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Abstract

In this paper, we formulate a problem of distributed tracking with
consensus on a time-varying graph with incomplete data and noisy
communication links. We develop a framework to handle a time-
varying network topology in which not every node has local obser-
vations to generate own local tracking estimates (incomplete data).
A distributed tracking-with-consensus algorithm that is suitable for
such a noisy, time-varying graph is proposed. We establish the graph
conditions so that distributed consensus can be achieved in the pres-
ence of noisy communication links when the effective network graph
is time-varying. The steady-state performance of the proposed dis-
tributed tracking with consensus algorithm is also analyzed and com-
pared with that of the distributed local Kalman filtering with the
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centralized fusion and centralized Kalman filter. Simulation results
and performance analysis of the proposed algorithm are given, show-
ing that the proposed distributed tracking with consensus algorithm
performs almost the same as the distributed local Kalman filtering
with centralized fusion on noisy time-varying graphs with incomplete
data, while the proposed algorithm has the additional advantages of
robustness and scalability.

1 Introduction

Multisensor tracking problems have attracted the attention of many researchers
in robotics, systems, and control theory over the past three decades [1–4].
Target tracking problems are of great importance in surveillance, security,
and information systems for monitoring the behavior of agents using sen-
sor networks, such as tracking pallets in warehouses, vehicles on roadways,
or firefighters in burning buildings [5, 6]. With the introduction of the con-
cept of consensus, distributed tracking, and coordination without any fusion
center have also received considerable attention in recent years [7, 8].

Distributed consensus estimation in sensor networks has been studied
with both fixed as well as time-varying communication topologies, taking
into account issues such as link failure, packet losses and quantization or ad-
ditive channel noise [8–20]. Olfati-Saber and Murray [9] considered the av-
erage consensus for first-order integrator networks with fixed and switching
topologies. Kingston and Beard [10] extended the results of [9] to the discrete-
time models and relaxed the graph condition to instantaneously balanced,
connected-over-time networks. Xiao and Boyd [11] considered discrete-time
distributed averaging consensus over fixed and undirected graphs. They de-
signed the weighted adjacency matrix to optimize the convergence rate by
semidefinite programming. Huang and Manton [17] considered the discrete-
time average consensus with fixed topologies and measurement noises. They
introduced decreasing step size in the protocol to attenuate the noises. Li
and Zhang [18–20] considered the continuous-time average consensus with
time-varying topologies and communication noises, where time-varying con-
sensus gains are adopted. They gave a necessary and sufficient condition
for mean square average consensus with fixed graph topologies and sufficient
conditions for mean square average consensus and almost sure consensus with
time-varying graph topologies.
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On the other hand, the distributed consensus tracking over networks with
and without noiseless communication links among nodes have also been con-
sidered [21–26]. Recent work in [21, 22] considered the distributed consen-
sus tracking over a fixed graph with noiseless communication among nodes.
A distributed Kalman filter with embedded consensus filters was proposed
in [21] and further extended to heterogeneous and non-linear sensing models
in [22]. Distributed Kalman filtering using one-step weighted averaging was
considered in [23]. Each node desires an estimate of the observed system and
communicates its local estimate with neighbors in the network. Then, new
estimate is formed as a weighted average of the neighboring estimates, where
the weights are optimized to yield a small estimation error covariance. In [24],
the authors presented a distributed Kalman filter to estimate the state of a
sparsely connected, large-scale, dynamical system. The complex large-scale
systems are decomposed spatially into low-order overlapping subsystems. A
fusion algorithm using bipartite fusion graphs and local average consensus al-
gorithms is applied to fuse observations for those overlapping subsystems. A
tracking control problem for multiagent consensus with an active leader and
variable interconnection topology was considered in [25], where the state of
the considered leader keeps changing and may not be measured. A neighbor-
based local controller together with a neighbor-based state-estimation rule is
given for each agent to track such a leader. In [26], the authors proposed a
greedy stepsize sequence design to guarantee the convergence of distributed
estimation consensus over a network with noisy links.

Distributed tracking with consensus, addressed in this paper and previ-
ous work [27,28], refers to the problem that a group of nodes need to achieve
an agreement over the state of a dynamical system by exchanging track-
ing estimates over a network. For instance, space-object tracking with a
satellite surveillance network that consists of fixed nodes that are connected
together, and mobile nodes that could only have active links with other nodes
within their communication radius could benefit from such distributed track-
ing with consensus, due to the fact that individual sensor nodes may not have
enough observations of sufficient quality [29]. Thus, different sensor nodes
may arrive at different local estimates regarding the same space object of
interest [29]. Information exchange among nodes may improve the quality
of local estimates, and consensus estimates may help avoid conflicting and
inefficient distributed decisions. Other applications of this problem include
flocking and formation control, real-time monitoring, target tracking, and
global positioning system (GPS) [29, 30]. In [28], the performance analysis
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of distributed tracking with consensus on noisy time-varying graphs was ad-
dressed, and later, the algorithm of distributed tracking with consensus with
incomplete data was proposed without theoretical proof in [27].

The contributions of this work are as follows: (1) We formulate the prob-
lem of distributed tracking with consensus on a time-varying graph with
incomplete data and noisy communication links. (2) We develop an algo-
rithm by combining distributed Kalman filtering with consensus updates to
handle a time-varying network in which not every node has local observations
to generate own local tracking estimates (incomplete data). (3) We establish
the graph conditions so that the distributed consensus can be achieved when
the graph topology is time-varying and with noisy communication links. (4)
We analyze the steady-state performance of the distributed tracking with
consensus on both fixed and time-varying graphs and compare with that of
the distributed local Kalman filtering with centralized fusion and centralized
Kalman filter.

Following notation will be used in this paper. At time j, an undirected
graph is denoted by G(j) =

(
V,E(j)

)
for j ≥ 0, where V = {1, 2, . . . , N}

is the node set and E(j) ⊆ V × V denotes the edge set. A random graph
in which the existence of an edge between a pair of vertices in the set V =
{1, 2, . . . , N} is determined randomly and independent of other edges with
probability p ∈ (0, 1] is denoted by G(N, p). The neighborhood of node n at
time j is denoted by Ωn(j) = {l ∈ V |{l, n} ∈ E(j)}. Node n is said to have
degree dn(j) = |Ωn(j)|, where | · | refers to the cardinality of a set. Let the
degree matrix be the diagonal matrix D(j) = diag

(
d1(j), . . . , dN(j)

)
, where

diag(d1, . . . , dN) represents a diagonal matrix with (d1, . . . , dN) on its main
diagonal. The adjacency matrix of the graph G(j) is denoted by A(j) =
[Aln(j)], where Aln(j) = 1, if {l, n} ∈ E(j), and Aln(j) = 0 otherwise. The
graph Laplacian matrix is denoted by L(j) = D(j)−A(j). The Laplacian is
a positive semidefinite matrix so that its eigenvalues can always be ordered
as 0 = λ1

(
L
)
≤ λ2

(
L
)
≤ · · · ≤ λN

(
L
)
. The smallest eigenvalue λ1(L) is

always equal to zero with 1 being the corresponding eigenvector where 1 is
the vector of all ones of suitable length. For a connected graph, the second
eigenvalue λ2

(
L
)
> 0 and is termed the algebraic connectivity or the Fiedler

value of the network [15,31]. Let p(l, n) be the probability that links {l, n} of
the graph exists (for random graphs considered in this paper, we will always
assume that p(l, n) = p for ∀l, n ∈ V ). For a directed graph, let (l, n) denote
the directed edge from node l to node n. The direct sum of an N×N matrix
B and an M ×M matrix C will be an (N +M)× (N +M) matrix, denoted
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by B ⊕ C, whereas the Kronecker product of an N × N matrix B and an
M×M matrix C will be an NM×NM matrix, denoted by B⊗C. From the
properties of Kronecker product and eigenvalues [32], for an N×N matrix B
and an M×M matrix C, if λn and ωm are two eigenvalues of matrices B and
C, respectively, for 1 ≤ n ≤ N and 1 ≤ m ≤M , then λnωm is an eigenvalue
of B⊗C. We denote the N -dimensional Euclidean space by RN . The N×N
identity matrix is denoted by IN , while 1N denotes the column vectors of all
ones and em denotes the column vectors with the mth element as one and
the rest as zeros. The operator ∥ · ∥ applied to a vector denotes the standard
Euclidean 2-norm, while applied to matrices denotes the induced 2-norm,
which is equivalent to the matrix spectral radius for symmetric matrices.

The remainder of this paper is organized as follows: Section 2 intro-
duces our assumed system and network model and the proposed distributed
tracking with consensus algorithm. In Section 3, conditions for achieving
distributed consensus are discussed and the rate of convergence is quantified.
The steady-state performance of the proposed distributed tracking with con-
sensus algorithm is also analyzed in Section 3. Section 4 provides detailed
simulation results and performance comparison of the proposed distributed
tracking with consensus algorithm and that of distributed local Kalman filter-
ing with centralized fusion and centralized Kalman filter. Finally, conclusions
are given in Section 5.

