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Abstract—This paper presents an autonomous cognitive radio
(CR) architecture, referred to as the Radiobot. This model goes
beyond adaptive radio systems to exploit the main ingredients of
cognition which, in this context, are mainly self-learning and
self-reconfiguration. Without any prior knowledge of the RF
environment, the Radiobot applies a sequence of increasingly
sophisticated processing steps to detect and identify the sensed
signals. In particular, in this paper, it applies a blind energy
detection followed by a cyclostationary detection method to detect
the active signals and extract their underlying periodic properties
as reflected in cyclic frequencies. These extracted signal features
are classified based on the Chinese restaurant process (CRP)
and a learning algorithm is applied to achieve autonomous self-
reconfiguration of the sensing module. We analyze the impact
of fading and Doppler frequency shift on both the energy and
cyclostationary detections, and show the receiver operating char-
acteristic (ROC) of the carrier frequency detector. We showthe
robustness of the cyclostationary detection against channel fading
and wide-sense stationary noise. Simulation results are presented
to verify the multi-band operability and the reconfiguratio n
ability of the Radiobot and to verify the convergence of the
proposed learning algorithm.

Index Terms—Cognitive radios, Radiobot, cyclostationary de-
tection, Chinese restaurant process, Dirichlet process, threshold-
learning.

I. I NTRODUCTION

In literature that followed the original concept of cognitive
radios (CR’s) given in [1], the CR’s have mainly been aimed at
achieving dynamic spectrum sharing (DSS) and increasing the
spectrum utilization [2]–[4]. However, as highlighted in [5],
[6], CR’s can have much broader and more ambitious goals.
Towards this end, the authors in [5] defined a futuristic CR ar-
chitecture that emphasizes main features of cognition, namely,
(a) the ability for autonomous decision-making/reasoningand
learning, and (b) the ability to modify radios behavior based
on self-learning. To avoid confusion with previous CR’s, the
proposed architecture was referred to as theRadiobot[5] and
it attempts to combine the state-of-the-art models of CR with
the notion of autonomous robots.

The Radiobots, as presented in [5], are not simply adaptive
radios, such as the architectures in [7], [8]. Indeed, they

M. Bkassiny, S. K. Jayaweera and Y. Li are with the Departmentof Elec-
trical and Computer Engineering, University of New Mexico,Albuquerque,
NM, USA, Email: {bkassiny, jayaweera, yangli}@ece.unm.edu

K. A. Avery is with the Space Vehicles Directorate, Air ForceResearch
Laboratory (AFRL), Kirtland AFB, Albuquerque, NM, USA

are capable ofself-managing and self-reconfiguring in real-
time to match their RF environment while continuously self-
learning from their past experience.In contrast with previous
CR architectures that are aiming at improving the spectrum
utilization [3], [4], [8], [9], the Radiobots are expected to have
all of the following capabilities: 1) autonomous operation, 2)
spectrum coexistence/efficiency including dynamic spectrum
sharing (DSS), 3) inter-operability in heterogeneous RF net-
work environments, 4) simultaneous operation over multiple
modes/networks, and 5) power efficient green communications
[5].

The Radiobot can be modeled as arational radio agent
that interacts with its RF environment to achieve its com-
munications objectives. A cognitive engine (CE) constitutes
the brain of the Radiobot [5] and coordinates its decision-
making activities. For example, the CE determines the sensing
policy, the sensing antenna configurations, etc, for spectrum
awareness and also be responsible for making the channel
and power allocations for actual communication based on
certain system requirements. A high-level system architecture
of a Radiobot is shown in Fig. 1 which highlights the two
main functions of the CE: 1) Controlling the sensing module
and 2) controlling the PHY/MAC communication modules. In
order to realize a complete Radiobot system, both autonomous
sensing and PHY/MAC decision-making need to be developed.
In this paper, however, we restrict our attention to the spec-
trum sensing module and develop blind autonomous sensing
algorithms that can be adapted, through cognitive learning, to
unknown RF environments.

According to [5], one of the most important abilities of a
Radiobot is to be aware of the RF environment in order to
self-characterize the best possible communications mode.To
achieve this, it is not sufficient for a Radiobot to just detect the
existence of RF activities in its environment, but also it has to
be able to identify thetypesof active signals. For example, if
the Radiobot identifies a jamming signal at a certain frequency
band, it might need to avoid this band so that it preserves the
security and reliability of its communication.

In order to detect and identify RF activities, in this paper,we
develop a growingly sophisticated signal processing sequence
based on blind joint energy/cyclostationary detection. Inthe
first step, energy detection is applied to detect the active
carrier frequencies in the frequency range of interest. Next,
a cyclostationarity-based feature extraction algorithm is used
to detect the cyclic frequency components at each detected
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carrier frequency. In contrast with similar two-stage spectrum
sensing architectures that assume prior knowledge of the
primary channels [10], [11], our proposed spectrum sensing
does not require anya priori knowledge of the existing
channels, which makes it a suitable platform for autonomous
Radiobots that operate in unknown RF environments. The
performance of the carrier frequency detector is evaluated
through its Receiver Operating Characteristic (ROC) and the
cyclostationary detection is evaluated for a wide range of SNR
and for different sensing times.

