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Abstract—Cognitive radio techniques allow secondary users
(SU’s) to opportunistically access underutilized primary channels
that are licensed to primary users. We consider a group of SU’s
with limited spectrum sensing capabilities working cooperatively
to find primary channel spectrum holes. The objective is to
design the optimal sensing and access policies that maximize the
total secondary throughput on primary channels accrued over
time. Although the problem can be formulated as a Partially
Observable Markov Decision Process (POMDP), the optimal
solutions are intractable. Instead, we find the optimal sensing
policy within the class of myopic policies. Compared to other
existing approaches, our policy is more realistic because it
explicitly assigns SU’s to sense specific primary channels by
taking into account spatial and temporal variations of primary
channels. Contributions: 1) formulation of a centralized spectrum
sensing/access architecture that allows exploitation of all available
primary spectrum holes; and 2) proposing sub-optimal myopic
sensing policies with low-complexity implementations and per-
formance close to the myopic policy. We show that our proposed
sensing/access policy is close to the optimal POMDP solution and
outperforms other proposed strategies. We also propose a Hidden
Markov Model based algorithm to estimate the parameters of
primary channel Markov models with a linear complexity.

Index Terms—Cognitive radios, dynamic spectrum access
(DSA), Markov chains, partially observable Markov decision
processes (POMDP), Hungarian algorithm, Neyman-Pearson de-
tector, myopic sensing, Hidden Markov Model (HMM).

I. INTRODUCTION

IT IS now widely accepted that a large number of licensed
communication channels in a wide range of frequency

bands are underutilized [1]. Dynamic spectrum access (DSA)
techniques implemented on Cognitive radio (CR) platforms
are proposed as a method to improve the utilization of the
communication spectrum resources. To achieve this though,
CR’s must have the ability to measure, to sense, and to learn
the channel characteristics and availabilities to adjust their
transmission and/or reception parameters in order to com-
municate efficiently while avoiding interference with licensed
and/or unlicensed users [2].

In this paper, we consider a centralized CR network in
which multiple cognitive secondary users (SU’s) with limited
spectrum sensing capabilities cooperatively find and access
spectrum white-spaces on multiple primary channels. The
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objective is to design the combined optimal channel sensing
and access policy. This combined optimal policy maximizes
the total secondary system throughput accrued over time over
all primary channels. This policy is also required to satisfy
a constraint on the probability of collisions with licensed
transmissions. We assume that the decision-making (both
sensing and access) in the CR network is centralized: a central
unit, called the secondary system decision center (SSDC),
gathers all channel sensing results from SU’s over a dedicated
control channel; the decisions of sensing and access are made
at the SSDC and informed to the distributed SU’s over the
same dedicated control channel. We model each primary
channel occupancy dynamics as a two-state (idle and busy)
i.i.d. Markov chain. This Markov model, also known as the
Gilbert-Elliot model [3], has been commonly used to abstract
physical primary channels with memory (see, for example [4]–
[10]). Note that under our formulation, primary channels can
easily be generalized to be non-identical in terms of their
Markov parameters.

Although this DSA problem can be formulated as a Partially
Observable Markov Decision Process (POMDP) problem, as
was discussed previously in [4]–[8], the optimal solution to
the POMDP is computationally prohibitive because of the
continuum of the state space. Many schemes presented in
literature such as in [4]–[8] have previously proposed and
derived the myopic channel sensing solutions under certain
assumptions and conditions. For example, assuming that the
state transition probabilities are partially known, [4], [5], [7]
developed a myopic channel sensing strategy and proved that
this myopic policy is the optimal POMDP solution under
the assumption of a certain ordering of the state transition
probabilities. However, this myopic policy was derived for a
single SU without explicitly considering multiple SU’s with
transmission collisions and their possible cooperations. In [6],
as a follow-up work of [4], [5], the proposed myopic policy is
extended to any number of primary channels with no limitation
on the number of the primary channels the SU can sense
at each time, which means that multiple channel selection
is considered. However, possible SU cooperations and SU
allocation issues are not discussed.

In this paper, on the other hand, we derive the centralized
optimal myopic channel sensing policy and the access policy
that jointly maximize instantaneous total secondary system
throughput on the primary channels, without considering the
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impact on future expected total secondary system throughput.
Note that, by optimal myopic policy we refer to the policy that
is optimal within the class of myopic policies. The proposed
myopic channel sensing policy is applicable for any number
of primary channels, any number of SU’s, and any channel
state transition probabilities. To support our solutions, we also
propose a Hidden Markov Model (HMM) based algorithm that
efficiently estimates the channel transition probabilities when
they are assumed unknown, with a linear complexity only in
the number of primary channels. Moreover, in [4]–[6], the
structure of the channel sensing policy was derived based on
the unrealistic assumption that sensing errors are negligible.
However, under the formulation in our paper, we show that
the optimal myopic channel sensing policy depends on the
probability of white-space detections. Thus, we explicitly
characterize the channel access policy based on a Neyman-
Pearson (NP) detector, taking into account the interference
constraint imposed by the primary users (PU’s). Although
imperfect sensing was also considered in the myopic sensing
policy in [7], it was developed for the case of a single SU
scenario without considering cooperation and collisions among
multiple SU’s. Assuming imperfect sensing and a Bernoulli
process model for the primary channel dynamics (with some
conditions on the Bernoulli process means), a decentralized
multi-user channel sensing problem was formulated as a
distributed Multi-Armed Bandit (MAB) problem in [11], in
which an order-optimal decentralized policy was constructed.

In [8], the authors assumed that the SU spectrum sensing
is matched-filter based: In other words, having perfect knowl-
edge about the primary signaling. Clearly, this is not always
justifiable and indeed in many situations may not be realistic.
In contrast, we consider both extreme cases: 1) secondary
system has no knowledge of the primary signaling (energy
detection); and 2) secondary system has perfect knowledge
of the primary signaling (matched-filter based detection).
When partial knowledge about primary signaling is available,
other sensing strategies such as waveform based sensing and
cyclostationarity based sensing [2] can be expected to perform
in between the performance obtained with these two extremes.
Also, in [8], it is assumed that the real-valued observations at
the secondary radios are directly sent to a SSDC. This is not
realistic because limited bandwidth and transmission opportu-
nities are the reasons for dynamic spectrum sharing at the first
place. Taking a more realistic approach, we propose that the
SU’s only send quantized versions of their observations to the
SSDC. Moreover, [8] assumed that all SU’s are to be assigned
to sense the single primary channel that has the highest belief
of being idle at each time. This model is clearly wasteful since
only one primary channel can be accessed at each time no
matter how many are available. This restriction reduces the
total secondary system throughput because the transmission
opportunities on other unsensed channels are missed entirely.
In our model, we allow different time-varying channel fading
coefficients for different SU’s in modeling the nature of the
wireless channels. As a result, our myopic sensing policy
exploits the spatial diversity of the wireless links and makes
the sensing and access decisions accordingly. Our method is
also applicable for primary channels with different bandwidths

and/or different signal-to-noise ratios (SNRs), although in the
case of a single primary system all channel bandwidths may
be identical as assumed, for example, in [8]. Compared with
the algorithm of [8], the performance results show that a better
system performance in terms of higher secondary system total
throughput is achieved with our proposed strategy.