2 Problem formulation and the proposed dis-

tributed tracking with consensus algorithm

A System model

Consider anN -node sensor network with a connectivity graphG(j) =
(
V,E(j)

)
at time j. Assume that the graph G(j) is undirected, but time varying due to
nodes moving out of communication ranges of each other or needing to cease
transmissions to save battery power. The objective is to perform distributed
tracking of a target and exchange tracking estimates over noisy communi-
cation links and try to reach consensus over the network. The tracking up-
dates are performed at k instances, where k denotes the tracking time step
(k = 0, 1, . . .). Consensus updates are performed between every two tracking
updates, where 0 ≤ j < J denotes the consensus iteration number, and J
is the number of consensus iterations per tracking update (assumed to be
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fixed). The dynamics of the target evolves according to

x(k + 1) = Fx(k) +w(k); x(0) ∼ N
(
x(0), P0

)
. (1)

The sensing model of the nth sensor is

yn(k) = Hnx(k) + vn(k), yn ∈ Rl. (2)

Note that the observation matrices Hn’s can be different for each node. Both
w(k) and vn(k) are assumed to be zero-mean white Gaussian noise (WGN)
and x(0) ∈ RM is the initial state of the target. The second-order statistics
of the process and measurement noise are given by

E
[
w(k)w(k′)T

]
= Qδkk′ , E

[
vn(k)vn′(k′)T

]
= Rnδkk′δnn′ ,

where δkk′ = 1 if k = k′ and δkk′ = 0, otherwise. Note that the above
system model is linear, while the system model assumed in [29] is highly
non-linear making it difficult to analyze to obtain theoretical performance
characterization.

Figure 1 shows the system model of distributed tracking with consen-
sus on a time-varying graph with incomplete data and noisy communica-
tion links. Let xn(k, j) denote the node n’s updated tracking estimate at
the jth consensus iteration that follows the kth tracking update step with
xn(k, 0) = x̂n(k|k), where x̂n(k|k) is the nth node’s filtered tracking estimate
in the kth tracking update. The received data at node n from node l, for
n ̸= l, at iteration j can be written as

zn,l(k, j) = xl(k, j) + ϕn,l(j), for 0 ≤ j < J, (3)

where ϕn,l(j) denotes the receiver noise at the node n in receiving the es-
timate of node l at iteration j and zn,n(k, j) = xn(k, j). Assume that
E
[
ϕn,l(j)

]
= 0M ,E

[
ϕn,l(j)ϕ

T
n,l(j)

]
= σ2

n,lIM with supn,l,j E
[
∥ϕn,l(j)∥2

]
=

u <∞.
As depicted in Figure 1, at the end of the kth tracking update, each node

n which has an observation of the target will have a filtered estimate x̂n(k|k)
with associated covariance matrix P̂n(k|k). In order to improve the tracking
estimate accuracy, it will exchange this filtered estimate with its neighbors
over noisy communication links and try to reach consensus over the network.
Note that, the goal here is to obtain a consensus tracking estimate over the
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local estimates at each tracking time step k, and thus, the consensus problem
is essentially a problem of consensus in estimation.

Due to time-varying topology of the network, at any given tracking time
step k, not all nodes may observe the target. Thus, these nodes will not have
local tracking estimates, which is denoted as incomplete data. In previous
consensus literature [8–20], all node estimates are taken into account in form-
ing consensus estimates. However, the same method may not be extended to
incomplete data case, since the nodes that mostly do not have observation
(yn(k) = vn(k)) will exchange their predicted filtered estimates with others.
Those predicted tracking estimates are considered as valid estimates and are
taken into account to form consensus estimates, which results in inaccurate
estimates and worsens the sensor network performance. By considering in-
complete data here, the nodes do not have data will not communicate their
invalid tracking estimates (by setting x̂n(k|k) = 0 and P̂n(k|k) = ϵIM for
some ϵ > 0 instead). By introducing active node set and effective network
graph, each node will notice which node has data in current consensus it-
eration. Only the estimates from active nodes are considered into forming
consensus estimates. The estimates from non-active nodes will not be con-
sidered until it forms its updated estimate by fusing the filtered estimates
from neighboring active nodes. Since the non-active nodes join the consensus
process without invalid tracking estimates, faster consensus process could be
achieved while the network performance is still maintained.

In the space object tracking problem treated in [29], each node observes
the target and locally processes its data in data sampling period. After form-
ing local estimates, each node will share its information among neighboring
nodes in information sharing period. Here, the information sharing rate is
much larger compared with the data sampling rate so that each data sam-
ple node may exchange their local estimates many times in between, which
may conceivably lead to better consensus estimates. The distributed track-
ing with consensus problem as formulated above may have other applications
beyond the space object tracking problem, such as in multitarget tracking
with a group of autonomous robots [33], battlefield life signs detection by
Unmanned Aerial Vehicles (UAVs) [34], package tracking in warehouse by
sensor networks [35], etc.
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B Network model

We define the active node set Sj
k in a time-varying graph G(j) as the set

of nodes that have updated local estimates to be shared with others in the
jth consensus iteration after the kth tracking update [29]. Define effective
network graph of a network G(j) =

(
V (j), E(j)

)
with active node set Sj

k as

G̃(j) =
(
V (j), Ẽ(j)

)
, where Ẽ(j) = E(j)∩

(
∪n∈Sj

k
Υout

n (j)
)
, where Υout

n (j) =

{(n, l)|(n, l) ∈ E(j)} denotes the set of directed edges with initial vertex as n
at iteration j. Note that, the effective network graph G̃(j) is a directed graph,
which is obtained by removing the outgoing edges of the nodes that do not
have data in G(j). For a static graph G(j) = G(V,E), Ẽ(j) can be written
as Ẽ(j) = Ẽ(j − 1) ∪l∈Sj−1

k

(
∪n∈Ωl

Υout
n

)
, where Ẽ(0) = E ∩

(
∪n∈S0

k
Υout

n

)
.

Note that, the nodes that do not observe the target will not have updated
local estimates to share at the beginning of consensus update process (at
j = 0). However, as information exchange among nodes progresses, some
of these nodes may be able to form their own updated local estimates at
the consensus iteration j for j > 0. Therefore, the active node set Sj

k is
time-varying and Sj

k = Sj−1
k ∪l∈Sj−1

k
Ωl(j − 1), where S0

k is the set of nodes

that have observations of the target in the kth tracking update step as in
Figure 1. Figure 2 shows the relation between the connectivity graph G(j)
and the effective network graph G̃(j) for a graph of 6 nodes with active node
set Sj

k = (1, 2, 4, 6), where solid circles denote active nodes.
Let ISj

k
denote an N × N matrix generated from the active node set Sj

k

as follows:

[ISj
k
]nn′ =

{
1 if n = n′ and n′ ∈ Sj

k

0 else
.

Note that, ISj
k
is a diagonal matrix with n′th diagonal element equal to zero

for n′ ∈ (Sj
k)

c, where (·)c denotes the set complement. By combining the
connectivity graph G(j) with the active node set Sj

k, we obtain the effective
network graph G̃(j). Thus, the adjacency matrix of the effective network
graph is given by A(j) = A(j)ISj

k
. The corresponding degree matrix D(j) can

then be obtained from A(j), and the Laplacian matrix is L(j) = D(j) − A(j)
by definition.

As an example, consider the same network model in Figure 2. The matrix
ISj

k
= diag(1, 1, 0, 1, 0, 1). The Laplacian matrices of the connectivity graph

8



and effective network graph are as follows:

L(j) =


4 −1 0 −1 −1 −1
−1 3 −1 −1 0 0
0 −1 2 0 −1 0
−1 −1 0 3 −1 0
−1 0 −1 −1 4 −1
−1 0 0 0 −1 2

 and L(j) =


3 −1 0 −1 0 −1
−1 2 0 −1 0 0
0 −1 1 0 0 0
−1 −1 0 2 0 0
−1 0 0 −1 3 −1
−1 0 0 0 0 1

 .

C Distributed tracking with consensus algorithm

In this section, we propose a distributed tracking and consensus algorithm
for the above distributed tracking problem over a time-varying graph with
incomplete data and noisy communication links. This algorithm is based
on the architecture that was first proposed in [29] in the special context of
consensus tracking in a satellite sensor network for situational awareness.