Several signal classification and feature extraction methods
for CR spectrum sensing have been proposed in the literature,
including the models in [12], [13] which rely on support
vector machines (SVM’s). In this paper, however, we em-
ploy non-parametric learning for autonomous signal identi-
fication/classification. Thus, our Radiobot extracts a feature
vector from each combined energy/cyclostationary detection
outcome itself. A feature classification technique, based on the
Chinese Restaurant Process (CRP), then permits classifying
the obtained features into clusters corresponding to different
wireless systems. This proposed non-parametric classification
algorithm employs the Dirichlet Process (DP) [14] priors to
learn the distribution of clusters within the feature space. The
CRP-based classification method was also used in [15], which,
however, was only limited to the energy detection.

After each action and/or observation, the Radiobot also
applies a learning algorithm to improve its future sensing
and communications techniques based on its past experience,
as encapsulated in the Observe-Decide-Act-Learn (ODAL)
cognition cycle of [5]. Several learning algorithms have been
previously applied to CR’s for PHY/MAC decision-making. In
particular, the reinforcement learning (RL) has been applied
for power control [16] and for distributed Medium Access
Control (MAC) in CR networks [17], [18]. In our case,
however, the Radiobot employs a learning algorithm similar
to [19], allowing online self-reconfiguration of the spectrum
sensing module. The learning algorithm controls the threshold
value of the cyclostationary detector to achieve a certain false
alarm probability. In [19], the algorithm estimates the false
alarm probability during a training period in which the signals
are drawn from a null-hypothesis (denoting no signals). In
our case, however, by using the energy detection results, the
false alarm probability of the cyclostationary detector can be
updated during the normal operation of the Radiobot when no
signals are detected.

The remainder of this paper is organized as follows: In
Section II, we introduce the Radiobot system sensing model,
the RF activity feature extraction techniques, and analyze
the impact of superposed multiple RF signals on the feature
extraction operation. In Sections III and IV, we analyze the
impact of wireless channel fading on both the cyclostationary
and carrier frequency detectors, respectively. The CRP-based
signal classification algorithm is discussed in Section V. In
Section VI, we present the self-reconfiguration of the sensing
module. We show the simulation results in Section VII and
conclude the paper in Section VIII.
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Fig. 1. The actions of the cognitive engine: Sensing and PHY/MAC
reconfigurations.

II. SYSTEM MODEL

The ability to sense the surrounding RF spectrum is crucial
to everything a Radiobot can perform and achieve, due to the
fact that spectrum sensing measurements are to be used in
(a) detecting, identifying and classifying the signals present
in the Radiobots RF environment, and (b) making decisions
on its operating mode and subsequent sensing. In practice,
a critical limitation of spectrum sensing systems stems from
the sampling hardware and the analog-to-digital converters
(ADC’s) [20]. The tradeoff is between the sampling rate and
the resolution. For example, recent research has led to an ADC
that can sample at a rate of16GS/s but only with a 6-bit
resolution [21]. Better resolutions can only be obtained atthe
expense of lower sampling rates, as in the case of the1GS/s
ADC ADS5400[22] which allows12-bit resolution. In order
to avoid aliasing, the sampling rate is required to be at least
as large as the Nyquist frequency. In our case, since the total
bandwidth of the spectrum of interest is generally in the scale
of several Giga Hertz, it may not be realistic at the current
state of the art to expect an ADC to sample, for example, the
whole UWB spectrum at a sufficiently high sampling rate with
sufficient resolution. A solution is to segment the spectrumof
interest into several sub-bands and down-convert each sub-
band to intermediate frequency (IF) for sampling. Another
solution for wide-band spectrum sensing based on sub-Nyquist
sampling was proposed in [23]. However, this technique can
only be applied when the signals are sparse.

Similar to other mobile communication systems, hardware
compactness is also a major concern. This makes it desir-
able to reduce the number of hardware components and to
avoid parallel RF hardware redundancies. For instance, a
communication system may have to be restricted to a limited
number of RF mixers used for IF conversions. To address
such hardware limitations, we propose a round-robin style joint
energy/cyclostationarity-based spectrum sensing strategy. We
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Fig. 2. The wide spectrum of interest is divided intoN disjoint wide sub-
bands for the purpose of sequential processing.

assume that the RF environment of interest is firstly segmented
into a number ofN disjoint, still wide, sub-bands, as shown
in Fig. 2.

We assume that these sub-bands are arbitrarily centered at
frequenciesf1, · · · , fN , with bandwidths ofB1, · · · , BN . It
is expected that this segmentation of the spectrum of interest
into sub-bands will essentially be determined by the sensing
antenna system in use. For example, the reconfigurable sensing
antenna system that was developed in [24] in a parallel
research effort, is capable of scanning the UWB spectrum
by segmenting it intoN = 5 sub-bands. In particular, this
wideband sensing antenna was shown to be able to scan
the spectrum from2 − 10GHz in N = 5 bands, with
f1 = 2.55GHz, f2 = 3.2GHz, f3 = 4.48GHz, f4 = 5.8GHz,
andf5 = 8.15GHz [24].

We assume that the Radiobot system sequentially picks one
of theN sub-bands to sample at each time instant. In order
to reduce the requirements on the sampling rate, as shown
in Fig. 3, a local variable oscillator with frequencyfIn

and
a corresponding digital bandpass filter is used to convert the
received signal into an IF signal, where we denote byfIn

the local oscillator frequency tuned for then-th sub-band.
By sequentially sensing theN sub-bands, the Radiobot can
scan the whole spectrum without requiring parallel hardware
nor unrealistic ADC’s. Note that, sequential spectrum sensing
may lead to certain limitations. For example, if the sensing
and processing durations are too long, the Radiobot may miss
certain changes in RF conditions in the currently non-sensed
sub-bands. On the other hand, short sensing durations may
lead to inaccurate sensing results.