Since finding the optimal solution to our proposed myopic
sensing problem has an exponential complexity, we also apply
the Hungarian algorithm iteratively to obtain a sub-optimal
myopic sensing policy in polynomial time. This iterative Hun-
garian algorithm extends the well-known Hungarian algorithm
[12] by allowing more than one vertex to be connected to
a single vertex of the other bipartite set. This is equivalent
to allowing more than one SU to sense a single primary
channel. We also propose a heuristic algorithm that solves the
channel assignment problem at a linear complexity order. The
simulation results show that these proposed low-complexity
algorithms can lead to performance that is very close to the
optimal myopic policy, yet with a significant reduction in the
computation time.

The remainder of the paper is organized as follows: In
Section II we introduce the system model. In Section III, the
access and sensing decisions are derived. The algorithm with
linear complexity that is used to estimate the primary channel
state transition probabilities is introduced in Section IV. In
Section V we show the simulation results. In Section VI we
conclude by summarizing our results.

II. PROBLEM FORMULATION

A. Primary channel state model
We denote by k = {0, 1, 2, · · · } the indices of a semi-

infinite slotted time horizon. We assume a group of N SU’s,
and a collection of M primary channels. The primary channels
are modeled as statistically identical and independent two-state
Markov chains. As shown in Fig. 1, the state busy (state 1)
indicates the channel is occupied by PU’s; the state idle (state
0) indicates no PU transmissions over that channel and it is
available for SU’s to access. We denote by Sm(k) ∈ {0, 1}

Fig. 1: Model for primary channel state dynamics: Two-state
Markov chain

the true state of the m-th primary channel in time slot k. We
assume that the state of a primary channel does not change
within a single time slot. The stationary transition probability
of the Markov model from state i to state j is defined as

pij = Pr{Sm(k + 1) = j | Sm(k) = i}, ∀i, j ∈ {0, 1}. (1)

The transition probability matrix of the Markov model is

denoted by P =

(
p00 p01
p10 p11

)
. We denote the vector π =



3

[π0, π1] as the stationary distribution vector, such that π = πP
with π0 and π1 being the stationary distribution of idle and
busy, respectively. When a SU successfully accesses a primary
channel that is actually free during a given time slot, the SU
is assumed to receive a reward proportional to the bandwidth
of that channel. If a SU accesses a primary channel that is in
state busy, it causes a collision with PU transmission and the
SU gets a zero reward. The accumulated total reward of all
SU’s is used as a measure of the secondary system throughput
over the primary channels.

B. Secondary system sensing and access decisions

In order to detect spectrum opportunities, SU’s perform
spectrum sensing. We assume that each SU is equipped with
a single antenna, such that when a SU is performing channel
sensing, no simultaneous communication can be performed.
Also assume that a single SU can only sense one primary
channel at a time, but multiple SU’s may simultaneously sense
the same primary channel. As shown in Fig. 2, SU’s sense
primary channels during the designated sensing periods at the
beginning of each time slot and we assume that if a PU intends
to use its channel during a transmitting period, it starts to
transmit from the beginning of that time slot.

Fig. 2: Slotted time horizon with Sensing Periods and Trans-
mitting Periods.

The SSDC collects all channel sensing results from the SU’s
over a dedicated control channel to decide whether to access
each of the channels and to make decisions on future sensing
allocations. This centralized structure may incur some delay
due to the need for exchanging sensing reports and decisions.
There is a tradeoff between allocating a larger bandwidth for
control channels to achieve a smaller delay and the bandwidth
available for actual communications. However, this is not
addressed in this paper due to space limitations. We use the
M × N matrix Yk to denote the sensing reports from SU’s
at time k with Yk(m,n) = ym,n(k), where ym,n(k) denotes
the sensing report from n-th SU of the state of m-th primary
channel at time k. We use the M × N matrix Ak to denote
the sensing decision made by the SSDC at time k, where
Ak(m,n) ∈ {0, 1}, with Ak(m,n) = 1 or 0 representing n-th
SU should or should not sense primary channel m at time k
respectively. Since we assume that one SU can only sense one
channel at a time, we have the constraint

∑M
m=1 Ak(m,n) =

1,∀n. We denote by Nm(k) = {n : Ak(m,n) = 1} the set
of indices of SU’s that are assigned to sense the m-th channel
at time k. We assume that whenever a particular channel is
identified as idle at the SSDC, one SU is assigned to access
that channel. The SSDC is responsible for balancing accessing
opportunities among the SU’s (fairness), or assigning SU’s

with any particular priorities. These fairness issues are not
addressed in this paper due to space limitations, although they
can be integrated into our decision-making framework as an
optimization problem with constraints. The sensing and access
decisions at the SSDC are further derived in Section III.

C. Secondary user sensing models and local sensing reports

For all (m,n) pairs such that Ak(m,n) = 1, we denote by
rm,n(k) the L-length complex-valued observation vector on
the m-th channel, from SU n in time slot k:

rm,n(k) = Sm(k)hm,n(k)xm(k) + w, (2)

where Sm(k) ∈ {0, 1} is the m-th channel state in time
slot k, xm(k) ∈ CL is the complex-valued primary signal
vector, w = [w1, · · · , wL]T ∈ CL is a complex random vector
of L zero-mean i.i.d Gaussian random variables with real
and imaginary parts, each N(0, σ2

w/2). Thus, each wi ∈ w
is circularly symmetric and denoted by CN(0, σ2

w). Denote
hm,n(k) = αm,n(k)ejθm,n(k), the complex channel gain of
the primary channel between the primary transmitter on the
m-th primary channel and the n-th SU in time slot k, with
amplitude αm,n(k) and phase ejθm,n(k). We assume that each
SU has perfect knowledge of their own channel gain in each
time slot for each of the primary channels. In practice, it
can be assumed that the primary transmitter, if active, would
periodically send training sequences/preambles to primary
receivers for the purpose of synchronization and channel
estimation [13]. The SU’s may overhear and make use of these
training sequences to estimate the fading coefficients between
the primary transmitters and the secondary receivers. When a
primary channel is idle, the secondary system may rely on the
database service [14] maintained through learning at the SSDC
to obtain the channel knowledge. We consider two models
for xm(k) which can be considered as two extreme cases:
1) secondary system has no knowledge about the primary
signaling; 2) secondary system has perfect knowledge about
the primary signaling.