Figure 3 shows the timing diagram of tracking and consensus updates
process in the proposed distributed tracking with consensus algorithm. As
in Figure 3, at tracking time step k, node n is assumed to have completed
its consensus iterations corresponding to time k − 1. If the output of this
consensus update following the (k−1)th tracking update step is xn(k−1, J)
with the associated covariance matrix P n(k− 1, J), then node n sets xn(k−
1|k − 1) = xn(k − 1, J) and P n(k − 1|k − 1) = P n(k − 1, J). Next, at the
kth tracking update step, each node n where n ∈ Sj

k, passes its observation
yn(k) through its local Kalman filter as follows [1]:

x̂n(k|k − 1) = Fxn(k − 1|k − 1),

P̂n(k|k − 1) = FP n(k − 1|k − 1)FT +Q,

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n +Rn

)−1

,

x̂n(k|k) = x̂n(k|k − 1) +Kn(k)
(
yn(k)−Hnx̂n(k|k − 1)

)
,

P̂n(k|k) =
(
I −Kn(k)Hn

)
P̂n(k|k − 1), (4)

where xn(k−1|k−1) = xn(k−1, J) with xn(0, J) = x(0) and P n(k−1|k−1) =
P n(k − 1, J) with P n(0, J) = P0. Let X(k − 1, j) =

[
x1(k − 1, j)T, x2(k −

1, j)T, . . . ,xN(k − 1, j)T
]T
. Denote P (k − 1, j) as the covariance matrix

corresponding to X(k − 1, j). The P n(k − 1, J) in (4) can be obtained by
extracting the nth M ×M main diagonal block of P (k − 1, J).
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Node n uses its filtered estimate x̂n(k|k) obtained by the above tracking
update step as the initial estimate for consensus update exchanges by set-
ting xn(k, 0) = x̂n(k|k) with initial covariance matrix P (k, 0) = P̂1(k|k) ⊕
P̂2(k|k)⊕· · ·⊕P̂N(k|k),a where ⊕ denotes the direct sum. On the other hand,
for nodes n ∈ (Sj

k)
c, we may arbitrarily set x̂n(k|k) = 0 and P̂n(k|k) = ϵIM

for some ϵ > 0.
During the (j+1)th consensus update, each node n forms a linear estimate

of the following form as its consensus estimate:

xn(k, j + 1) = xn(k, j) + γn(j)
N∑
l=1

An,l(j)
(
zn,l(k, j)− zn,n(k, j)

)
, (5)

where γn(j) is the nth node’s weight coefficient at iteration j and 0 ≤ j < J .
We set γn(j) = γ(j) for n ∈ Sj

k and γn(j) = 1∑N
l=1 An,l(j)

for n ∈ (Sj
k)

c and∑N
l=1 An,l(j) ̸= 0. For node n that does not have local tracking estimate, we

assume that it will generate its estimate by averaging the tracking estimates
from its neighbors.b

By defining X(k, j) =
[
x1(k, j)

T, x2(k, j)
T, . . . ,xN(k, j)

T
]T
, the consen-

sus update dynamics can be written in vector form as follows:

X(k, j + 1) = X(k, j)−
[(
Γ(j)L(j)

)
⊗ IM

]
X(k, j)−

(
Γ(j)⊗ IM

)
Φ(j), (6)

where Γ(j) = diag
(
γ1(j), . . . , γN(j)

)
,Φ(j) =

[
ϕ1(j)

T · · ·ϕN(j)
T
]T

and ϕn(j) =

−
∑

l∈Ωn(j)
ϕn,l(j). Note that, from (3), E[Φ(j)] = 0 and supj E[∥Φ(j)∥2] =

η ≤ N(N − 1)u <∞.
Let us define e(k, j) to be the error vector at the jth consensus iteration

after the kth tracking update: e(k, j) , X(k, j) − (1 ⊗ IM)x(k). From (6),
it follows that

e(k, j + 1) =
(
A(j)⊗ IM

)
e(k, j)−

(
Γ(j)⊗ IM

)
Φ(j)

+
((

A(j)⊗ IM
)
− I
)
(1⊗ IM)x(k), (7)

whereA(j) = IN−Γ(j)L(j). Note that, this coefficient matrixA(j) is slightly
different from the one proposed in [29]. In [29], A(j) = Ĩ(j)−γ(j)L̃(j), where
Ĩ(j) and L̃(j) are the modified identity and Laplacian matrices. The required
modification, however, does not lend itself to a convenient relation between
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the original matrices and the modified ones that can be used in mathematical
derivations.

Note that, if the filtered estimate x̂n(k|k) at the end of the measurement
update stage is an unbiased estimate, then xn(k, 0) is also unbiased for all n ∈
Sj
k. From (5), since xn(k, j+1) = 1∑N

l=1 An,l(j)

∑N
l=1 An,l(j)

(
xl(k, j)+ϕn,l(j)

)
for

n ∈ (Sj
k)

c, then xn(k, j+1) is also unbiased for n ∈ (Sj
k)

c if xl(k, j) is unbiased
for l ∈ Sj

k. From (7), it can be shown that the unbiasedness in consensus
estimate X(k, j) can be maintained if matrix A(j) satisfies the condition((

A(j)⊗ IM
)
− I
)
(1⊗ IM) = 0, which is equivalent to requiring

((
A(j)−

IN
)
1
)
⊗ IM = 0. It follows that the unbiasedness in consensus estimate

X(k, j) requires 0 to be an eigenvalue of the Laplacian matrix L(j) with
the associated eigenvector 1.c Define the covariance matrix corresponding to
X(k, j) as P (k, j) = E[e(k, j)e(k, j)T]. From (7) and unbiasedness condition,
it can be easily seen that

P (k, j + 1) =
(
A(j)⊗ IM

)
P (k, j)

(
A(j)⊗ IM

)T
+E
{(

Γ(j)⊗ IM
)
Φ(j)Φ(j)T

(
Γ(j)⊗ IM

)T}
. (8)

As shown in Figure 3, after J consensus iterations, each node n will feed
xn(k, J) back to their local Kalman filters by setting xn(k|k) = xn(k, J) and
P n(k|k) = P n(k, J) before starting next tracking update at time k+1. Recall
that here P n(k, J) is the nth M ×M main diagonal block of P (k, J). Algo-
rithm 1 shows a summary of the steps in the proposed distributed tracking
with consensus algorithm.

3 Performance analysis

A Conditions for achieving consensus

In this section, we analyze the convergence of the proposed distributed track-
ing with consensus algorithm and the convergence rate. Note that, the proofs
of lemmas and theorems in this section are different from those in [16] due
to vector state and incomplete data, which results in two stages of consensus
process: obtaining complete data from incomplete data and reaching consen-
sus on complete data. In the scenarios we consider, we assume that the in-
formation exchange rate during the consensus update process is much higher

11



Algorithm 1 Distributed tracking with consensus algorithm

Initialize: x(0), F,Hn, Q,Rn

while new data exist do
Kalman filtering in tracking process:

x̂n(k|k − 1) = Fxn(k − 1|k − 1)
P̂n(k|k − 1) = FP n(k − 1|k − 1)FT +Q

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n +Rn

)−1

x̂n(k|k) = x̂n(k|k − 1) +Kn(k)
(
yn(k)−Hnx̂n(k|k − 1)

)
P̂n(k|k) =

(
I −Kn(k)Hn

)
P̂n(k|k − 1)

update the initial state of consensus process:
xn(k, 0) = x̂n(k|k)
P (k, 0) = P̂1(k|k)⊕ P̂2(k|k)⊕ · · · ⊕ P̂N(k|k)
j ← 0

while j ≤ J − 1 do

xn(k, j + 1) = xn(k, j) + γn(j)
∑N

l=1 An,l(j)
(
zn,l(k, j)− zn,n(k, j)

)
j ← j + 1

end while
xn(k|k) = xn(k, J)
P n(k|k) = P n(k, J)
k ← k + 1

end while
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compared with the data sampling rate for the tracking updates. Hence, we
can assume that J ≫ 1,d guaranteeing enough time for information to be
exchanged over the network so that consensus can be reached if the weight{
γ(j)

}
is chosen properly. As mentioned above, for a fixed k and J ≫ 1, the

consensus update process after the kth tracking update can be considered
as a consensus in estimation problem. Thus, to simplify notation, in the
following, we omit the tracking time step index k in X(k, j).

We start by defining the consensus subspace C as

C =
{
X ∈ RNM |X = 1N ⊗ a, a ∈ RM

}
.

If the consensus algorithm (6) converges to the consensus subspace C, each
node estimate xn(j) will converge to the same value xn(j) = a for 1 ≤ n ≤
N, a ∈ RM and consensus is reached over the network. It is well known
from the stochastic approximation literature [36] that, in order to ensure
asymptotic convergence to consensus subspace, the weight coefficient γ(j)
must satisfy the persistence condition as follows

γ(j) > 0,
∞∑
j=0

γ(j) =∞,

∞∑
j=0

γ(j)2 <∞. (9)

We recall the following result on distance properties in RNM :

Lemma 1: Suppose that X ∈ RNM and consider the orthogonal decom-
position X = XC +XC⊥ . Then, the Euclidean distance ρ(X, C) = ∥XC⊥∥.

In the following, we prove that the consensus algorithm given in (6) con-
verges almost surely (a.s.). This is achieved in two steps: First, Lemma 3
proves that the state vector sequence

{
X(j)

}
j≥0

converges a.s. to the con-

sensus subspace C. Theorem 1 then completes the proof by showing that
the sequence of component-wise averages

{
Xavg(j)

}
j≥0

converges a.s. to a

finite random variable Θ, where Xavg(j) =
1
N
(1T ⊗ IM)X(j). The proof of

Theorem 1 will require a basic result on convergence of Markov processes
from [36], which is restated as Lemma 2 in our context. Before stating the
lemma, however, we need to introduce the notation of [36].

Let
{
X(j)

}
j≥0

be a Markov process in RNM . Define the generating op-

erator L corresponding to
{
X(j)

}
j≥0

as

LV (j,X) = E
{
V
(
j + 1,X(j + 1)

)
|X(j) = X

}
− V (j,X),
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for functions V (j,X), j ≥ 0,X ∈ RNM , provided the conditional expectation
exists. If DL is the domain of L, then we say that V (j,X) ∈ DL in a domain
C, if LV (j,X) is finite for all (j,X) ∈ C.

