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Abstract—This paper presents an autonomous cognitive radio
(CR) architecture, referred to as the Radiobot. This model goes
beyond adaptive radio systems to exploit the main ingredies of
cognition which, in this context, are mainly self-learning and
self-reconfiguration. Without any prior knowledge of the RF
environment, the Radiobot applies a sequence of increasihyg
sophisticated processing steps to detect and identify theessed
signals. In particular, in this paper, it applies a blind enegy
detection followed by a cyclostationary detection methoda detect
the active signals and extract their underlying periodic pioperties
as reflected in cyclic frequencies. These extracted signadtures

are capable okelf-managing and self-reconfiguring in real-
time to match their RF environment while continuously self-
learning from their past experienck contrast with previous
CR architectures that are aiming at improving the spectrum
utilization [3], [4], [8], [9], the Radiobots are expectemlitave

all of the following capabilities: 1) autonomous operati@j
spectrum coexistence/efficiency including dynamic spactr
sharing (DSS), 3) inter-operability in heterogeneous RE ne
work environments, 4) simultaneous operation over mutipl

are classified based on the Chinese restaurant process (CRP)Modes/networks, and 5) power efficient green communicstion

and a learning algorithm is applied to achieve autonomous $e

reconfiguration of the sensing module. We analyze the impact

of fading and Doppler frequency shift on both the energy and
cyclostationary detections, and show the receiver operatg char-
acteristic (ROC) of the carrier frequency detector. We showthe
robustness of the cyclostationary detection against chamhfading
and wide-sense stationary noise. Simulation results are psented
to verify the multi-band operability and the reconfiguration
ability of the Radiobot and to verify the convergence of the
proposed learning algorithm.

Index Terms—Cognitive radios, Radiobot, cyclostationary de-
tection, Chinese restaurant process, Dirichlet processhteshold-
learning.

|. INTRODUCTION

In literature that followed the original concept of cogwdi

[5].

The Radiobot can be modeled asraional radio agent
that interacts with its RF environment to achieve its com-
munications objectives. A cognitive engine (CE) consgisut
the brain of the Radiobot [5] and coordinates its decision-
making activities. For example, the CE determines the sgnsi
policy, the sensing antenna configurations, etc, for spectr
awareness and also be responsible for making the channel
and power allocations for actual communication based on
certain system requirements. A high-level system arctitec
of a Radiobot is shown in Fig. 1 which highlights the two
main functions of the CE: 1) Controlling the sensing module
and 2) controlling the PHY/MAC communication modules. In
order to realize a complete Radiobot system, both autonemou
sensing and PHY/MAC decision-making need to be developed.
In this paper, however, we restrict our attention to the spec

radios (CR’s) given in [1], the CR’s have mainly been aimed &tum sensing module and develop blind autonomous sensing
achieving dynamic spectrum sharing (DSS) and increasiag tilgorithms that can be adapted, through cognitive learriimg

spectrum utilization [2]—-[4]. However, as highlighted ][

unknown RF environments.

[6], CR’s can have much broader and more ambitious goals.According to [5], one of the most important abilities of a
Towards this end, the authors in [5] defined a futuristic CR aRadiobot is to be aware of the RF environment in order to
chitecture that emphasizes main features of cognitiongham self-characterize the best possible communications mbale.

(a) the ability for autonomous decision-making/reasorang

achieve this, it is not sufficient for a Radiobot to just detae

learning, and (b) the ability to modify radios behavior lthseexistence of RF activities in its environment, but also i ba
on self-learning. To avoid confusion with previous CR’sg thbe able to identify theéypesof active signals. For example, if

proposed architecture was referred to asRagliobot[5] and

the Radiobot identifies a jamming signal at a certain frequen

it attempts to combine the state-of-the-art models of Ch wiband, it might need to avoid this band so that it preserves the

the notion of autonomous robots.

security and reliability of its communication.

The Radiobots, as presented in [5], are not simply adaptiveln order to detect and identify RF activities, in this papes,
radios, such as the architectures in [7], [8]. Indeed, thelevelop a growingly sophisticated signal processing secpie
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based on blind joint energy/cyclostationary detectiontHe

first step, energy detection is applied to detect the active
carrier frequencies in the frequency range of interest.tNex
a cyclostationarity-based feature extraction algoritlsnused

to detect the cyclic frequency components at each detected



carrier frequency. In contrast with similar two-stage spen

sensing architectures that assume prior knowledge of the
primary channels [10], [11], our proposed spectrum sensing T
does not require any priori knowledge of the existing
channels, which makes it a suitable platform for autonomous
Radiobots that operate in unknown RF environments. The e
performance of the carrier frequency detector is evaluated

through its Receiver Operating Characteristic (ROC) arad th
cyclostationary detection is evaluated for a wide rangeNiRS
and for different sensing times.