Since our proposed detection/classification procedure ap-
plies to each of the sub-bands in the same way, in the
following, we present the model formulation for a particular
sub-bandn. Hence, for brevity of notation, we drop the
frequency sub-band indexn in the following discussion.

A. Observed Signals Model

We denote byN(t) the total number of signals at timet in
the sub-band of interest. The corresponding IF signaly(t) in
Fig. 3 can be expressed as [25]:

y(t) = ℜ







N(t)
∑

l=1

[(
∫

∞

0

xl(t− τ
′)hl(τ

′, t)dτ ′
)

ej2π(fc
l
−fI)t

]







+w(t),

(1)
where xl(t) denotes thel-th baseband signal that is to be
modulated at a carrier frequencyfcl

. The l-th baseband
equivalent linear time-variant (LTV) impulse responsehl(τ

′, t)
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Fig. 3. The cyclostationarity based RF signal detection with a scanning
superheterodyne receiver.

denotes the response of the channel at the timet to an impulse
that stimulated the channel between thel-th signal source and
the Radiobot at timet − τ ′ [25], [26]. The receiver noise,
denoted byw(t), is assumed to be a white noise process with
double-sided power spectral density (PSD) ofN0

2 . The average
noise power at the output of the sweeping IF filter will be
Pn = N0B

2 , whereB is the IF filter bandwidth. The resulting
signal-to-noise ratio (SNR) at the output of the IF filter will
thus beSNR = Ps

Pn
wherePs is the received signal power.

B. Detection of RF Activities

In order to detect active RF signals, we propose to identify
their carrier frequencies and the associated cyclic frequencies
that are induced by the underlying periodicities of those
signals. Note that, it is well-known that almost all man-
made signals exhibit such underlying periodicities due to,for
example, their symbol rates, coding schemes, packet/frame
header structures and training symbol sequences, etc. [27]. In
the following discussion, however, we will explicitly focus
on the cyclic properties induced by the symbol and coding
rates1. Using the discrete-frequency smoothing method [27]
described below, we compute an estimate of the Spectral
Correlation Function (SCF)Sα

x (t, f) for a general discrete
signal {x(t − kTs)}

M−1
k=0 , for each sub-band, whereTs is

the sampling period, andM is the number of samples. Note
that, this implies that the total time duration over which the
particular frequency sub-band was scanned isT = MTs.

The FFT X̃(t, f) of the sequence{x(t − kTs)}
M−1
k=0 is

defined in (2) over the set of frequencies{− fs

2 ,−
fs

2 +

Fs, · · · ,
fs

2 −Fs,
fs

2 }, wherefs = 1
Ts

is the sampling rate and
Fs = 1

MTs
is the frequency increment anda(t) is a triangular

data tapering window [27].

X̃(t, f) =
M−1
∑

k=0

a(t− kTs)x(t− kTs)e
−j2πf(t−kTs). (2)

An estimate of the SCF can then be obtained as [27] based
on the discrete-frequency smoothing method:

S̃α
x (t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

X̃(t, f+
α

2
+νFs)X̃

∗(t, f−
α

2
+νFs),

whereT = MTs is the time length of the data segment,α
is the cyclic frequency andL (an odd number) is the spectral

1It is fairly straightforward to generalize the method to include other
periodicities that might be present in any given signal.
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Fig. 4. Carrier frequencies are estimated as the midpoints of the intersections
between the PSD curve and the threshold line.

smoothing window length. By settingα = 0, we first obtain an
estimation of the power spectral density (PSD) of the discrete
signal{x(t− kTs)}

M−1
k=0 :

S̃0
x(t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

∣

∣

∣
X̃(t, f + νFs)

∣

∣

∣

2

. (3)

The active carrier frequencies in the spectrum sub-band of
interest is determined by setting a threshold on the above PSD.
According to [28], the thresholdηPSD shown below can be
derived based on the Neyman-Pearson test:

ηPSD =
γ−1 (L; (1− αF ) Γ(L))Pn

TsL
, (4)

where αF is the false alarm probability,γ−1 is the in-
verse lower incomplete gamma function (whereγ(k, x) =
∫ x

0
tk−1e−tdt and the inverse is w.r.t. the second argu-

ment), Γ(k) =
∫∞

0
tk−1e−tdt is the gamma function and

Pn is the noise power that can be estimated asP̂n =

Ts

∑fs/2
f=−fs/2 S̃

0
x(t, f), similar to [15], [29]. The impact of

noise power uncertainty was discussed and analyzed in [30],
[31] where the deterioration of the detector performance was
upper-bounded by an expression involving the peak-to-peak
range of noise uncertainty [30]. The carrier frequencies are
estimated as the midpoints of the segments formed by the
intersection between the PSD curve and the threshold line
ηPSD, as shown in Fig. 4. We denote byA the set of all
detected carrier frequencies in the sub-band of interest.

Next, an estimate of the spectral autocoherence function
magnitude [27] is computed as:

|C̃α
x (t, f)| =

|S̃α
x (t, f)|

√

S̃0
x(t, f + α/2)S̃0

x(t, f − α/2)
. (5)

Note that |C̃α
x (t, f)| is normalized to be between0 and 1.