For G ⊂ RNM , the ϵ-neighborhood of G and its complement are defined
as,

Uϵ(G) =

{
X| inf

Y∈G
ρ(X,Y) < ϵ

}
, Vϵ(G) = RNM \ Uϵ(G). (10)

With these notations, we may now state the desired lemma on the conver-
gence of Markov processes:

Lemma 2 (Convergence of Markov Processes): Let
{
X(j)

}
j≥0

be a Markov

process with generating operator L. Let there exist a non-negative function
V (j,X) ∈ DL in the domain G ⊂ RNM for j ≥ 0 and X ∈ RNM . Assume
that

inf
j≥0,X∈Vϵ(G)

V (j,X) > 0, ∀ϵ > 0, and V (j,X) = 0, X ∈ G,

lim
X→G

sup
j≥0

V (j,X) = 0, and LV (j,X) ≤ g(j)
(
1 + V (j,X)

)
− γ(j)φ(j,X),

where φ(j,X),X ∈ RNM is a non-negative function such that

inf
j,X∈Vϵ(G)

φ(j,X) > 0, ∀ϵ > 0; γ(j) > 0,
∑
j≥0

γ(j) =∞;

and g(j) > 0,
∑
j≥0

g(j) <∞.

Then, the Markov process
{
X(j)

}
j≥0

with an arbitrary initial distribution

converges almost surely (a.s.) to G as j →∞:

P
(
lim
j→∞

ρ
(
X(j), G

)
= 0

)
= 1.

Proof Proof is a vector generalization of that in [16], and is omitted. �
Lemma 2 guarantees a.s. convergence of a general Markov process with an

arbitrary initial distribution under the assumption of the existence of a Lya-
punov function V (j,X). In fact, the state vector sequence

{
X(j)

}
j≥0

given

in (6) is a Markov process, since P
[
X(j)|X(j−1), . . . ,X(0)

]
= P

[
X(j)|X(j−

14



1)
]
. In the next lemma, we prove that the state estimate sequence

{
X(j)

}
j≥0

given in (6) converges a.s. to the consensus subspace C by showing that the
consensus algorithm over an undirected effective network graph satisfies the
Lyapunov function assumptions of Lemma 2.

Lemma 3 (a.s. convergence of the proposed algorithm to the consen-
sus subspace): Consider the consensus algorithm in (6) with initial state
X(0) ∈ RNM . The weight coefficients satisfy the persistence condition in (9).
Assume that the undirected connectivity graph Laplacian L(j) is indepen-
dent of communication noise ϕn,l(j) for 1 ≤ n, l ≤ N . If L(j) = L+L̃(j) with
mean L = E

[
L(j)

]
is such that λ2(L) > 0 and p(l, n) > 0 for {l, n} ∈ E(j),

then

P
[
lim
j→∞

ρ
(
X(j), C

)
= 0

]
= 1.

Proof See Appendix A. �
Lemma 3 shows that the state estimate sequence

{
X(j)

}
j≥0

given in (6)

converges a.s. to the consensus subspace C. The key to the proof is to show
that the directed effective network graph will become an undirected graph af-
ter all nodes have local estimates and the consensus algorithm over this undi-
rected effective network graph satisfies the condition required in Lemma 2.
In the following theorem, we state our main result and complete the conver-
gence proof for the proposed distributed tracking with consensus algorithm
by showing that the sequence of component-wise averages

{
Xavg(j)

}
j≥0

con-

verges a.s. to a finite random variable Θ, where Xavg(j) =
1
N
(1T⊗ IM)X(j).

Theorem 1 (a.s. convergence to a finite random vector): Consider the
consensus algorithm in (6) with initial state X(0) ∈ RNM . The weight coeffi-
cients satisfy the persistence condition in (9). Assume that the time-varying
connectivity graph Laplacian L(j) is independent of communication noise
ϕn,l(j) for 1 ≤ n, l ≤ N . If L(j) = L+ L̃(j) with mean L = E

[
L(j)

]
is such

that λ2(L) > 0, and if p(l, n) > 0 for {l, n} ∈ E(j), then there exists an
almost sure finite real random vector Θ such that

P
[
lim
j→∞

X(j) = 1N ⊗Θ

]
= 1.

Proof Since the mean connectivity graph L is connected with non-zero
link probability, for j large enough, each node will receive information from
one another and generate its updated local estimate. For a fixed k, let
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Jk = inf{j|(Sj
k)

c = ∅, j ≥ 0}. Then, Γ(j) = γ(j)IN for j ≥ Jk and (6)
becomes

X(j + 1) = X(j)− γ(j)
[(
L(j)⊗ IM

)
X(j) + Φ(j)

]
for j ≥ Jk. (11)

Define the average of X(j) as Xavg(j) =
1
N
(1T⊗ IM)X(j). Multiply both

sides of (11) by 1
N
(1T ⊗ IM) and use the fact that 1TL(j) = 0N , so that for

(Sj
k)

c = ∅, we have

Xavg(j + 1) = Xavg(j)− ε(j) = Xavg(Jk)−
∑

Jk≤l≤j

ε(l),

where ε(j) = γ(j)
N

(1T ⊗ IM)Φ(j). Assuming that receiver noise is zero-mean
and time independent, we obtain

E
[
∥ε(j)∥2

]
=

γ2(j)

N2
E
[
Φ(j)T(1T ⊗ IM)T(1T ⊗ IM)Φ(j)

]
=

γ2(j)

N2
E

[ ∑
1≤n≤N

(
ϕn(j)

)T
ϕn(j)

]
,

where ϕn(j) = −
∑

l∈Ωn(j)
ϕn,l(j) denotes the total incoming noise from node

l ∈ Ωn(j) to node n and the last step follows from the independence of ϕl(j)
and ϕn(j). By assuming that E

[
ϕl,n(j)ϕl,n(j)

T
]
= σ2IM for 1 ≤ l, n ≤ N ,

we obtain

E
[
∥ε(j)∥2

]
≤γ2(j)

N2
MN(N − 1)σ2 =

γ2(j)M(N − 1)

N
σ2.

From independence of X(j) and Φ(j) and the independence of noise over
time, we then have that

E
[
∥Xavg(j + 1)∥2

]
≤ E

[
Xavg(Jk)

TXavg(Jk)
]
+

j∑
l≥Jk

γ2(l)M(N − 1)

N
σ2 ≤ ∞.

Denote Xavg(j) =
[
Xavg,1(j) . . . Xavg,M(j)

]T
. It can be easily seen that

E
[(
Xavg,m(j + 1)

)2] ≤ E
[(
Xavg,m(Jk)

)2]
+

j∑
l≥Jk

γ2(l)(N − 1)

N
σ2 ≤ ∞.
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Hence, the sequence
{
Xavg,m(j)

}
is an L2 bounded martingale and thus con-

verges a.s. in L2 to a finite random scalar θ. DefineXm(j) =
[
eTmx1, . . . , e

T
mxN

]T
.

From the conclusion of Lemma 3, we have that
P
[
limj→∞ ∥X(j)− 1N ⊗Xavg(j)∥ = 0

]
= 1, which implies that

P
[
limj→∞ ∥Xm(j)−Xavg,m(j)1N∥ = 0

]
= 1. Then, we obtain that

P
[
limj→∞Xm(j) = θ1N

]
= 1 and the theorem follows. �

Theorem 1 shows that the proposed distributed tracking with consensus
algorithm will reach consensus almost surely and the consensus estimate
limj→∞ x(j) is a finite random vector Θ. Since the consensus algorithm in
(6) falls in the framework of stochastic approximation, we may also analyze
the convergence rate of the consensus algorithm based on the ODE method
(ordinary difference equation) [37]. The next theorem characterizes an upper
bound to the convergence rate of the proposed distributed tracking with
consensus algorithm.

Theorem 2 (convergence rate): Consider the consensus algorithm in (6)
with initial state X(0) ∈ RNM . The weight coefficients satisfy the persis-
tence condition in (9) and γ(j) ≤ 2

λ2(L)+λn(L)
. Assume that the time-varying

connectivity graph Laplacian L(j) is independent of communication noise
ϕn,l(j) for 1 ≤ n, l ≤ N . For j ≥ Jk, the effective network graph Laplacian is
L(j) = L+ L̃(j) with mean L = E

[
L(j)

]
. If the connectivity graph Laplacian

L(j) with mean L = E
[
L(j)

]
is such that λ2(L) > 0, and if p(l, n) > 0 for

{l, n} ∈ E(j), the convergence rate,e of the proposed consensus algorithm is

bounded by −λ2(L)
(

1
J−Jk

∑
Jk≤j≤J γ(j)

)
.