In the CR context, when communication opportunities are
scarce (limited bandwidth and large amount of SU’s), it is
reasonable to assume that instead of transmitting raw data
vector rm,n(k)’s, the SU’s can only transmit quantized ver-
sions as reports to the SSDC. Without loss of generality, we
assume the simplest case: the reports from SU’s to the SSDC
are compressed/quantized to 0’s and 1’s which can also be
considered as estimates of the state of primary channels. For
both aforementioned xm(k) models, we use ym,n(k) ∈ {0, 1}
to denote the report of the m-th primary channel state from
the n-th SU to the SSDC, in time slot k. We assume that
these ym,n(k)’s are received error free at the SSDC. As
shown in Fig. 3, the m-th channel true state Sm(k) and the
report ym,n(k) can be modeled as the input and output of
a Binary Asymmetric Channel (BAC), respectively. The two
hypotheses on the m-th channel are H1 : Sm(k) = 0, and
H0 : Sm(k) = 1, respectively. We use λ1m,n(k), and λ0m,n(k)
to denote the crossover probabilities under H1, and H0,
respectively. The maximum a posteriori probability (MAP)



4

Fig. 3: SU’s’ reports of observations on primary channels can
be modeled as Binary Asymmetric Channels.

decision rule used to determine ym,n(k) is given by

ym,n(k) = arg max
i∈{0,1}

Pr{Sm(k) = i | rm,n(k))}, (3)

which can be shown to be equivalent to the following likeli-
hood ratio test:

L(rm,n(k)) =
fr|0(rm,n(k) | Sm(k) = 0)

fr|1(rm,n(k) | Sm(k) = 1)

H1

R
H0

ηm(k), (4)

where ηm(k) = Pr{Sm(k)=1}
Pr{Sm(k)=0} = π1

π0
and fr|s denotes the

conditional likelihood function of the complex-valued vector
r given the state s.

1) When the secondary system has no knowledge about the
primary signaling: In general, we assume that the elements
of xm(k) are correlated and having a complex zero-mean
Gaussian distribution with an unknown covariance matrix
Σx. We denote: x′m(k) =

[
<{xTm(k)} ={xTm(k)}

]T
and

x̃m,n(k) =
[
<{hm,n(k)xTm(k)} ={hm,n(k)xTm(k)}

]T
, where

xm(k) ∼ CN (0,Σx). It can be shown that x̃m,n(k) is
Gaussian and thus we denote x̃m,n(k) ∼ N (0,Σx̃) , where
Σx̃ denotes the unknown covariance matrix of x̃m,n(k). We
also denote Rm,n(k) = [<{rTm,n(k)} ={rTm,n(k)}]T ,
and W = [<{wT } ={wT }]T . Then the complex-
valued observation vector model (2) can be written as:
Rm,n(k) = Sx̃m,n(k) + W , where W ∼ N

(
0,

σ2
w

2 I
)

and Rm,n(k) ∼ N
(
0, SΣx̃ +

σ2
w

2 I
)

. In this
case, the MAP rule can be shown [15] to be
equivalent to the following decision rule: ym,n(k) ={

0 , if RT
m,n(k)Qm,n(k)Rm,n(k) ≤ η∗m,n(k)

1 , if RT
m,n(k)Qm,n(k)Rm,n(k) > η∗m,n(k)

, where

Qm,n(k) =
2|hm,n(k)|2σ2

x

σ2
w(σ2

w+|hm,n(k)|2σ2
x)

I and η∗m,n(k) =

2
(

ln
ηm(k)(σ2

w+|hm,n(k)|2σ2
x)

L

σ2L
w

)
in case the

elements of xm(k) are assumed i.i.d. 1.
Then, we have Rm,n(k)TQm,n(k)Rm,n(k) =
Qm,n(k)rHm,n(k)rm,n(k), where the superscript H
denotes the conjugate transpose and rm,n(k) ∼
CN
(
0,

S|h|2σ2
x+σ

2
w

2 I
)

. Then, the MAP rule can be

1Note that the assumption of the components of xm(k) being i.i.d. is shown
to be optimal for detecting zero-mean constellation signals when there is no
knowledge about the primary signal [16]. In this case, the matrix Qm,n(k)
is found to be a scalar and the sufficient test statistic Rm,n(k)TRm,n(k)
can be considered as a measure of the primary signal energy, also known as
the energy detection [15].

shown to be equivalent to the following decision rule:

ym,n(k) =

{
0 , if rHm,n(k)rm,n(k) ≤ η′m,n(k)
1 , if rHm,n(k)rm,n(k) > η′m,n(k)

, where

η′m,n(k) = η∗m,n(k)
σ2
w(σ2

w+|hm,n(k)|2σ2
x)

2|hm,n(k)|2σ2
x

. The quantity
2rHm,n(k)rm,n(k)

σ2
w

(under H1), and
2rHm,n(k)rm,n(k)

σ2
w+|hm,n(k)|2σ2

x
(under

H0) can be shown distributed as χ2
2L, thus the crossover

probabilities can be obtained as

λ1m,n(k) = 1− 1

Γ(L)
γ

(
L,
η′m,n(k)

σ2
w

)
, (5)

λ0m,n(k) =
1

Γ(L)
γ

(
L,

η′m,n(k)

σ2
w + |hm,n(k)|2σ2

x

)
, (6)

where the gamma function Γ(z) =
∫∞
0
tz−1e−tdt and the

lower incomplete gamma function γ(s, x) =
∫ x
0
ts−1e−tdt.

We assume that the threshold ηm(k) = π1

π0
is informed from

the SSDC.
2) When the secondary system has perfect knowledge about

the primary signaling: It is assumed that xm(k) = x is known
and the matched-filter [15] based sensing is employed. The
optimal MAP rule (3) can then be derived as [15] ym,n(k) ={

0 , if <(rm,n(k)x′Hm,n(k)) ≤ x′m,n(k)x
′H
m,n(k)−σ

2
w ln(ηm(k))

2

1 , if <(rm,n(k)x′Hm,n(k)) >
x′m,n(k)x

′H
m,n(k)−σ

2
w ln(ηm(k))

2

,

where <(·) denotes the real part operation, and
x′m,n(k) = hm,n(k)x. Now, given Sm(k) = 0,
<(rm,n(k)x

′H
m,n(k))√

x′m,n(k)x
′H
m,n(k)

∼ N(0, σ2
w/2); whereas given Sm(k) = 1,

<(rm,n(k)x
′H
m,n(k))√

x′m,n(k)x
′H
m,n(k)

∼ N
(√

x′m,n(k)x′Hm,n(k), σ2
w/2

)
. Thus,

the resulting crossover probabilities are given as

λ1m,n(k) = Q

(
|hm,n(k)|2xHx− σ2

w ln(ηm(k))
√

2|hm,n(k)|σw
√

xHx

)
, (7)

λ0m,n(k) = Q

(
|hm,n(k)|2xHx + σ2

w ln(ηm(k))
√

2|hm,n(k)|σw
√

xHx

)
, (8)

where function Q(·) is the tail probability of the standard nor-
mal distribution and the superscript H denotes the conjugate
transpose.