Due to the fact that for each carrier, the associated cyclic
components show up peaks in a close range of the carrier,
we define thecyclic sub-domainprofile of carrierfc ∈ A as:

Ĩx(t, α, fc) = max
f∈[fc−∆fL(fc),fc+∆fU (fc)]

|C̃α
x (t, f)| , (6)

where the linesf = fc − ∆fL(fc) and f = fc + ∆fU (fc)
(∀fc ∈ A) partition the(f, α)-plane into Voronoi cells whose

point sites [32] are located at the detected carrier frequency
points{(fc, 0) : fc ∈ A}.

In [33], it is shown that digital signals exhibit cyclostation-
arity at multiples of their baud rates. Moreover, the digital
signals may exhibit other periodicities as well, for example,
due to coding. We denote the RF signature of the signal
centered atfc as RF(fc) = {α 6= 0 : IE Ĩx(t, α, fc) ≥ ζ},
where IE denotes the indicator function of eventE =
{Ĩx(t, α, fc) is a local maximum}, andζ ∈ (0, 1) is a thresh-
old for the peak detection in the cyclic sub-domain profile.

C. Spectral Correlation Function of Multiple Superposed Dig-
ital Signals

In practice, the Radiobot is more likely to deal with multiple
RF activities in each spectrum sub-band of interest. Thus, it
needs to know the corresponding SCF properties of superposed
digital signals, in order to identify the number and types of
the detected signals accurately.

In order to analyze the impact of the superposition of
multiple signals on the SCF of a signaly(t), let us assume that
y(t) = w(t)+

∑Ns

m=1 xm(t), where{xm(t)}Ns

m=1 are indepen-
dent zero-mean random processes (denotingNs superposed
signals) andw(t) is an independent white noise process with
a power spectral density ofN0

2 . The autocorrelation function
of y(t) is Ryy(t, τ) = N0

2 δ(τ) +
∑Ns

m=1Rxmxm
(t, τ) , where

Rxmxm
(t, τ) is the autocorrelation functions ofxm(t), for

m = 1, · · · , Ns. First, we define a Fourier Transform for the
cyclic autocorrelation function as [34]:

Rα
yy(τ) , lim

T→∞

1

T

∫ T/2

T/2

Ryy(t, τ)e−j2παtdt

= lim
T→∞

1

T

∫ T/2

T/2

[

N0

2
δ(τ) +

Ns
∑

m=1

Rxmxm
(t, τ)

]

e−j2παtdt

=
N0

2
δ(τ)δ(α) +

Ns
∑

m=1

Rα
xmxm

(τ) (7)

whereδ(t) is the Dirac-delta function. The SCF can then be
expressed as:

Sα
y (f) =

∫

R

Rα
yy(τ)e−j2πfτdτ =

N0

2
δ(α) +

Ns
∑

m=1

Sα
xm

(f).

(8)
This result shows that the superposition of multiple indepen-

dent signals results in a superposition of spectral peaks inthe
(f, α) domain. In other words, the SCF of the superposition of
multiple signals has peaks at cyclic frequencies corresponding
to integer multiples of, for example, the data rates of each
signal.

D. Feature Extraction: Baud Rate and Coding Properties

The RF signature RF(fc) vector itself can be used as a
feature for classifying detected signals. For compactness, it is
more convenient, however, to represent this vector by fewer
elements. To achieve this, we define two feature elementsα1

and α2 that are extracted from the RF signature, withα1

representing the baud rate induced cyclic frequency andα2
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representing the coding induced cyclic frequency. Based on
the cyclostationarity properties, the cyclic profile exhibits high
peaks at the induced cyclic frequenciesα1 andα2. Moreover,
since the code length is usually a multiple of the symbol
duration, the coding induced cyclic frequencyα2 is smaller
than the data rate induced cyclic frequencyα1. By using this
information, in Algorithm 1, a feature extraction procedure
for determiningα1 and α2 is proposed. Note that, in this
algorithm,ρ ∈ (0, 1) with ρ >> 0.

Algorithm 1 Feature Extraction Procedure
for eachfc ∈ A do
F = [fc −∆fL, fc + ∆fR]
V1 = RF(fc), M1 = arg maxα∈V1

Ĩ(t, α, fc)
V2 = RF(fc)\M1, M2 = arg maxα∈V2

Ĩ(t, α, fc)
if M1 < M2 then

if ρĨ(t,M1, fc) > Ĩ(t,M2, fc) then
(α1, α2) = (M1, 0)

else
(α1, α2) = (M2,M1)

end if
else

(α1, α2) = (M1,M2)
end if

end for

III. I MPACT OF CHANNEL FADING ON THE

CYCLOSTATIONARY FEATURES

In this section, we show that the cyclostationary features of
signals can essentially be preserved even in the presence of
channel fading. In other words, we show that the proposed
cyclostationarity based detection method is robust against
channel fading effects.