Proof For a fixed i, let Jk = inf{j|(Sj
k)

c = ∅, j ≥ 0}. From the
asymptotic unbiasedness of Θ, we have limj→∞ E

[
X(j)

]
= 1N ⊗ r, where

r = Xavg(Jk). For j ≥ Jk, define Ξ(j) = INM − γ(j)(L ⊗ IM), where
L = E

[
L(j)

]
. Using the fact that L(j) and X(j) are independent, and

E
[
Φ(j)

]
= 0NM , from (6), we have that

E
[
X(j + 1)

]
= Ξ(j)E

[
X(j)

]
=

j∏
l=Jk

Ξ(l)E
[
X(Jk)

]
, ∀j ≥ Jk. (12)

From the persistence condition γ(j) > 0,
∑

j≥0 γ(j) =∞ and
∑

j≥0 γ
2(j) ≤

∞ [16], it follows that γ(j) → 0. From the mixed-product property of Kro-
necker product (A⊗B)(C⊗D) = AB⊗CD and

(
INM−γ(j)L

)
1N = 1N [32],
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we have

1N ⊗ r = Ξ(j)
(
1N ⊗ r

)
. (13)

From (12) and (13), it can be shown that

∥E
[
X(j)

]
− 1N ⊗ r∥ ≤

∏
Jk≤l≤j−1

ρ
(
1− γ(l)L

)
∥E
[
X(Jk)

]
− 1N ⊗ r∥

=
∏

Jk≤l≤j−1

(
1− γ(l)λ2(L)

)
∥E
[
X(Jk)

]
− 1N ⊗ r∥,

where last step follows from Lemma 8 of [15] and ρ(·) denotes the spectral
radius of a matrix. From the assumption on weight coefficient γ(j), we have
0 ≤ γ(l)λ2(L) ≤ 1. Since 1− α ≤ e−α for 0 ≤ α ≤ 1, we then have that

∥E
[
X(j)

]
− 1N ⊗ r∥ ≤

(
e−λ2(L)

(∑
Jk≤l≤j−1 γ(l)

))
∥E
[
X(Jk)

]
− 1N ⊗ r∥. (14)

Therefore, as j → J , the convergence rate is bounded by

−λ2(L)
(

1
J−Jk

∑
Jk≤l≤J γ(l)

)
, which depends on the algebraic connectivity

λ2(L) and the weights γ(j), for Jk ≤ j ≤ J . �
Theorem 2 shows that the convergence rate of the proposed algorithm

depends on the topology through the algebraic connectivity λ2(L) of the
effective network graph G̃(j) and through weights γ(j), for j ≥ Jk. Since for
j ≥ Jk, ISj

k
= I and L(j) = L(j) , we have L = E

[
L(j)

]
= E

[
L(j)

]
. In (14),

λ2(L) is the algebraic connectivity of the mean Laplacian corresponding to
the time-varying network graphs. For a static network, this reduces to the
algebraic connectivity of the static Laplacian L.

Since the consensus algorithm in (6) is iterative, whose energy consump-
tion is proportional to the time necessary to achieve consensus and inversely
proportional to transmit power. From [38, 39], for energy-constrained sen-
sor networks, there exists a tradeoff between convergence time that depends
on network connectivity and the transmit power of each node necessary to
establish the links with the desired reliability. Therefore, we can minimize
the energy consumption for consensus process by optimizing transmit power,
network topology, and weights γ(j).

B Steady-state analysis for noiseless graphs

In this section, we analyze the steady-state performance of the proposed
distributed tracking with consensus algorithm. When the filter reaches steady
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state, the error covariance matrix is time invariant and the corresponding
filter gain is constant. Therefore, finding the steady state of the proposed
algorithm will help understanding its asymptotic behavior, analyzing error
covariance, and filter design. From (8), it can be seen that the propagation
of communication noise implies the non-existence of an upper bound to the
covariance matrix. Therefore, the covariance matrix in the Kalman filter may
not also converge and the filter may not reach steady state. However, time-
varying graph assumption does not affect the existence of steady state. Since
for J → ∞, consensus is reached over the network and the outputs of the
consensus update Xn(k, J) and P (k, J) depend only on the inputs Xn(k, 0)
and P (k, 0) for complete data case with noiseless time-varying graphs (for
incomplete data case with noiseless time-varying graphs, this property still
holds for some special types of graphs). Hence, the combined system of
distributed tracking with consensus can be transformed into a Kalman filter
with time-invariant parameters. Therefore, steady state can still be reached
[1]. In the following, assuming noiseless time-varying graphs, we start with
steady-state analysis for the case with complete data, and then, we extend
the results to the case with incomplete data.

1) Complete data with noiseless time-varying graphs: Here, we assume com-
plete data, a scalar target state x ∈ R1 (for simplicity) and noiseless time-
varying graphs, where the connectivity graph Laplacian L(j) with mean
L = E[L(j)] is such that λ2(L) > 0, and p(l, n) > 0 for {l, n} ∈ E(j).
Note that, since a closed form equation for P̂n(k + 1|k) cannot be easily ob-
tained when the target state x ∈ RM for M > 1, the following derivation
would not apply to vector state.

From the result of Theorem 1 for scalar target state, it can be shown that
limJ→∞X(k, J) = Xavg(k, 0)1N , where Xavg(k, j) =

1
N
1TX(k, J). From the

definition of X(k, j) and xn(k, 0) = x̂n(k|k), we have for 1 ≤ n ≤ N

lim
J→∞

xn(k, J) =
1

N

N∑
n=1

x̂n(k|k). (15)

With the assumptions above, the covariance matrix (8) in the (j + 1)th
consensus iteration after the kth tracking update simplifies to P (k, j + 1) =
A(j)P (k, j)A(j)T. For complete data case, L(j) = L(j). Since 1TL(j) = 0,
from (7), we have 1TA(j) = 1. Then, we can obtain that

1TP (k, j + 1)1 = 1TP (k, j)1. (16)
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By applying the result of Theorem 1, we have limJ→∞ P (k, J) = (Xavg(k, 0)−
x(k))211T. Since all the elements in limJ→∞ P (k, J) are equal, from (16), it
follows that

lim
J→∞

P (k, J) =
1TP (k, 0)1

N2
11T =

∑N
n=1 P̂n(k|k)

N2
11T. (17)

Since P n(k, J) is the nth M ×M main diagonal block of P (k, J), we have
the covariance matrix for node n (1 ≤ n ≤ N) as below:

lim
J→∞

P n(k, J) =

∑N
n=1 P̂n(k|k)

N2
. (18)

From (15) and (18), we have xn(k, J) = xl(k, J) and P n(k, J) = P l(k, J)
for J → ∞ and 1 ≤ n, l ≤ N . Then, each node n sets xn(k|k) = xn(k, J)
and P n(k|k) = P n(k, J). From (4), we have x̂n(k + 1|k) = x̂l(k + 1|k) and
P̂n(k+1|k) = P̂l(k+1|k) for 1 ≤ n, l ≤ N and it follows that for 1 ≤ n ≤ N

x̂n(k + 1|k) = F
1

N

N∑
q=1

x̂q(k|k − 1)− F
1

N

N∑
q=1

[
Kq(k)

(
yq(k)−Hqx̂q(k|k − 1)

)]
,

P̂n(k + 1|k) = Q+
1

N2

N∑
q=1

F
(
I −Kq(k)Hq

)
P̂q(k|k − 1)FT. (19)

Let x̂n(k + 1|k) = x̂(k + 1|k) and P̂n(k + 1|k) = P̂ (k + 1|k). Then, the
combined system of distributed tracking with consensus can be transformed
into a single Kalman filter as follows:

x̂(k + 1|k) = Fx̂(k|k − 1) +
F

N

N∑
n=1

[
Kn(k)

(
yn(k)−Hnx̂n(k|k − 1)

)]
,

Kn(k) = P̂ (k|k − 1)HT
n

[
HnP̂ (k|k − 1)HT

n +Rn

]−1

,

P̂ (k + 1|k) = Q+
1

N2

N∑
n=1

[
FP̂ (k|k − 1)FT − FKn(k)

(
HnP̂ (k|k − 1)HT

n +Rn

)
×Kn(k)

TFT
]
. (20)

Theorem 3 Consider the system dynamics in (1) and (2) and the Kalman
filter in (20). Assume that the connectivity graph Laplacian L(j) with mean
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L = E[L(j)] is such that λ2(L) > 0, and p(l, n) > 0 for {l, n} ∈ E(j). If
the pair (F,Hn) is observable for 1 ≤ n ≤ N , then the prediction covariance
matrix P̂ (k|k − 1) converges to a constant matrix

lim
k→∞

P̂ (k|k − 1) = P,

where P is the unique definite solution of the discrete algebraic Riccati equa-
tion (DARE)

P = Q+
1

N2

N∑
n=1

[
FPFT − FPHT

n

(
HnPHT

n +Rn

)−1
HnPFT

]
. (21)

Proof See Proof of Theorem 4. By setting m = N and βn(k) = 1 for
1 ≤ n ≤ N , the Kalman filter in (24) can be reduced to the one in (20).
Theorem 3 can be considered as a special case of Theorem 4. Thus, it can
be proved in a similar manner. �

As a consequence of Theorem 3, the local Kalman filter gain converges to

lim
k→∞

Kn(k) = PHT
n

[
HnPHT

n +Rn

]−1
.