III. CHANNEL ACCESS AND SENSING DECISIONS AT THE
SSDC

A. Channel access decisions at the SSDC

To meet the constraint of collision probability with PU’s on
every channel, the optimal access decisions at the SSDC must
be based on a classical NP detector [15]. Note that we refer
to the ‘access decision’ as the decision at the SSDC about
whether a primary channel is idle or not, whereas the decision
on which SU should access which primary channel is called
the ‘access assigning decision’. Let the variable length vector
yk(m, :) = {ym,n(k) : ∀n ∈ Nm(k)} denote all channel sens-
ing reports corresponding to the m-th channel at time k and the
variable length vector y0:k(m, :) = {y0(m, :), · · · ,yk(m, :)}
denote the sensing history on the m-th primary channel, from
time 0 to k. Let Sm0:k denote the historic state of m-th channel
from time 0 to k. The set of all possible historic channel state
vectors is denoted by Sc = {0, 1}k+1.
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L(yk(m, :)) =
Pm,1(yk(m, :))

Pm,0(yk(m, :))
=

∏
n∈Nm(k)

(
λ1m,n(k)

1− λ0m,n(k)

)ym,n(k)(
1− λ1m,n(k)
λ0m,n(k)

)1−ym,n(k)

. (9)

At time k, for the m-th primary channel, the SSDC
chooses one of the two possible hypotheses based on
y0:k(m, :): H1( channel idle, y0:k(m, :) ∼ Pm,1) and
H0( channel busy, y0:k(m, :) ∼ Pm,0), where Pm,1, and
Pm,0 denote the conditional distributions of y0:k(m, :) given
Sm(k) = 0, and Sm(k) = 1, respectively. The likelihood
ratio for the m-th channel is given by L(y0:k(m, :)) =
Pm,1(y0:k(m,:))
Pm,0(y0:k(m,:))

, which is generally difficult to obtain as a
useful closed-form expression due to the fact that at each
time k, the number of SU’s on m-th channel changes and
thus as time evolves, the complexity increases. To simplify
the access decision structure, we assume that the access
decisions regarding the m-th channel are based only on the
current observations yk(m, :). The likelihood ratio at the
SSDC is then given by (9). Note that in order to obtain the
knowledge of λ0m,n(k) and λ1m,n(k) at the SSDC, the SU’s
are required to send the quantity |hm,n(k)| to the SSDC
in each time slot. Along with the sensing report ym,n(k),
a total number of 2N messages are needed at the SSDC
in each time slot k, where N is the number of SU’s in
the secondary system. The log-likelihood ratio can be found
as LLR(yk(m, :)) =

∑
n∈Nm(k) ym,n(k)cm,n(k) + dm(k),

where cm,n(k) = ln
(

λ1
m,n(k)

1−λ0
m,n(k)

· λ0
m,n(k)

1−λ1
m,n(k)

)
, and dm(k) =∑

n∈Nm(k) ln
(

1−λ1
m,n(k)

λ0
m,n(k)

)
. The sufficient statistic for access

decision at the SSDC regarding the m-th channel is then
given by Tm(k) =

∑
n∈Nm(k) ym,n(k)cm,n(k), and the test

is equivalent to

Tm(k)
H1

R
H0

τm(k)− dm(k) = τ ′m(k), (10)

where τm(k) and τ ′m(k) are the thresholds for the log-
likelihood ratio test and the test of the sufficient statistic
Tm(k), respectively. Let f im,k and F im,k denote the conditional
probability mass function (pmf) and the conditional cumulative
distribution function (cdf) of the random variable Tm(k) under
hypothesis Hi, respectively. We denote the variable set Cm(k)
as the set of discrete values that Tm(k) takes at time k. The
optimal access-decision regarding the m-th channel is then
given by the randomized decision rule:

δ̃NP (yk(m, :)) =

1, if Tm(k) > τ ′m(k)

γm(k), if Tm(k) = τ ′m(k)

0, if Tm(k) < τ ′m(k)

. (11)

This randomized decision rule says: 1) access the m-
th channel if Tm(k) > τ ′m(k); 2) do not access the m-
th channel if Tm(k) < τ ′m(k); and 3) access the m-th
channel with probability γm(k) if Tm(k) = τ ′m(k). We denote
by ζ the collision probability constraint on each individual
primary channel. It can be shown that the threshold τ ′m(k)
must be chosen such that Pr{Tm(k) > τ ′m(k) | H0} ≤
ζ < Pr{Tm(k) > τ

′−
m (k) | H0}, where we denote by

Pr{Tm(k) > τ ′m(k) | H0} the probability of colliding with
primary user on the m-th channel at time k. The quantity
τ
′−
m (k) = max{τ : τ ∈ Cm(k), τ < τ ′m(k)} is defined to

be the maximum value in Cm(k) that is less than τ ′m(k).
The choice of τ ′m(k) is illustrated in Fig. 4 where it can
be seen that τ ′m(k) is unique, given the monotonicity of the
complementary cdf Pr{Tm(k) > τ | H0}. We can see that this
is equivalent to choosing τ ′m(k) such that 1 − F 0

m,k(τ ′m(k))

≤ ζ < 1 − F 0
m,k(τ

′−
m (k)) (note that Pr{Tm(k) > τ | H0} =

1−F 0
m,k(τ)). The randomization variable γm(k) is then given

by γm(k) =
ζ−(1−F 0

m,k(τ
′
m(k)))

F 0
m,k(τ

′
m(k))−F 0

m,k(τ
′−
m (k))

. Note that, the structure

Fig. 4: The choice of of the threshold τ ′m(k), given a false
alarm probability ζ.

of the optimal access decision at the SSDC is independent of
what type of local sensing rules were used at the distributed
SU’s. In turn, the above access decision rule at the SSDC
is valid for any assumptions on the knowledge of primary
signals by the SU’s, including the considered two extreme
cases, since as long as the local sensing decisions are quantized
as 0 or 1 before transmitting to the SSDC, all that matters are
the crossover probabilities λ1m,n(k) and λ0m,n(k) in terms of
the access decision-making at the SSDC. The probability of
detection of white-spaces is then given in (12), which is used
in the sensing decision-making (for ) at the SSDC as described
next.

PD,m(k,Ak)

= Pr {Tm(k) > τ ′m(k) | H1}
+γm(k)Pr {Tm(k) = τ ′m(k) | H1}

= 1− F 1
m,k(τ ′m(k)) + γm(k) · f1m,k(τ ′m(k)). (12)

B. Optimal and sub-optimal myopic sensing decisions at the
SSDC

The sensing decision at the SSDC determines which pri-
mary channel each SU should sense at each time. We define
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b0(m, k) = Pr{Sm(k) = 0 | y0:k−1(m, :)} and b1(m, k) =
1 − b0(m, k) as the belief of the m-th channel being idle
and busy at time k respectively. We denote the belief vec-
tors as b0(k) = [b0(1, k), · · · , b0(M,k)]T and b1(k) =
[b1(1, k), · · · , b1(M,k)]T .

Assuming the sensing observations of SU’s at time k are
mutually independent, the belief that the m-th channel being
idle in next time slot k + 1 is updated at the SSDC using the
Bayes’ formula:

b0(m, k + 1) =

∑
i∈{0,1} pi0

[∏
n∈Nm(k) fi(ym,n(k))

]
bi(m, k)∑

i∈{0,1}

[∏
n∈Nm(k) fi(ym,n(k))

]
bi(m, k)

,

(13)
where fi(ym,n(k)) = Pr{Ym,n(k) = ym,n(k) | Sm(k) =
i},∀i ∈ {0, 1} is the conditional pmf of the local decisions
from the n-th SU and Ym,n(k) is a random variable denoting
the report from the n-th SU about the m-th channel at time
k (note that ym,n(k) is a realization of the random variable
Ym,n(k)). For those primary channels that were not sensed by
any SU, the belief is updated simply based on the Markovian
evolution of primary channels: [b0(m, k+ 1), b1(m, k+ 1)] =
[b0(m, k), b1(m, k)]P, where P is the state transition probabil-
ity matrix. The belief vectors b0(1), and b1(1) are initialized
with the stationary distribution π = [π0 , π1] of the Markov
model.