A continuous-time real-valued stochastic processx(t) is
said to be second-ordercyclostationary in the wide senseif
its meanE{x(t)} and autocorrelation functionRxx(t, τ) ,

E{x(t+ τ)x(t)} are periodic with some period, sayT0:

E{x(t+ T0)} = E{x(t)}, Rxx(t+ T0, τ ) = Rxx(t, τ ), (9)

for all t and τ [35]. We consider a cyclostationary digital
signalx(t) and an LTV fading channel (i.e. due to the Doppler
effect), having an impulse response ofh(τ ′, t). According to
the definition of cyclostationarity, we know that the autocor-
relation function ofx(t) is a periodic function oft, such that
Rxx(t+T0, τ) = Rxx(t, τ), for some periodT0. The received
signaly(t) through the LTV fading channel can be expressed
as:

y(t) =

∫ ∞

0

x(t − τ ′)h(τ ′, t)dτ ′ + w(t), (10)

wherew(t) is an additive wide sense stationary (WSS) noise
process. The autocorrelation function of the received signal

y(t) can then be expressed as:

Ryy(t, τ) = E {y(t+ τ)y(t)}

= E

{[
∫ ∞

0

x(t+ τ − τ ′1)h(τ
′
1, t+ τ)dτ ′1 + w(t + τ)

]

×

×

[
∫ ∞

0

x(t+ τ − τ ′2)h(τ
′
2, t)dτ

′
2 + w(t)

]}

= E

{
∫ ∞

0

∫ ∞

0

x(t+ τ − τ ′1)x(t + τ − τ ′2)×

× h(τ ′1, t+ τ)h(τ ′2, t)dτ
′
1dτ

′
2} + E {w(t + τ)w(t)}

=

∫ ∞

0

∫ ∞

0

E {x(t+ τ − τ ′1)x(t + τ − τ ′2)} ×

×E {h(τ ′1, t+ τ)h(τ ′2, t)} dτ
′
1dτ

′
2 +Rww(t, τ)

=

∫ ∞

0

∫ ∞

0

Rxx(t, τ − τ ′1 + τ ′2) ×

×Rhh(τ ′1, τ
′
2; t+ τ, t)dτ ′1dτ

′
2 +Rww(τ), (11)

whereRhh(τ ′1, τ
′
2; t1, t2) , E {h(τ ′1, t1)h(τ

′
2, t2)} is the au-

tocorrelation of the channel impulse responseh(τ ′, t), and
Rww(t, τ) = Rww(τ) is the autocorrelation function of the
WSS noise.

According to empirical studies, the channel can be consid-
ered as WSS as long as the mobile unit covers a distance
in the dimension of a few tens of the wavelength of the
carrier signal in an observation period [36]. We also assume
that scattering components with different propagation delays
are statistically uncorrelated. These channel models are called
US (uncorrelated scattering) channel models or US models
[25]. The most important class of stochastic LTV channel
models is represented by models belonging both to the class
of WSS and to the class of US. These channel models are
called WSSUS models which are almost exclusively employed
in current literature for modeling frequency selective mobile
radio channels [25], [36]–[39].

Under this common assumption of WSSUS, the autocor-
relation function of the impulse response of the LTV fading
channel can be expressed as [25]:

Rhh(τ ′1, τ
′
2; t+ τ, t) = δ(τ ′2 − τ ′1)Shh(τ ′1, τ), (12)

where Shh(τ ′1, τ) is called thedelay cross-power spectral
density[25]. We substitute (12) back into (11) to obtain:

Ryy(t, τ) =

∫ ∞

0

∫ ∞

0

Rxx(t, τ − τ ′1 + τ ′2) ×

×δ(τ ′2 − τ ′1)Shh(τ ′1, τ)dτ
′
1dτ

′
2 +Rww(τ)

=

∫ ∞

0

Rxx(t, τ)Shh(τ ′1, τ)dτ
′
1 +Rww(τ)

= Rxx(t, τ)

∫ ∞

0

Shh(τ ′1, τ)dτ
′
1 +Rww(τ),

so that

Ryy(t+ T0, τ) = Rxx(t+ T0, τ)
∫∞

0 Shh(τ ′1, τ)dτ
′
1 +Rww(τ)

= Rxx(t, τ)
∫∞

0 Shh(τ ′1, τ)dτ
′
1 +Rww(τ)

= Ryy(t, τ).

This shows that the autocorrelation function of the received
signal y(t) is also periodic with the same periodT0 as the
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transmitted signalx(t). As a result, the received signaly(t) is
also cyclostationary with the same cyclic components asx(t).

A more general class of stochastic processes is obtained
if the autocorrelation functionRxx(t, τ) is almost periodic in
t for eachτ [34]: A continuous-time real-valued stochastic
processx(t) is said to bealmost-cyclostationary (ACS) in the
wide senseif its autocorrelation functionRxx(t, τ) is an almost
periodic function oft (with frequencies not depending onτ )
[35]. When the input signalx(t) is considered as ACS, the
output signaly(t) through the LTV fading channel is also
ACS with the same cyclic components asx(t), since we can
see from (13) and (13) the autocorrelation functionRyy(t, τ)
is also almost periodic with the same period asRxx(t, τ).

As a result, we see that when fading channels are consid-
ered as general LTV systems, the cyclostationary properties
of the transmitted signals are not altered at the output of
the channel, or the received signal at the Radiobot. This
justifies the robustness of the proposed cyclostationaritybased
detection/classification method in this paper, in the presence of
channel fading. Note that, the proposed cyclostationaritybased
detection method introduced in Section II-B also applies to
the ACS assumption, since the SCF is also defined under the
assumption of ACS and it has been shown that an ACS signal
exhibits cyclostationarity at cycle frequencyα if Rα

xx(τ) 6≡ 0,
similarly to the cyclostationary stochastic processes [34], [35].