From (21), it can be seen that limN→∞ P = Q, i.e., as the size of the sensor
network N increases, the steady-state covariance P , which in this case is a
scalar, will decrease. This implies that if the network size is large enough,
asymptotically the tracking is noiseless and follows the target exactly. It is
obvious that this result still holds for distributed local Kalman filtering with
centralized fusion. However, the distributed tracking with consensus results
in the same performance even if the graph is time-varying and it also improves
the robustness and scalability due to consensus exchanges. For the assumed
scalar case, for example, if Hn = H and Rn = R for 1 ≤ n ≤ N , then we

have K = HP
H2P+R

and P =
−B+
√

B2+4H2QR

2H2 , where B =
(
1− F 2

N

)
R −H2Q.

This implies that for the same sensing model, each node will have the same
Kalman gain K and prediction covariance P in the steady state.

2) Incomplete data with noiseless time-varying graphs: Next, we assume in-
complete data, a scalar target state x ∈ R1 and noiseless time-varying graphs,
where the connectivity graph Laplacian L(j) with mean L = E[L(j)] is such
that λ2(L) > 0, and p(l, n) > 0 for {l, n} ∈ E(j). Furthermore, we assume
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that only m nodes can observe the target and without loss of any generality
the index of those m nodes are ordered as 1, 2, . . . ,m, where m is constant
and 1 ≤ m ≤ N . This implies that the active node set S0

k = {1, 2, . . . ,m},
which does not require further assumptions on the connectivity graph for
consensus, since the graph is connected on average and the information can
still propagate over the network even if only a fixed number of nodes have
observation.

With the assumption of incomplete data and noiseless time-varying graphs,
1TL(j) = 0 for Jk ≤ j < J . Then, (17) becomes

lim
J→∞

P (k, J) =
1TP (k, Jk)1

N2
11T =

1T
[
AJk−1

0

]
P (k, 0)

[
AJk−1

0

]T
1

N2
11T

=

∑m
n=1 P̂n(k|k)β2

n(k)

N2
11T, (22)

where
[
AJk−1

0

]
= A(Jk − 1) · · ·A(0) and βn(k) =

∑N
l=1

[
AJk−1

0

]
ln

is the nth

column sum of
[
AJk−1

0

]
that depends on time k. The last step of (22) follows

from that P̂n(k|k) = ϵ for m < n ≤ N and some ϵ > 0. Then, as in previous
subsection, we have for 1 ≤ n ≤ N

lim
J→∞

P n(k, J) =

∑m
n=1 P̂n(k|k)β2

n(k)

N2
, and

lim
J→∞

xn(k, J) =
1

N

m∑
n=1

x̂n(k|k)βn(k). (23)

From (23), for J →∞, we have xn(k, J) = xl(k, J) and P n(k, J) = P l(k, J)
for 1 ≤ n, l ≤ N . By setting xn(k|k) = xn(k, J) and P n(k|k) = P n(k, J),
from (4), we can obtain recursive update equations for P̂n(k+1|k) and x̂n(k+
1|k). Furthermore, we also have x̂n(k+1|k) = x̂l(k+1|k) and P̂n(k+1|k) =
P̂l(k+1|k) for 1 ≤ n, l ≤ N . Let x̂n(k+1|k) = x̂(k+1|k) and P̂n(k+1|k) =
P̂ (k+1|k). Then, the combined system of distributed tracking with consensus
can then be transformed into a single Kalman filter for node n(1 ≤ n ≤ m)
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as below:

x̂(k + 1|k) = F

N

m∑
n=1

x̂(k|k − 1)βn(k) +
F

N

m∑
n=1

[
Kn(k)

(
yn(k)−Hnx̂(k|k − 1)

)
βn(k)

]
,

Kn(k) = P̂ (k|k − 1)HT
n

[
HnP̂ (k|k − 1)HT

n +Rn

]−1

, (24)

P̂ (k + 1|k) = Q+
1

N2

m∑
n=1

[
FP̂ (k|k − 1)FT − FKn(k)

(
HnP̂ (k|k − 1)HT

n +Rn

)
×Kn(k)

TFT
]
β2
n(k),

where (20) is a special case of (24) withm = N and βn(k) = 1 for 1 ≤ n ≤ N .
Theorem 4 Consider the system dynamics in (1) and (2) and the Kalman

filter in (24). Assume that m nodes can observe the target and the index
of those m nodes are fixed and ordered as 1, . . . ,m. The connectivity graph
Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) > 0, and p(l, n) > 0
for {l, n} ∈ E(j). The connectivity graph has switching topologies and
is periodic such that βn(k) = βn is time invariant. If the pair (F,Hn) is
observable for 1 ≤ n ≤ m, then the prediction covariance matrix P̂ (k|k − 1)
converges to a constant matrix

lim
k→∞

P̂ (k|k − 1) = P,

where P is the unique definite solution of the discrete algebraic Riccati equa-
tion (DARE)

P = Q+
1

N2

m∑
n=1

[
FPFT − FPHT

n

(
HnPHT

n +Rn

)−1
HnPFT

]
β2
n. (25)

Proof See Appendix B. �
Theorem 4 asserts that if the connectivity graph topology is switching

and periodic, the proposed algorithm can still reach steady-state and the
steady-state covariance matrix can be obtained by solving (25). The con-
ditions of graph topology assumed in Theorem 4 are strong. However, it
may still be applicable in certain situations such as satellite surveillance net-
work in [29], since the existence of a communication link depends on distance
between nodes and the trajectories of satellites are pre-determined and pe-
riodic, whenever ratios of the orbit periods are rational. As an example,
consider the network model in Figure 4. The connectivity graph in Figure 4
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is switching and periodic with period equal to 4, and it can be seen that
the graph is connected on average. Let N = 6,m = 4, S0

k = {1, 2, 3, 4} and
γ(j) = 1

j+1
for 0 ≤ j < J . After iteration Jk = 1, all nodes will have updated

local estimates to be shared. In this case,
[
AJk−1

0

]
becomes

[
AJk−1

0

]
=


−1 1 0 1 0 0
1 −2 1 1 0 0
0 1 0 0 0 0
1 1 0 −1 0 0
1
3

0 1
3

1
3

0 0
1 0 0 0 0 0

 .

It can be seen that
[
AJk−1

0

]
is time invariant, due to the time-variance of

m and the periodic graph topology. Thus, βn(k) = βn is also time invariant
and 1

N

∑m
n=1 βn = 1, which follows from the condition for unbiasedness in the

consensus estimateX(k, j). As we will see shortly, from the simulation results
in Section IV, the filter indeed reaches steady state in this case, and then,
the error covariance matrix becomes time invariant and the corresponding
filter gain is constant.

4 Numerical examples

In this section, we consider the performance of the proposed distributed
tracking with consensus algorithm and compare it with centralized Kalman
filter and distributed local Kalman filtering with centralized fusion. The per-
formance of the centralized Kalman filter is well-understood [40] and provides
a benchmark performance for distributed local Kalman filtering with central-
ized fusion. In distributed local Kalman filtering with centralized fusion, all
nodes send their filtered estimates to a fusion center. The fusion center then
generates a fused estimate x̂fusion(k) =

1
|S0

k|
∑

n∈S0
k
x̂n(k|k).

In the first simulation, we compare the performance of the proposed al-
gorithm with the distributed local Kalman filtering with centralized fusion
and the centralized Kalman filter over a random graph with noisy communi-
cation links and incomplete data. We consider a random connectivity graph
G(N, p) with N = 20 and the probability that each link exists p = 0.5. The
other parameters of the simulation setup are: F = 1, Q = 1, x(0) = 0, P0 =
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0, Rn = 0.25, Hn = 1, σ2
l,n = σ2 = 0.1, S0

k = {n|1 ≤ n ≤ 10, n ∈ Z} and
J = 30.

Figure 5a shows the node estimates of the three algorithms in a time-
varying graph with noisy communication links. As we can see, the node
estimates of the three algorithms follow the target’s trajectory. In Fig-
ure 5a, the curve with cross marker denotes the first node’s estimate by
using distributed tracking with consensus algorithm, the dashed curve de-
notes the distributed local Kalman filtering with centralized fusion, and the
curve with circle marker denotes the centralized Kalman filter and the solid
curve denotes the target’s trajectory. Figure 5b compares the resulting mean
squared error (MSE) of the three algorithms, where the MSE of the dis-
tributed tracking with consensus is defined to be the average MSE over all

nodes 1
N

∑N
n=1

[(
xn(k, J)− x(k)

)T(
xn(k, J)− x(k)

)]
. In Figure 5b, it can

be seen that the MSE of the proposed distributed tracking with consensus
algorithm is close to that of the distributed local Kalman filtering with cen-
tralized fusion. As expected, both of them are higher than the MSE of the
centralized Kalman filter, which acts as a benchmark. The results in Fig-
ure 5 show that the performance of the proposed distributed tracking with
consensus algorithm is close to that of the distributed local Kalman filtering
with centralized fusion in a time-varying random graph with noisy commu-
nication and incomplete data. Additional communication bandwidth, which
depends on graph topology G and number of iterations J , is required for the
proposed algorithm due to information exchange among nodes. However, it
resolves the bandwidth constraints problem of fusion center for centralized
fusion case and has a high level of fault tolerance and reliability. Also, be-
cause of its advantages of fully distributed implementation, robustness, and
scalability, it may be preferable in practical applications.