We denote by the random vector Ŝ(k) =[
δ̃NP (1, k), · · · , δ̃NP (M,k)

]T
the vector of NP

detector outcomes at the SSDC at time k. Given
a sensing assignment Ak, the probability of
Ŝ(k) = s ∈ {0, 1}M can be found as Pr{Ŝ(k) = s} =∏M
m=1

{b0(m,k)PD,m(k,Ak)+(1−b0(m,k))ζ}
I{s(m)=0}

{b0(m,k)(1−PD,m(k,Ak))+(1−b0(m,k))(1−ζ)}
−I{s(m)=1}

,
where IE is the indicator function of event E and ζ is the
predefined collision probability. We define the M by N matrix
H′k such that H′k(m,n) = h′m,n(k), ∀ m,n, where h′m,n(k)
denotes the channel coefficient of the channel between the
n-th SU and its desired receiver on channel m. Note that the
optimal secondary access assigning decisions can be obtained
by an integer programming problem which can be solved
using a graph matching algorithms2, as suggested in [17].
Due to space limitations, we omit details of the algorithm.
Let us denote by nm(s,Ak,H

′
k) the index of the SU that

is assigned to access the m-th channel, after sensing in time
slot k, according to this optimal secondary access assigning
decisions. We denote by h′m(s,Ak,H

′
k) , h′m,nm(s,Ak,H′k)

(k)
the channel coefficient on the m-th channel from the SU that
is assigned to access that channel. Let rm(k, Ŝ(k),Ak,H

′
k)

be the secondary transmission rate on the m-th channel
which can be written as: rm(k, Ŝ(k),Ak,H

′
k) =

Bm log2

(
1 +

Pnm(Ŝ(k),Ak,H′
k
)|h
′
m(Ŝ(k),Ak,H

′
k)|

2

N0Bm

)
, if∑

n Ak(m,n) ≥ 1, Sm(k) = 0, and δ̃NP (m, k) = 1,
and rm(k, Ŝ(k),Ak,H

′
k) = 0 otherwise, with Bm being

the bandwidth of the m-th primary channel, Pn being the

2A graph matching problem finds the optimal one-to-one matching between
the elements of two bipartite sets such that it optimizes the sum-weights of
the connecting edges.

transmit power of the n-th SU and N0 is the single-sided
power spectrum density of the secondary receiver noise. The
expected total transmission rate/reward on all the primary
channels in time slot k is then found in (14), where EŜ(k)

denotes the expectation with respect to the vector Ŝ(k) and
the expectation is given in (15).

Let S(k) = [S1(k), · · · , SM (k)] ∈ S = {0, 1}M denote the
state of the system at time k. Then the value of state s ∈ S at
time 0 is

V A0:∞(s) = E

{ ∞∑
k=0

M∑
m=1

γkrm(k, Ŝ(k),Ak,H
′
k) | S(0) = s

}
which can also be expressed as

V A0:∞(s) = E

{
M∑
m=1

rm(0, Ŝ(0),A0,H
′
0) | S(0) = s

}
+ γ

∑
s′∈S

P (s, s′)V A0:∞(s′),

where A0:∞ denotes the SSDC sensing decisions from time
k = 0 to ∞, γ ∈ (0, 1) is a discount factor and P (s, s′) is the
probability of state transition from s to s′. Note that, the value
function is the expected discounted reward over all primary
channels. When the SU’s do not have perfect knowledge of
the states of the primary channels, the resultant problem is
a Partially Observable Markov Decision Process (POMDP)
for which the effective state of the system can be taken as
the belief vector. An algorithm to obtain optimal decisions
for a POMDP problem was derived in [18]. However, unless
the number of primary channels is very small, the algorithm
leads to very high computational complexity rendering it
impractical [5]. As an alternative, an optimal channel sensing
decision within the class of myopic policies can be obtained
by maximizing the total secondary transmission rate/reward
over all primary channels at each time step: i.e. making the
channel sensing decisions to obtain the instantaneous highest
reward, rather than attempting to optimize the average reward
accrued over all times. This optimal myopic sensing decision
A∗k can be expressed as:

A∗k = arg max∑M
m=1 Ak(m,n)=1

M∑
m=1

E
{
rm(k, Ŝ(k),Ak,H

′
k)
}

.

(16)
This optimal sensing decision is designed to jointly maximize
the expected secondary system throughput taking into account
the impact from the access assigning decision-making. Note
that this problem can be cast as a constrained nonlinear 0-
1 programming problem [19]. Since the objective function in
(16) is non-separable, the solution is generally hard to find.
The direct search solution has an exponential complexity of
MN .

On the other hand, in order to perform this joint optimiza-
tion at the SSDC, it is required that the SSDC has perfect
knowledge of the channel coefficients h′m,n(k)’s between the
secondary transmitters and receivers. However, unlike the
channel coefficients from the primary radios to the SU’s, it
might not be realistic to assume that the SSDC has the knowl-
edge of these secondary sender-receiver channel coefficients,
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E

{
M∑
m=1

rm(k, Ŝ(k),Ak,H
′
k)

}
M∑
m=1

BmEŜ(k)

log2

1 +
Pnm(Ŝ(k),Ak,H

′
k
)|h
′
m(Ŝ(k),Ak,H

′
k)|

2

N0Bm

PD,m(k,Ak)b0(m, k), (14)

EŜ(k)

log2

1 +
Pnm(Ŝ(k),Ak,H

′
k
)|h
′
m(Ŝ(k),Ak,H

′
k)|

2

N0Bm

 =
∑
s

log2

(
1 +

Pnm(s,Ak,H
′
k
)|h′m(s,Ak,H

′
k)|

2

N0Bm

)
Pr{Ŝ(k) = s}. (15)

since it is assumed that the SU’s are sensing primary signals,
but not SU signals. This makes it reasonable to instead focus
on finding an optimal myopic sensing policy in the sense of
maximizing the secondary system transmission opportunities
on the primary channels, other than the transmission through-
put, similar to [8]. The optimal myopic sensing decisions in
terms of maximizing the secondary transmission opportunities
can be found as

A∗k = arg max∑M
m=1 Ak(m,n)=1

M∑
m=1

E{rm(k,Ak)}

= arg max∑M
m=1 Ak(m,n)=1

M∑
m=1

Bmb0(m, k)PD,m(k,Ak).

(17)

In Section V we will show that the maximization in (16)
gives only a marginal performance improvement compared to
the performance obtained with the objective function in (17),
especially when the number of SU’s is large compared to the
number of primary channels.