IV. I MPACT OF THEDOPPLERSHIFT ON THE DETECTED

CARRIER FREQUENCIES

The cyclic autocorrelation function Rα
yy(τ) of

the received signal y(t) is defined as Rα
yy(τ) ,

limT→∞
1
T

∫
T

2

−T

2

Ryy(t, τ)e−j2παtdt [34]. Replacing

Ryy(t, τ) by its value in (13), we obtain:

Rα
yy(τ) = H(τ)Rα

xx(τ) +Rww(τ)δK(α), (13)

whereH(τ) =
∫∞

−∞ Shh(τ ′1, τ)dτ
′
1 and δK denotes the Kro-

necker delta function. We may compute the PSDS0
y(f) of the

received signaly(t) as the Fourier transform (denoted by the
operatorF) of Rα

y (τ) at α = 0, such that:

S0
y(f) = F

{
∫ ∞

−∞

Shh(τ ′1, τ)dτ
′
1

}

∗ S0
x(f) + Sw(f)

=

∫ ∞

−∞

F {Shh(τ ′1, τ)} dτ
′
1 ∗ S

0
x(f) + Sw(f)

=

∫ ∞

−∞

S(τ ′1, f)dτ ′1 ∗ S
0
x(f) + Sw(f) (14)

= Sµµ(f) ∗ S0
x(f) + Sw(f) , (15)

whereS(τ ′1, f) and Sµµ(f) are, respectively, thescattering
function and theDoppler power spectral density, andS0

x(f)
is the PSD of the transmitted signal. Note that (14) and (15)
are obtained using (7.37) and (7.42) in [25], respectively.

The Doppler PSD is usually defined over a range
[−fmax, fmax], where fmax is the maximum Doppler fre-
quency shift [25]. Thus, the received PSD can be expressed
as:

S0
y(f) =

∫ fmax

−fmax

Sµµ(ν)S0
x(f − ν)dν + Sww(f) . (16)

Based on (16), the convolution ofS0
x(f) with a window of

length 2fmax causes the PSD to spread at most by±fmax

at each point. If the Doppler PSDSµµ(f) is symmetric (such
as Jakes’ type [25]), the carrier frequency components of the
detected feature points do not shift since the main lobes of
the PSD are spread evenly in both left and right directions.
However, ifSµµ(f) is not symmetric (such as Rice’s, Gauss
I or Gauss II types [25]), the detected carrier frequencies will
shift by an amount smaller thanfmax. Therefore, due to the
Doppler shift, it may not be possible to detect and distinguish
signals that are separated by less thanfmax in the spectrum.
However, based on the users activity and by using appropriate
learning algorithms, the Radiobot might be able to detect each
of the signals when they are the only transmitted signals.
Then using this knowledge, it may be able to distinguish
them when both signals are transmitted simultaneously. This
again emphasizes the importance of true learning from past
experience during the signal detection and classification steps.

V. AUTONOMOUSSIGNAL CLASSIFICATION USING THE

CRP

In the following, we develop a non-parametric technique
to obtain statistical information on the association of cyclic
frequencies and carrier frequencies. Many existing unsuper-
vised machine learning techniques used for classificationsrely
on certain assumptions on the data, such as the number of
classes present. However, a non-parametric approach makes
few assumptions about the distribution from which the data
is drawn [14], [40], [41]. We believe this is the appropriate
framework so as to enable the Radiobot to work in a wide-
range of possible RF environments which may contain arbi-
trary number of wireless systems with arbitrary number of
users in each system at any given time. The non-parametric
model used in this paper is based on the Dirichlet Process
Mixture Model (DPMM) [14], [41], [42], in which, the number
of clusters/mixtures present in data is not knowna priori.
In contrast with parametric approaches, such as the Gaussian
mixture model (GMM) and K-means classification methods,
non-parametric classification methods assume an unknown
number of mixture components while assigning each observed
feature point to a corresponding cluster. Hence, non-parametric
classification methods can infer the number of clusters from
the data itself, making them suitable for identifying the number
of RF systems in an unknown environment. Thus, we propose
the DPMM as a framework for classifying the observed feature
points in the RF environment. A description of the DPMM can
be found, for example, in [14], [41].

Let us define aq-dimensional (whereq could also be
infinite) feature vectorθ. The elements of each feature vectorθ

include the observed carrier frequency and the different cyclic
components, which determine the RF signature of a sensed
signal. Theq-dimensional feature vector is denoted byθ =
(fc, α1, · · · , αq−1)

T , whereαi ∈ R represents thei-th cyclic
component in the signal centered atfc. In practice, of course, it
is not possible to observe the featureθ directly, instead we get
a noisy observation vectorz = (z1, · · · , zq)

T . Generally, this
noise depends on the environment, numerical approximations,



7

quantization errors in ADC’s and estimation errors. Thus, the
observed feature vector can be modeled as:z = θ + v,
wherev is assumed as a Gaussian noise vector ofindependent
components, capturing the environmental noise and estimation
errors, as in [15]2. Each observationz is classified into clusters
{Ci : i = 1, 2, · · · }, with each cluster representing a certain RF
system or a class of signals having similar RF characteristics.
We denote the cluster centers by{µi : i = 1, 2, · · · } and
corresponding covariance matrices by{Σi : i = 1, 2, · · · }.
Each cluster centerµi is an unbiased estimate of its associated
feature vectorθi. We denote the cluster assignment variable by
Λ ∈ {1, 2, · · · } which represents a certain class of systems that
share a common RF characteristic. In general, the properties
of a clusterΛ ∈ {1, 2, · · · } (for example, its mean and co-
variance) are unknown and to be estimated from the observed
feature points themselves. For each observationz, we apply
the Maximum a Posteriori (MAP) rule to assignz into the
cluster λ̂(z), such that:λ̂(z) = arg maxi∈{1,··· } Pr{z|Λ =
i}Pr{Λ = i}. The likelihood of z being in clusterCi is
Pr{z|Λ = i} =

