
nΣ−1sn′

⎞
⎟⎟⎠ (12)

Let I denote a set of sensor indices (i.e. I ⊂ {1, 2, · · · , Ns}),
SA denote the matrix S with column indices specified by set A
deleted, Λn = g2σ2

vIn and QA =
(
SAΛNs−|A|SA + σ2

wIN

)
where In and |A| are the n×n identity matrix and the cardi-
nality of set A, respectively. Then, for n = 1, · · · , Ns, using
the matrix inversion lemma we can show that sT

nΣ−1sn =
sT
nQ−1

{n}sn/(1+g2σ2
vs

T
nQ−1

{n}sn). But, applying Theorem 7 of
[4] and using (3), we can show that sT

nQ−1
{n}sn −→ β0 almost

surely, where β0 is as given by (8) and γ = P
N

(
1 + m2

σ2
v

)−1

.
Combining these we have almost surely

sT
nΣ−1sn −→ (

β0
−1 + g2σ2

v

)−1
. (13)

Similarly, repeated application of matrix inversion lemma
twice show that,

sT
nΣ−1sn′ =

sT
nQ−1

{n,n′}sn′(
1 + g2σ2

vsT
nQ−1

{n}sn

) (
1 + g2σ2

vs
T
n′Q

−1
{n,n′}sn′

) . (14)

Now the use of Theorem 7 of [4] shows that RHS goes to
zero almost surely, for n �= n′. Substituting (13) and (14) in
(12) gives (7), completing the proof.
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