As an alternative with much lower computational com-
plexity, we propose a sub-optimal algorithm for solving (17)
based on an iterative Hungarian algorithm [12]. For simplicity,
we drop the time indices from the algorithm description and
let Bm = 1. We assume that the crossover probabilities of
the BAC are known. We define the M × N matrix ∆(m,n)

such that ∆(m,n)(m′, n′) = 1 if (m′, n′) = (m,n), and
∆(m,n)(m′, n′) = 0 otherwise. We use Algorithm 1 below
to find the channel sensing assignment A, which provides a
sub-optimal solution to (17). In contrast with the Hungarian al-
gorithm solution which forms the optimal one-to-one matching
between two bipartite sets, our sensing policy allows multiple
SU’s to sense a single channel at a time. Thus, an intuitive
solution would be to apply the Hungarian algorithm repeatedly
among the primary channels with the available SU’s that have
not yet been assigned. In this algorithm, we set a weighting
matrix ∆P between the set of SU’s and the primary channels.
Each weight or element ∆P(m,n) of this matrix is defined as
the increase in the detection probability on a particular channel
m if an additional SU n senses that channel. This is reflected
in:

∆P(m,n) =
[
PD,m(A + ∆(m,n))− PD,m(A)

]
b0(m) ,

where A + ∆(m,n) is the new sensing assignment if an avail-
able SU n is assigned to sense the m-th channel, given the cur-
rent sensing assignment A. Therefore, if there are more than
M−1 unassigned SU’s at an iteration, the proposed algorithm

assigns exactly M SU’s to sense the primary channels. At each
iteration, the Hungarian algorithm assigns the SU’s such that
it maximizes the sum of ∆P(m,n) over all m = 1, · · · ,M .
Note that, at each iteration, the SU’s are assigned in a one-
to-one mapping. Note that the above sensing decision making
procedure applies to both optimization problems in (16) and
(17), except when using (16), the extra term in (15) needs to
be computed firstly.

The complexity of the Hungarian algorithm is
(max{M,N})3 for an M × N bipartite graph, whereas
the complexity of the proposed iterative Hungarian algorithm
is in the order of dNM e(max{M,N})3 since the Hungarian
algorithm is used iteratively dNM e times. In brief, the proposed
algorithm solves the channel sensing assignment problem
with roughly an order 4 polynomial complexity. Note that,
in particular, if N ≤ M , Algorithm 1 is equivalent to the
Hungarian algorithm. Next, we propose a heuristic algorithm

Algorithm 1 Iterative Hungarian Algorithm
A = 0M×N and N̄ = {1, · · · , N}
while N̄ 6= ∅ do

∆P = 0M×N
for m ∈ {1, · · · ,M} and n ∈ N̄ do

∆P(m,n) =
[
PD,m

(
A + ∆(m,n)

)
− PD,m (A)

]
b0(m)

end for
Run the Hungarian algorithm for the M × N bipartite graph
whose edge weights are given in ∆P to obtain the maximum
sum matching.
Remove the assigned vertices from the set N̄.
Append the new assignments to matrix A.

end while

that reduces the above complexity to be linear in number of
secondary users N . This algorithm, as detailed in Algorithm
2, picks randomly a secondary user n and assigns it to
the m-th channel for which it has the highest detection
probability. Also, we allow at most dNM e SU’s to sense each
channel so that the SU’s sense evenly all channels and keep
information about the belief of the state of every channel.

Algorithm 2 Heuristic Sensing Assignment
A = 0M×N and N̄ = {1, · · · , N}.
while N̄ 6= ∅ do

Pick randomly n ∈ N̄.
m∗ = arg maxm∈{1,··· ,M}Bmb0(m)PD,m(∆(m,n))

s.t.
∑
n∈{1,··· ,N}A(m,n) ≤ d N

M
e

A← A + ∆(m∗,n)

N̄← N̄\n
end while
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IV. ESTIMATIONS OF PRIMARY CHANNEL MARKOV
MODEL PARAMETERS

The classical algorithm used to estimate the Markov model
parameters was provided in [20], which deals with the case
of fixed number of observations, but not the case when the
number of observations increases with time as in our problem.
This classical algorithm has a linear computational complexity
in M × T , i.e. the product of the number of channels and the
time length. This leads to a high computational complexity as
T increases, since all the variables have to be re-initialized
and flushed every time for new observations. As a result, in
this section, we propose an algorithm to estimate the primary
channel Markov model dynamically as time evolves, with a
linear computational complexity only in M .

We firstly familiarize the readers with the follow-
ing concepts introduced in [20]. We denote P̂(m, t) =(

p̂00(m, t) p̂01(m, t)
p̂10(m, t) p̂11(m, t)

)
as the estimated Markov model

transition matrix of the m-th primary channel at time t.
The estimated stationary state distribution vector is de-
noted by π̂(m, t) = [π̂0(m, t) π̂1(m, t)]T with π̂(m, t) =
P̂(m, t)π̂(m, t). For convenience, we use the compact nota-
tion λ̂(m, t) = (P̂(m, t), π̂(m, t)) to indicate the estimated
parameter set. We denote pm,n(j, i, k) = Pr{ym,n(k) =
j|Sm(k) = i},∀i, j ∈ {0, 1} as the n-th SU observation
symbol probability distributions of the m-th channel at time
k. Note that pm,n(j, i, k) = λim,n(k), ∀j 6= i. At each time t,
for the m-th channel, consider the forward variable αm,i(k, t)
and the backward variable βm,i(k, t) defined as

αm,i(k, t) = Pr{y0:k(m, :), Sm(k) = i | λ̂(m, t− 1)},
∀k ∈ {1, · · · , t}, (18)

βm,i(k, t) = Pr{yk+1:t(m, :) | Sm(k) = i, λ̂(m, t− 1)},
∀k ∈ {1, · · · , t− 1}. (19)

The forward variable αm,i(k, t), ∀m ∈ {1, ...,M} is evaluated
inductively, as follows [20]: 1) Initialization: αm,i(0, t) =
π̂i(t− 1)pm(y0(m, :), i, 0),∀i ∈ {0, 1}; 2) Induction:

αm,j(k, t)

=

 ∑
i∈{0,1}

αm,i(k − 1, t)p̂ij(m, t− 1)

 pm(yk(m, :), j, k),

∀k ∈ {1, · · · , t}, j ∈ {0, 1}, (20)

where pm(yk(m, :), j, k) is defined as pm(yk(m, :), j, k) =
Pr{yk(m, :) | Sm(k) = j}. The backward variable
βm,i(k, t),∀m ∈ {1, ...,M} is also evaluated inductively, as
follows [20]: 1) Initialization: βm,i(t, t) = 1; 2) Induction:
βm,i(k, t) =

∑
j∈{0,1} p̂ij(m, t − 1)pm(yk+1(m, :), j, k +

1)βm,j(k + 1, t), ∀k ∈ {1, · · · , t− 1}, i ∈ {0, 1}.
After the SSDC gets the observation yt(m, :) of channel m

at time t ≥ 1, we define ξm,i,j(k, t), ∀k ∈ {0, ..., t − 1} as
the probability of channel m being in state i at time k, and in
state j at time k + 1 given the estimated model λ̂(m, t − 1)
and the observation sequence y0:t(m, :), i.e.: ξm,i,j(k, t) =
Pr{Sm(k) = i, Sm(k+1) = j | y0:t(m, :), λ̂(m, t−1)}. Thus,
ξm,i,j(k, t) =

αm,i(k,t)p̂ij(t−1)pm(yk+1(m,:),j,k+1)βm,j(k+1,t)