∏q
k=1 f(zk|µi,k, σi,k), where f(z|µ, σ) is

the probability density function (pdf) of a Gaussian random
variableZ ∼ N(µ, σ2). After each assignment, we update
the center and covariance matrix of the corresponding cluster.
Given a sequence of cluster assignmentsΛ1, · · · ,Λm, by using
the DPMM properties, the probability distribution ofΛm+1 is:

Λm+1|Λ1, · · · ,Λm ∼
1

αD +m

(

αDH +

p
∑

k=1

nkδΛ∗
k

)

, (17)

whereΛ∗
1, · · · ,Λ

∗
p are the unique values amongΛ1, · · · ,Λm

(corresponding top distinct clusters),nk is the number of
repeats ofΛ∗

k (i.e. number of feature points in clusterΛ∗
k),

δΛ is a point mass located atΛ, and∼ is shorthand for “is
distributed as”. The probability distributionH represents a
prior distribution of the cluster assignment variables, based on
previous knowledge. If no such knowledge is available, the
choice ofH can be made irrelevant by settingαD = 0. Note
that, if maxi∈{1,··· } Pr{Λ = i|z} ≤ δ (for someδ > 0), we
create a new clusterC centered atz and with a suitably chosen
covariance matrix.

VI. SELF-RECONFIGURATION OF THESPECTRUM SENSING

MODULE

The performance of the Radiobot is related to the quality
and accuracy of the sensing observations. It is required to
optimize the sensing module so that it best estimates the RF
activity in the surrounding environment. Several parameters
may need to be optimized during the sensing process, such
as the sensing duration, detector thresholds, spectrum sensing
policies, etc. based on the particular RF environment it en-
counters at a given time. It is the task of the learning and
reasoning abilities of the Radiobot to make the CE dynami-
cally adapt these parameters based on its past experience. To
be specific, assume that the Radiobot needs to optimize its
cyclic sub-profile thresholdζ such that it achieves a certain
false alarm probability. Of course, it is almost impossible

2While Gaussianity is assumed here for simplicity to illustrate our concepts,
better noise models are to be investigated in our on-going work.

to obtain analytical solutions to this problem due to the
complexity of the cyclic profile equation and to the uncertainty
in the surrounding environment. A possible solution is to learn
the optimal threshold value iteratively based on the sensing
observations, as in [19].

An online learning algorithm was proposed in [19] to
adapt the threshold value of Neyman-Pearson test when the
probability distribution of the detected signals is unknown.
The threshold is thus dynamically updated to achieve a desired
false-alarm probability. The learning process is conducted
during a training period in which the observed data are
drawn from a null hypothesis. In our case, however, we
do not assume a training period and we propose a learning
algorithm that updates the cyclic sub-profile thresholdζ during
the normal operation time itself to achieve a desired false
alarm probabilityφ. By the help of the energy detection,
the learning algorithm identifies the absence of transmitted
signals to perform the learning process. The objective of
the learning algorithm is to minimize the Kullback-Leibler
distanceK(P ||Q) between two probability distributionsP and
Q, similar to [19], where:

K(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (18)

We denote byP andQ the desired and actual probability dis-
tributions of the cyclostationary detector output, conditioned
on the absence of transmitted signals. These probability distri-
butions correspond to Bernoulli random variables, representing
whether a signal is (1) or is not (0) detected. By definingφ
andPf (ζ) as the desired and actual false alarm probabilities
(for a given thresholdζ), respectively, the Kullback-Leibler
distance can then be expressed as:

K(P ||Q) = K(φ, Pf (ζ)) = φ log
φ

Pf (ζ)
+(1−φ) log

1 − φ

1 − Pf (ζ)
.

(19)
Note thatK(φ, Pf (ζ)) = 0 iff φ = Pf (ζ). Due to its convexity
in Pf (ζ), the Kullback-Leibler distance guarantees a global
minimum. Moreover, it was shown in [19] thatK(φ, Pf (ζ))
is convex inζ iff Pf (ζ) is monotonous, which is satisfied in
our case. However, since the analytical expression ofPf (ζ) is
unknown, it can be estimated as the ratio of sample points that
exceed the thresholdζ in the cyclic profileI(α), when there
is no transmitted signals. As noted in [19], to achieve accurate
estimate forPf (ζ), the recursive adaptation inζ should not
be too frequent. This is taken into account in the proposed
learning algorithm (Algorithm 2), in which the thresholdζ
is updated after eachNc > 1 updates of the false alarm
probabilityPf (ζ).

The update rule in Algorithm 2 minimizes the Kullback-
Leibler function since it follows a gradient descent direction
that reduces the difference|Pf (ζ) − φ| at a learning rate of
ψ > 0. Moreover, due to the convexity of the Kullback-Leibler
function, this algorithm is guaranteed to converge to a unique
optimal threshold value.

VII. S IMULATION RESULTS

In order to demonstrate the performance of our pro-
posed cyclostationarity-based autonomous signal detection and



8

60 70 80 90 100 110 120
0

5

10

15

Carrier Frequency (f
c
)

C
yc

lic
 F

re
qu

en
cy

 (α
1)

(a) (fc, α1)-plane (Without Coding).

60 70 80 90 100 110 120 130
0

2

4

6

8

10

12

14

16

18

20

Carrier Frequency (f
c
)

C
yc

lic
 F

re
qu

en
cy

 (α
1)

(b) (fc, α1)-plane (With Coding on channel2).