In the second simulation, we consider the two-dimensional tracking prob-
lem treated in [22]. The connectivity graph is again assumed to be a random
graph G(N, p) with N = 50 and the probability that each link exists p = 0.5.
The probability of each node having an observation at a given time instant
is ps = 0.9. The other parameters of the simulation setup are as follows:

F = I2 + ϵF0 +
ϵ2

2
F 2
0 + ϵ3

6
F 3
0 , F0 =

[
0 −2
2 0

]
, ϵ = 0.015, Q = (ϵc2w)

2I2, cw =

5, x(0) = [15,−10]T, Hn = [1, 0] for n is odd and Hn = [0, 1] for n is even,
Rn = c2v

√
n for n = 1, . . . , N with cv = 30, σ2

l,n = σ2 = 1, J = 10. Note that,
the target is moving on noisy circular trajectories. The target is not fully
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observable by an individual node, but is collectively observable by all nodes.
Figure 6a shows the node estimates (trajectory) of the two algorithms

over a time-varying graph with incomplete data. In Figure 6a, the curves
with markers denote all the node estimates by using distributed tracking
with consensus algorithm, while the dashed curve denotes the distributed
local Kalman filtering with centralized fusion and the solid curve denotes the
target’s trajectory. As we can see, both algorithms overcome the impact of
partial observations at each node resulting in improved overall observation
quality and the node estimates by using distributed tracking with consensus
algorithm are noisy due to the communication noise. Note that the estimates
are close to the trajectory of the target but with a small gap. That is because
the observation noise covariance is rather large at each node. Figure 6b
compares the resulting MSE of these algorithms. It can be seen that the
mean squared error of the proposed algorithm is slightly higher than that of
the distributed Kalman filtering with centralized fusion.

Next, we study the steady-state behavior in the case of time-varying
graphs with complete data and noiseless communication. We consider a ran-
dom connectivity graph G(N, p) with N = 6 and the probability that each
link exists p = 0.5. The other parameters of the simulation setup are as
follows: F = 1, Q = 1, x(0) = 0, P0 = 0.5, Rn = 0.25, σ2

l,n = σ2 = 0, J =
30, Hn = 1. Figure 7a shows the node consensus estimates xn(k, J) over
a random graph with noiseless communication links and complete data. It
can be seen that all node estimates xn(k, J) converge to the same value
and follow the target state, as asserted by Theorem 1. Figure 7b and 7c
shows the node estimates xn(k, j) in the consensus update after the twenty-
first tracking update and the variance of all the node estimates, respec-
tively. Here, the variance of all the node estimates is defined as var(k, j) =

E
[
(xn(k, j)− µ(k, j))T (xn(k, j)− µ(k, j))

]
, where µ(k, j) = 1

N

∑N
n=1 xn(k, j).

From Figure 7b, it can be seen that the node estimates converge to the av-
erage which is also confirmed in Figure 7c, where the variance var(k, j) de-
creases as consensus iteration number increases and becomes static (around
10−17) after consensus is reached. Figure 8 shows the node estimate variance
P̂n(k|k− 1) and Kalman gain Kn(k) of the filter in (20). It can be seen that
as the Kalman filter reaches steady state, both the node estimate variance
and the Kalman gain converge, as asserted by Theorem 3.

Next, we study the steady-state behavior on a graph with switching
topologies and incomplete data and noiseless communication. The assumed
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parameters in the first simulation setup are as follows: F = 1, Q = 1, x(0) =
0, P0 = 0.5, Rn = 0.25, σ2

l,n = σ2 = 0, N = 6, J = 40, S0
k = {1, 3, 4, 6}, Hn =

0.5 for n = 1, 3 and Hn = 1 for n = 4, 6. The connectivity graph Laplacian
is

L(j) =


L1 j = 4m
L2 j = 4m+ 1
L3 j = 4m+ 2
L4 j = 4m+ 3

for m = 0, 1, 2, . . . ,

which is shown in Figure 4. As we can see, the graph is connected on average
and p(l, n) > 0 for {l, n} ∈ E(j), satisfying the conditions on the connectivity
graph Laplacian required in Theorem 1.

Figure 9 shows the prediction covariance matrix P̂n(k|k− 1) and Kalman
gain Kn(k) of the filter in (20), respectively. It can be seen that as the
Kalman filter reaches the steady state, both the prediction covariance matrix
and the Kalman gain converge, as asserted by Theorem 4. Note that the limit
of the Kalman gain is different for different nodes in Figure 9 because the
observation matrix Hn is different for different nodes.

5 Conclusions

In this paper, we considered the problem of distributed tracking with consen-
sus on a time-varying graph with incomplete data and noisy communication
links. We developed a framework consisting of tracking and consensus up-
dates to handle the issues of time-varying network topology and incomplete
data. We discussed the conditions for achieving consensus, quantified the
convergence rate and analyzed the steady-state performance when applica-
ble. Our simulation results showed that the proposed distributed tracking
with consensus algorithm improves the estimation quality at each node and
its performance is close to that of the distributed local Kalman filtering with
centralized fusion. The proposed algorithm shows advantages of fully dis-
tributed implementation, robustness and scalability, which is preferable in
practical application.

Appendix A

Proof of Lemma 3
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Proof Since λ2(L) > 0 and p(l, n) > 0 for {l, n} ∈ E(j), the undirected
time-varying connectivity graph G(j) is connected on average with non-zero
link probability. For j large enough, each node will receive the information
from one another and generate its updated local estimates. For a fixed k, let
Jk = inf{j|(Sj

k)
c = ∅, j ≥ 0}. Then, we have the effective network graph is

the same as connectivity graph G̃(j) = G(j), L(j) = L(j) and Γ(j) = γ(j)IN
for j ≥ Jk.

Since P
[
X(j)|X(j−1), . . . ,X(0)

]
= P

[
X(j)|X(j−1)

]
, the process

{
X(j)

}
j≥0

is Markov. Define V (j,X) = X
T
(L ⊗ IM)X. Since we assume the graph is

undirected and connected on average, L is positive semidefinite. Then, the
potential function V (j,X) is non-negative. Since X ∈ C is an eigenvector of
L⊗ IM with zero eigenvalue, V (j,X) ≡ 0,X ∈ C, limX→C supj≥0 V (j,X) = 0.
From Courant-Fisher Theorem [31,41], for Z ∈ RNM and Z⊥C, we have

ZT(L⊗ IM)Z ≥ λ2(L⊗ IM)ZTZ. (26)

From Lemma 1 and the complement of the ϵ-neighborhood of a set in (10),
we have X ∈ Vϵ(C) ⇒ ∥XC⊥∥ ≥ ϵ. Then, for X ∈ Vϵ(C), from (26) and the
properties of Kronecker product and eigenvalues, we will have

V (j,X) =X
T
(L⊗ IM)X = X

T

C⊥(L⊗ IM)XC⊥ +X
T

C (L⊗ IM)XC,

≥λ2(L⊗ IM)∥XC⊥∥2 = λ2(L)∥XC⊥∥2 ≥ λ2(L)ϵ
2. (27)

Since λ2(L) > 0, we get infj≥0,X∈Vϵ(C) V (j,X) ≥ λ2(L)ϵ
2 > 0. Consider the

generating operator L and (11). Using the fact that L(j) = L(j) for j ≥ Jk,
we obtain

LV (j,X) =E
[
X(j + 1)T(L⊗ IM)X(j + 1)|X(j) = X

]
−X

T
(L⊗ IM)X,

=E
[ [

X− γ(j)
(
L(j)⊗ IM

)
X− γ(j)Φ(j)

]T
(L⊗ IM)

×
[
X− γ(j)

(
L(j)⊗ IM

)
X− γ(j)Φ(j)

]]
−X

T
(L⊗ IM)X for j ≥ Jk.

From (6), we have E
[
∥Φ(j)∥2

]
≤ η. By using the independence of L(j) and

Φ(j) with respect to X(j) and X
T
LX ≤ λN(L)∥XC⊥∥2 [32], after some work,
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we have that

LV (j,X) = −2γ(j)XT
(L⊗ IM)2X+ γ2(j)X

T
(L⊗ IM)3X

+ E
[
γ2(j)

[(
L̃(j)⊗ IM

)
X
]T
(L⊗ IM)

(
L̃(j)⊗ IM

)
X
]

+ E
[
γ2(j)Φ(j)T(L⊗ IM)Φ(j)

]
,

≤ −2γ(j)XT
(L⊗ IM)2X+ γ2(j)

[
λ3
N(L)∥XC⊥∥2 + λN(L)E

[
∥
(
L̃(j)⊗ IM

)
X∥2

]
+λN(L)E

[
∥Φ(j)∥2

]]
,

≤ −2γ(j)XT
(L⊗ IM)2X+ γ2(j)

[
λ3
N(L)∥XC⊥∥2 + 4N2λN(L)∥XC⊥∥2 + λN(L)η

]
.