Pr{y0:t(m,:)|λ̂(m,t−1)}
,

where Pr{y0:t(m, :) | λ̂(m, t − 1)} is given in (21).
The summation of ξm,i,j(k, t) over k can be interpreted
as an estimate (at time t) of the expected number of
transitions from state i to state j:

∑t−1
k=0 ξm,i,j(k, t) =

E{number of transitions from i to j}. Let γm,i(k, t) denote
the probability of channel in state i at time k given the
model λ̂(m, t − 1) and the observation sequence y0:t(m, :),
for k ∈ {0, ..., t − 1}: γm,i(k, t) = Pr{Sm(k) = i | y0:t(m, :

), λ̂(m, t − 1)} =
αm,i(k,t)βm,i(k,t)∑

i∈{0,1} αm,i(k,t)βm,i(k,t)
. The summation

of γm,i(k, t) over k ∈ {0, ..., t − 1} can be interpreted as
an estimate (at time t) of the expected number of times that
state i was visited, or equivalently, the expected number of
transitions made from state i, so that

∑t−1
k=0 γm,i(k, t) =

E{number of transitions from i}. Thus, a set of re-estimated
transition probabilities p̂ij(m, t) =

∑t−1
k=0 ξm,i,j(k,t)∑t−1
k=0 γm,i(k,t)

,∀i, j and
the stationary state distribution vector π̂(m, t) are obtained, re-
sulting in the new parameter set λ̂(m, t) = (P̂(m, t), π̂(m, t)).
For each time t, it has been proven in [21], [22] that either 1)
the model λ̂(m, t−1) defines a critical point of the likelihood
function, in which case λ̂(m, t) = λ̂(m, t − 1); or 2) model
λ̂(m, t) is more likely than model λ̂(m, t−1) in the sense that
Pr{y0:t(m, :) | λ̂(m, t)} > Pr{y0:t(m, :) | λ̂(m, t− 1)}. Thus,
at every time step t, if we iteratively use λ̂(m, t) in place of
λ̂(m, t−1) and repeat the estimation process, then we improve
the probability of y0:t(m, :) being observed from the model
until a limiting point is reached [20]. Due to the high complex-
ity of the method (linear in M ×T ), we propose Algorithm 3
that has a linear complexity only in M . Algorithm 3 drops the
backward variable and does not re-initialize αm,i(0, t) at each
time t > 0 and use αm,i(t−1, t) = αm,i(t−1, t−1) for further
induction of the forward variable. The variables ξm,i,j and
γm,i are then computed only for the pair (t−1, t) at each time
t. Then the updated estimation λ̂(m, t) = (P̂(m, t), π̂(m, t))
is obtained as shown in Algorithm 3. The performance of this
algorithm is simulated in Section V.

Algorithm 3 Estimation of primary channel Markov model

Initialization: Pick λ̂(m, 0) randomly ∀m = {1, · · · ,M},
compute αm,i(0, 0) with π̂(m, 0).
while t ≥ 1 do

for m = 1 : M do
αm,i(t− 1, t)← αm,i(t− 1, t− 1), ∀i ∈ {0, 1}
αm,j(t, t)←

[∑
i∈{0,1} αm,i(t− 1, t)p̂ij(m, t− 1)

]
× pm(yt(m, :), j, t), ∀j ∈ {0, 1}

Compute
ξm,i,j(t− 1, t) =

αm,i(t−1,t)p̂ij(m,t−1)pm(yt(m,:),j,t)

Pr{y0:t(m,:)|λ̂(m,t−1)} ,

∀i, j ∈ {0, 1}
Compute γm,i(t− 1, t) =

αm,i(t−1,t)∑
i∈{0,1} αm,i(t−1,t)

, ∀i ∈ {0, 1}
Update λ̂(m, t) = (P̂(m, t), π̂(m, t)) with p̂ij(m, t) =∑t

k=1 ξm,i,j(k−1,k)∑t
k=1

γm,i(k−1,k)
,∀i, j ∈ {0, 1}

end for
end while

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first show the performance of our pro-
posed sensing/access strategies including comparison to those
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Pr{y0:t(m, :) | λ̂(m, t− 1)} =
∑

i∈{0,1}

∑
j∈{0,1}

αm,i(k, t)p̂ij(t− 1)pm(yk+1(m, :), j, k + 1)βm,j(k + 1, t). (21)

proposed in [8]: in each time slot, all SU’s sense the single
primary channel with the highest belief of being idle. Next, we
show the performance of the primary channel Markov model
parameter estimation when they are assumed unknown.

A. Performance of the proposed myopic spectrum sensing

In order to directly compare the performance of our pro-
posed myopic sensing solution with the results of [8], we
first simulate the discounted secondary system reward under
the same assumptions as in [8]: 1) perfect knowledge about
the primary signaling; 2) the SNR at the n-th SU when
sensing the m-th channel at each time k: SNR = 1

σ2
w

; 3) the
discount factor is 0.999 for time horizon from 0 to 10000;
4) the SU’s sensing reports to the SSDC are directly the
observations rm,n(k)’s (i.e. no quantizations at local nodes);
5) all channel coefficients hm,n(k)’s are set to 1’s for all time
(i.e. no fading); 6) unit bandwidth for all primary channels;
7) allowed probability of collisions with PU’s is ζ = 0.1; and
8) primary channels have i.i.d. Markovian evolutions with the

transition matrix: P =

(
0.9 0.1
0.8 0.2

)
. In Fig. 5, we show the

discounted reward in two cases: 1) 2 primary channels and 1
SU; 2) 2 primary channels and 2 SU’s. The performance of the
approach in [8] is exactly regenerated in this figure (2 primary
channels, 1 SU). When there is only a single SU, the two
competing strategies are equivalent and have the same results.
However, when there are 2 SU’s (the rest of the assumptions
staying the same), we see that our proposed approach leads to
a higher discounted reward. This is because when all SU’s are
allocated to sense a single channel, as suggested in [8], SU’s
lose access opportunities on the other channel.
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Fig. 5: Discounted reward comparison between our proposed
method and the method proposed by [8]

Next, we compare the resulting percentage of primary
channel usage of our proposed sensing/access strategy to the
one proposed in [8]. We define the percentage of primary

channel usage as:

U =

∑M
m=1

∑T
k=1(1− ŝm(k))(1− Sm(k))∑M
m=1

∑T
k=1(1− Sm(k))

, (22)

where T is the simulation time. The primary SNR at the n-
th SU when sensing the m-th channel is: SNR =

σ2
x

σ2
w

for
the energy detection case, and SNR = π1π0

σ2
w

matched filter
detection case. Other assumptions are: 1) no discount factor
(i.e. γ = 1); 2) channel coefficients are standard Gaussian
distributed: hm,n(k) ∼ N(0, 1) and known at each time; 3)
unit bandwidth for all primary channels; 4) allowed probability
of collisions with PU’s is ζ = 0.1; and 5) the primary

channels have the same Markov model: P =

(
0.9 0.1
0.8 0.2

)
.