60 70 80 90 100 110 120 130
0

1

2

3

4

5

6

7

8

9

10

C
yc

lic
 F

re
qu

en
cy

 (α
2)

Carrier Frequency (f
c
)

(c) (fc, α2)-plane (With Coding on channel2).

Fig. 5. CRP-based data clustering with active carrier frequenciesfc = 62, 87, 112 MHz, symbol rates 10,12 and14 Mbaud, respectively.

Algorithm 2 Learning algorithm to control the cyclic sub-
profile thresholdζ

Initialize: counter = 1.
while No signal is detected by the energy detectordo

Update the false alarm probabilityPf (ζ) and counter =
counter + 1.
if counter = Nc then

Updateζ such that:ζ ← ζ + ψ (Pf (ζ)− φ).
Resetcounter = 1.

end if
end while

classification procedure, we simulate several signals in the
2.4GHz ISM band. These signals are assumed to have carriers
at 2.412GHz, 2.437GHz and2.462GHz and symbol rates of
10, 12 and14 Mbauds, respectively. The signals are allowed
to use different QAM schemes and are equally likely to be
in ON or OFF states during each sensing period. Wireless
channel is assumed to be Rayleigh fading. The fading channels
coefficientsh are normalized, such thatE{h2} = 1. Also, the
Radiobot’s receiver is subjected to white Gaussian noise.

We assume that the sensed signal is downconverted to IF
band with an IF oscillator with frequency offI = 2.35GHz.
After IF conversion, the three signals are supposed to be
centered at62, 87 and 112 MHz. Each sensing observation
takes12µs with a receiver SNR of20dB.

Initially, we assume that the signals are not coded and we
plot the detected feature points(fc, α1, α2) in Fig. 5(a), where
it is found thatα2 = 0 (meaning that no coding is detected).
We observe that the carrier frequencies and symbol rates were
accurately specified for each system. Also, we use bold circles
to represent the clusters that occur with a probability higher
than0.1. We remark that an erroneous feature point is detected
at α1 = 0. However, its corresponding cluster has a very low
probability, thus it can be neglected in the sensing outcome.

Next, we repeat the same simulation, but assuming that the
system on channel2 uses a coding with rate1/2. The coding
rate is manifested through the featureα2 which is expected to
be equal to1/2 times the symbol rate of the second signal.
We plot the result in Fig. 5(b) and Fig. 5(c). As expected,
the signals on the first and third channels that are not using a
coding structure haveα2 = 0. Only the signal on channel2
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Fig. 6. Comparison between the receiver operating characteristics (ROC’s) of
the sliding-window and conventional energy detections. The sliding-window
length isL = 11.
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a carrier frequency of20MHz. The performance is compared under both
non-fading and Rayleigh fading channels.

has anα2 = 6, which corresponds to its coding rate.
In Fig. 6, we show the ROC curves of the adopted sliding-

window energy detection scheme [28], [43]. This detector is
compared to the conventional energy detection and it shows
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Fig. 9. Detection of multiple users in2 separate sub-bands.

superior detection performance. Next, we show in Fig. 7 the
detection performance of the cyclostationary detection for
different values of SNR’s and for different sensing times.
The results show that95% of detection probability can be
achieved at an SNR of−6dB and with a sensing time of
T = 30µs. Afterwards, we verify, in Fig. 8, the convergence
of the learning algorithm proposed in Section VI. We letφ to
be the desired false alarm probability of the cyclostationary
detection and letζ be the control threshold. Starting from
ζ = 0, Algorithm 2 converges to constant threshold at which
the actual false alarm probabilityPf (ζ) converges toφ. The
learning rate is set toψ = 0.2 and the thresholdζ is updated
after eachNc = 20 updates of the false alarm probability
Pf (ζ). Note that a similar learning procedure could be applied
to adapt the energy detector thresholdηPSD. However, this
step is not required in our case since we have an analytical
expression forηPSD in (4).

Finally, in order to verify the multi-band operability of the
Radiobot, we simulate, in Fig. 9, the sequential sensing in two
different sub-bands. Each sub-band has2 different systems and

we assume that these users can be either ON (1) or OFF (0)
at each time instant, as shown in the user activity curves of
Fig. 9. The Radiobot senses sequentially these sub-bands. We
plot the sensing outcomes and represent by1 (resp.0) whether
the corresponding system is detected (resp. not detected).An
outcome of0.5 implies that the corresponding sub-band is
not sensed at a certain time. The results in Fig. 9 show that
the Radiobot can accurately detect the different systems and
allocate them to appropriate clusters, while switching between
different sub-bands.

VIII. C ONCLUSION

In this paper, we have proposed an autonomous CR archi-
tecture, referred to as the Radiobot [5]. This model is aimed
at emphasizing the cognitive aspects of CR’s by requiring
that the Radiobot is able to achieve self-learning and self-
reconfigurability. In this paper, a Radiobot employs a joint
energy/cyclostationary detection to extract different features
from the sensed signals. It then applies a DPMM-based
clustering method to identify/classify the observed signals. A
learning algorithm is proposed to allow self-reconfigurability
of the Radiobot sensing module to match its RF environment.
We analyzed the performance of the energy detection through
the ROC and showed the robustness of the cyclostationary
detection to fading and to wide-sense stationary noise. We
verified, through simulations, the expected convergence ofthe
proposed learning algorithm and the multi-band operability
of the Radiobot architecture with the proposed wideband
spectrum sensing approach..
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