The last step follows from the fact that all the eigenvalues of L̃(j) are less
than 2N in absolute value, by the Gershgorin circle theorem. Using the fact

that X
T
(L⊗ IM)X ≥ λ2(L)∥XC⊥∥2 from (27), we have

LV (j,X) ≤− 2γ(j)X
T
(L⊗ IM)2X+ γ2(j)

[
λN(L)η +

(
λ3
N(L)

λ2(L)
+

4N2λN(L)

λ2(L)

)
×XT

(L⊗ IM)X
]
,

≤− 2γ(j)φ(j,X) + g(j)
[
1 + V (j,X)

]
for j ≥ Jk,

where φ(j,X) = 2X
T
(L⊗IM)2X, g(j) = γ2(j)max

(
λN(L)η,

λ3
N (L)

λ2(L)
+ 4N2λN (L)

λ2(L)

)
.

Then, the theorem follows by using Lemma 2. �

Appendix B

Proof of Theorem 4:
Proof Step 1: Bound on the error covariance
From (1), it can be easily shown that the controllability matrix has full

rank and the system is controllable. Since (F,Hn) is detectable, ∃K ′
n such

that (F −K ′
nHn) are stable. Consider the suboptimal filter

x̂n(k + 1|k) = Fx̂n(k|k − 1) +K ′
n

(
yn(k)−Hnx̂n(k|k − 1)

)
,

Since consensus is reached in consensus update part, x̂n(k|k − 1) = x̂l(k|k −
1) = x̂(k|k − 1) for 1 ≤ n, l ≤ N . Then,

x̂(k + 1|k) = 1

N

(
F

m∑
n=1

βn −
m∑

n=1

K ′
nHnβn

)
x̂(k|k − 1) +

1

N

m∑
n=1

K ′
nyn(k)βn.
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It is easily verified that

x̃(k + 1|k) = x
(
k + 1

)
− x̂(k + 1|k),

=

(
F − 1

N

m∑
n=1

K ′
nHnβn

)
x̃(k|k − 1)− 1

N

m∑
n=1

K ′
nvn(k)βn + w(k),

where the last step follows from the fact that the estimate is unbiased and
1
N

∑m
n=1 βn = 1. Since (F −K ′

nHn) is stable,
(
F − 1

N

∑m
n=1 K

′
nHnβn

)
is also

stable. It follows that the covariance matrix Π(k) = Cov
[
x̃(k|k − 1)

]
is

bounded, where Cov(x) denotes the covariance matrix of x. However, the
filter above is suboptimal, so that P (k|k − 1) ≤ Π(k).

Step 2: Monotonicity of the error covariance
Recall that the mapping f : P̂n(k|k − 1)→ P̂n(k + 1|k) as P̂n(k + 1|k) =

minKn g
(
P̂n(k|k − 1), Kn

)
, where

g(P̂n, Kn) = (F −KnHn)P̂n(F −KnHn)
T +KnRnK

T
n +Q.

Thus, if P̂n(k|k − 1) ≥ P̂ ′
n(k|k − 1) ,

P̂n(k + 1|k) = min
Kn

g
(
P̂n(k|k − 1), Kn

)
= g
(
P̂n(k|k − 1), K∗

n

)
≥ g
(
P̂ ′
n(k|k − 1), K∗

n

)
,

≥ min
Kn

g
(
P̂ ′
n(k|k − 1), Kn

)
= P̂ ′

n(k + 1|k).

Therefore, the mapping f from P̂n(k|k − 1) to P̂n(k + 1|k) is monotonic.
Because P̂ (k+1|k) = 1

N2

∑m
n=1 P̂n(k+1|k)β2

n, the mapping f̂ : P̂ (k|k−1)→
P̂ (k + 1|k) is also monotonic.

Step 3: Use of zero initial covariance
Suppose P̂ (0| − 1) = 0. Then P̂ (1|0) ≥ P̂ (0| − 1) = 0. But from Step

2 it follows that P̂ (k + 1|k) ≥ P̂ (k|k − 1), for k ≥ 0. Since
{
P̂ (k|k − 1)

}
is bounded by Step 1, then P̂ (k|k − 1) → P for some P ≥ 0. Obviously, P
must be a stationary point of the covariance update equation, hence solves
the DARE.

Step 4: Asymptotic stability of the filter
With Kn the stationary gain corresponding to P , the DARE is

P =

(
F − 1

N

m∑
n=1

KnHnβn

)
P

(
F − 1

N

m∑
n=1

KnHnβn

)T

+
1

N2

m∑
n=1

KnRnK
T

nβ
2
n +GGT,
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where GGT = Q. Let ν be a left eigenvector of
(
F − 1

N

∑m
n=1 KnHnβn

)
with

eigenvalue λ. Then

(
νPνT

)
= |λ|2

(
νPνT

)
+

1

N2

m∑
n=1

νKnRnK
T

nν
Tβ2

n + νGGTνT. (28)

Since Rn and Q are positive semidefinite, it implies that |λ| ≤ 1. It only
remains to show that |λ| = 1 is impossible. If |λ| = 1, we have from (28) and
the definition of ν:

ν

(
F − 1

N

m∑
n=1

KnHnβn

)
= λν, νKn = 0, and νG = 0,

which gives that ν[λI − F,G] = 0. This contradicts the assumption that
(F,G) is stabilizable.

Step 5: Nonzero initial covariances
Suppose we use the stationary suboptimal filter K ′

n ≡ Kn to obtain the
estimate x̂(k|k − 1). We show that its error covariance converges to P .
Defining x̃(k|k − 1) , x(k)− x̂(k|k − 1), we obtain

x̃(k|k − 1) =

(
F − 1

N

m∑
n=1

KnHnβn

)
x̃(k|k − 1)− 1

N

m∑
n=1

Knvn(k)βn + w(k).

Since (F− 1
N

∑m
n=1 KnHnβn) is stable with eigenvalue |λ| < 1, it follows from

above results on stationary behavior that Π(k) ≡ Cov[x̃(k|k − 1)]→ P̃ ≥ 0,
where P̃ is the unique non-negative solution of the Lyapunov equation:

P̃ =

(
F − 1

N

m∑
n=1

KnHnβn

)
P̃

(
F − 1

N

m∑
n=1

KnHnβn

)T

+
1

N2

m∑
n=1

KnRnK
T

nβ
2
n +Q.

However, substitutingKn this is just the DARE which is satisfied by P , hence
P̃ = P . Now, x̂(k|k − 1) is suboptimal so that P (k|k − 1) ≤ Π(k)→ P̃ . On
the other hand, by monotonicity of mapping f̂ : P̂ (k|k − 1) → P̂ (k + 1|k),
it follows that P (k|k − 1) ≥ P 0(k|k − 1) → P , where P 0(k|k − 1) is the
covariance for P (0| − 1) = 0. Hence, P (k|k − 1)→ P . �
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Endnotes

aThe assumption here is that at the beginning of the consensus update
process, the filtered estimates at different nodes are statistically uncorre-
lated. bNote that, for n ∈ (Sj

k)
c and

∑N
l=1 An,l(j) = 0, node n does not

receive information from any node that has local tracking estimate. Then,
xn(k, j + 1) = xn(k, j).

cNote that, similar results on the unbiasedness of
consensus estimate was obtained in [29]. dFor practical consideration, due
to energy constraints of sensor networks, the time period J for consensus
process is not too long such that the nodes can still efficiently obtain new
information from the source [38]. Simulation results in Section IV show how
the algorithm performs in this case. eNote that the convergence rate cal-
culated here is for the period of Jk ≤ j ≤ J , where J ≫ 1 is the number
of consensus iterations. From persistence condition (9), limj→∞ γ(j) = 0.
Then γ(j) is very close to zero and the convergence speed can be assumed
negligible for j ≥ J and J large enough [26,42].
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Figure 1: Block diagram of distributed tracking with consensus on a
time-varying graph with incomplete data and noisy communication
links.

Figure 2: Connectivity graph and effective network graph.

Figure 3: Timing diagram of tracking and consensus updates in the
proposed algorithm for distributed tracking with consensus.
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Figure 4: A time-varying graph with switching topologies.

Figure 5: Comparison of the proposed distributed tracking with
consensus algorithm with distributed local Kalman filtering with
centralized fusion and centralized Kalman filter. (a) Node estimates;
(b) mean squared error.

Figure 6: Comparison of the proposed distributed tracking with
consensus algorithm and distributed Kalman filter with centralized
fusion in a two-dimensional tracking problem. (a) Trajectory; (b)
mean squared error.

Figure 7: Performance of the distributed tracking with consensus
algorithm for complete data and noiseless communication case. (a)
Node consensus estimates xn(k, J) versus tracking time step; (b) node es-
timates xn(k, j) versus consensus iteration number; (c) variance of node
estimates var(k, j) versus consensus iteration number.

Figure 8: Steady-state performance of the distributed tracking with
consensus algorithm for complete data and noiseless communica-
tion case. (a) Prediction covariance matrix P̂n(k|k− 1); (b) Kalman gain
Kn(k).

Figure 9: Steady-state performance of the distributed tracking with
consensus algorithm for incomplete data and noiseless communica-
tion case. (a) Prediction covariance matrix P̂n(k|k− 1); (b) Kalman gain
Kn(k).
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