Fig. 6 shows the percentage of primary channel usage for
both cases: 1) Energy-detector based sensing; 2) matched-filter
based sensing. As expected, when perfect knowledge about the
primary signaling is assumed, higher percentage of primary
channel usage is achieved. We also see that, under both cases,
our proposed myopic channel sensing strategy outperforms the
strategy of [8]. In the case of perfect knowledge about the
primary signaling, the two resulting percentage of primary
channel usage deviate significantly after -5 dB. Again, this
is because the strategy used in [8] constraints all the SU’s
on a single primary channel with the highest believe of being
idle to sense and access at each time. As the received primary
SNR becomes higher, fewer SU’s on a single primary channel
are needed to achieve an “accurate enough” estimation of the
state of that primary channel. As a result, if all the SU’s
are allocated to a single primary channel at each time, the
opportunities on the other channel are lost entirely. When a
sufficient number of SU’s are available, the more opportunities
are lost using the strategy in [8]. In the case of no prior
knowledge about the primary signaling, similar performance
results are observed for higher primary SNR regions. From
Fig. 6, we can also see that the the sub-optimal algorithms
(iterative Hungarian algorithm with polynomial complexity
and the heuristic algorithm with linear complexity) give sub-
optimal (very close to the optimal myopic solution) perfor-
mance at much lower computational complexities. Similar
results for the case of 10 channels and 10 SU’s are obtained
and shown in Fig. 7.

To address the problem of the performance gap of the
optimal myopic sensing solution and the optimal solution to
the POMDP, an upperbound is obtained by assuming that
SU’s perform the proposed optimal myopic sensing, but after
obtaining the sensing and access decisions in the current time
slot, the current true states of all the channels are revealed
to the secondary system in order to obtain the most accurate
belief update for next time slot, and this procedure repeats.
Note that the true state information in any time slot is not used
to make the sensing and assess decision in that time slot, but
only for the purpose of belief update for the next time slot.
This process yields an upperbound for the optimal POMDP
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Fig. 6: Comparisons of percentage of primary channel usage
with 2 primary channels and 3 SU’s.
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Fig. 7: Comparisons of percentage of primary channel usage
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solution because the optimal myopic policy guarantees the
maximum possible reward in each current time slot given
the information obtained from the past, whereas revealing the
current true states of all channels gives the most accurate
belief update, such that no other sensing policy gives better
performance than this combined procedure. Fig. 8 and 9 show
the performance comparison between the optimal myopic
solution and the obtained upperbound (both using the energy
based detection): 1) in the first simulation set, as shown in
Fig. 8, we set p00 = 0.1, p01 = 0.9, p10 = 0.2, p11 = 0.8 and
simulated 4 channels with 1, 2, 3, and 4 SU’s respectively. We
see that the performance gap is quite tight. We also plotted the
ratio of the myopic performance to the upper bound, which
increases with SNR and is bounded below by roughly 0.88;
2) in the second simulation set, as shown in Fig. 9, we set
p00 = 0.9, p01 = 0.1, p10 = 0.02, p11 = 0.98, and the gap is
larger compared to the first simulation set, this is due to the
extreme choices of the state transition probabilities. Note that
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Fig. 8: Comparisons of performance gap between the proposed
optimal myopic sensing policy and the upperbound of the
optimal POMDP sensing policy, for the case of the following
transition probabilities: p00 = 0.1, p01 = 0.9, p10 = 0.2, and
p11 = 0.8. To illustrate clearly in the plot, this simulation is
based on the energy based detection. Other sensing techniques
give similar results.
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Fig. 9: Comparisons of performance gap between the proposed
optimal myopic sensing policy and the upperbound of the
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p11 = 0.98. To illustrate clearly in the plot, this simulation is
based on the enregy based detection. Other sensing techniques
give similar results.
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Fig. 10: Acheived secondary system throughput comparison
of the energy based detector at the SSDC with two different
objective functions: 1) maximizing the secondary sysstem
throughput jointly with sensing decision and the access as-
signing decision, assuming the channel coefficients of the
secondary sender-receiver channels are known at the SSDC;
2) maximizing the spectrum opportunities without considering
the access assigning decision-making.

the transition probabilities indicate that it is highly probable
that channel will stay in either idle or busy for a long period
of time and it is not likely to change either from busy to idle
or from idle to busy, such that the assumption on the true
state revealing at the end of each time slot is significantly
more critical than the previous case. Due to this reason, we
observe a larger performance gap. We also plotted the ratio
of the myopic performance to the uppderbound and found out
that the ratio behaves similarly to the previous case and is
bounded below by roughly 0.35. Although the performance
gap is large at the low SNR when there are only few SUs,
we can see that the ratio increases as the number of SU’s
increases. When there are 4 SU’s, the ratio is bounded from
below by roughly 0.7. In practical cases, the number of SU’s
is usually much larger than the number of primary channels,
as a result, we conclude that the myopic solution is not far
from the upperbound. These results suggest that the proposed
optimal myopic solution and its sub-optimal algorithms are
practical and efficient.

Fig. 10 justifies the simplification of the objective function
in (16) to the one in (17). The secondary system throughput
obtained from the objective function in (16) provides only a
marginal performance improvement and as the number of SU’s
increases, the performance gap becomes negligible. Note that
practice, the number of SU’s is indeed likely to be larger than
the number of primary channels which may justify the use of
the objective function provided in (17).

B. Estimation of primary channel Markov model parameters

As shown in Fig. 11, we performed Algorithm 3 for the
case of one primary channel, one SU and compared it to the
algorithm presented in [20] which we denote as method I.
We denote Algorithm 3 as method II. In this simulation we
assumed the following: 1) the crossover probabilities of the

observation BAC channel are: λ11,1(k) = λ01,1(k) = 0.1; 2)
the true values of the channel state transition probabilities
are: p00 = 0.9, p01 = 0.1, p10 = 0.2, p11 = 0.8. From
Fig. 11 we see that there is no significant difference between
the convergence times of these two methods (method I gives
comparatively smoother convergence performance though).
Also, both methods converge very close to the correct true
values but Method II has a linear complexity only with M
(method I has a linear complexity with M × T ).
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Fig. 11: Estimations of channel Markov model state transition
probabilities (Methods I and II).

VI. CONCLUSIONS

In this paper, we proposed a universal myopic channel
sensing and access policy for a centralized CR communication
system in which the channel sensing and access decisions
are made at a central unit. By using the word universal, we
mean that our proposed myopic policy is applicable to any
number of primary channels, any number of SU’s, and any
primary channel Markov model parameters, such as the state
transition probabilities and stationary distributions. Unlike
other existing approaches proposed in literature, our univer-
sal myopic channel sensing policy is more realistic because
our policy explicitly assigns SU’s to sense specific primary
channels by taking into account the spatial and temporal
variations of channel fading coefficients on different primary
channels. As alternatives to the high complexity optimal
myopic channel sensing policy, we proposed two algorithms
to obtain sub-optimal policies with low complexities: The
first is based on the iterative Hungarian algorithm and it has
fourth-order complexity while the second algorithm is based
on a heuristic method with a linear complexity. The simu-
lation results showed that the two proposed low-complexity
algorithms achieve performance very close to the optimal
myopic solution, but with much smaller computational efforts.
We also showed that under realistic conditions our approach
outperforms previously proposed approaches. To support our
myopic sensing policy, we also proposed an effective algorithm
with linear complexity to estimate unknown channel Markov
model.
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