RF Environment

Several signal classification and feature extraction nusho
for CR spectrum sensing have been proposed in the litefature
including the models in [12], [13] which rely on support -
vector machines (SVM’s). In this paper, however, we em-  waveform

Switching
Circuitry
Antenna

ploy non-parametric learning for autonomous signal identi
fication/classification. Thus, our Radiobot extracts a ueat
vector from each combined energy/cyclostationary deiacti
outcome itself. A feature classification technique, basethe
Chinese Restaurant Process (CRP), then permits clagpifyfiig. 1.  The actions of the cognitive engine: Sensing and RN
the obtained features into clusters corresponding to reiffe reconfigurations.
wireless systems. This proposed non-parametric clagsiiica

algorithm employs the Dirichlet Process (DP) [14] priors to

learn the distribution of clusters within the feature spadee

CRP-based classification method was also used in [15], whichThe apjlity to sense the surrounding RF spectrum is crucial

however, was only limited to the energy detection. to everything a Radiobot can perform and achieve, due to the
ct that spectrum sensing measurements are to be used in

| PHY/MAC Decision

\ . : . /
Spectrum Sensing Region  / \_Making Region /

Il. SYSTEM MODEL

After each action and/or observation, the Radiobot aléﬁ - . o g :
applies a learning algorithm to improve its future sensin ) de‘ec“f?g’ identifying _and classifying the mg_nalsqmr_ﬂ_
and communications techniques based on its past experie he Radmb_ots RF environment, and (b) ma_\kmg deC|S|o_ns
as encapsulated in the Observe-Decide-Act-Learn (ODAES1 |_ts_ ope_zra_tmg mode and subsquent sensing. In practice,
cognition cycle of [5]. Several learning algorithms haveibe a’ critical Ilmltatlon of spectrum sensing systems stemsnfro
previously applied to CR'’s for PHY/MAC decision-making. inthe s:’:\mpllng hardware ar_1d the analog-to-d|g|tgl converter
particular, the reinforcement learning (RL) has been azpbli(ADC s) [20]. The tradeoff is between the sampling rate and

for power control [16] and for distributed Medium Acces§he resolution. For example, recent research has_ led to dh AD
Control (MAC) in CR networks [17], [18]. In our case,that can sample at a rate mﬁGS/S but only with g6-b|t
however, the Radiobot employs a learning algorithm simil:&?smunOn [21]. Better re;oluuons can_only be obtainethat

to [19], allowing online self-reconfiguration of the speotr expense of lower Sam'?“”g rates, as in the case ofl B8/s
sensing module. The learning algorithm controls the ttokeksh ADC A_DS540_0[22] which aI!owle-b_lt resol_utlon. In order
value of the cyclostationary detector to achieve a cer@sef to avoid aliasing, the_samplmg rate is required t(.) be attleas
alarm probability. In [19], the algorithm estimates thesél as Iarg_e as the Nyquist freque_ncy. In our case, since the tota
alarm probability during a training period in which the sidm bandwidth Of. the Spec”?”‘ of interest is ge_ne_zrally in theesca
are drawn from a null-hypothesis (denoting no signals). Qf several Giga Hertz, it may not be realistic at the current
our case, however, by using the energy detection resuks, ﬁ‘ﬁﬁte of the art to expect an ADC 0 sa_mple, for _example,_the
false alarm probability of the cyclostationary detecton & whole UWB spectrum at a sufficiently high sampling rate with

updated during the normal operation of the Radiobot when ﬁUﬁ'C'ent. resolut|0n.|A sgll;nor& 'S todsedgment the spectnﬁm b
signals are detected. interest into several sub-bands and down-convert each sub-

band to intermediate frequency (IF) for sampling. Another
The remainder of this paper is organized as follows: Isolution for wide-band spectrum sensing based on sub-Nyqui
Section II, we introduce the Radiobot system sensing modsfmpling was proposed in [23]. However, this technique can
the RF activity feature extraction techniques, and analy2ely be applied when the signals are sparse.
the impact of superposed multiple RF signals on the featureSimilar to other mobile communication systems, hardware
extraction operation. In Sections Ill and IV, we analyze theompactness is also a major concern. This makes it desir-
impact of wireless channel fading on both the cyclostatipnaable to reduce the number of hardware components and to
and carrier frequency detectors, respectively. The CRiedaavoid parallel RF hardware redundancies. For instance, a
signal classification algorithm is discussed in Section V. lcommunication system may have to be restricted to a limited
Section VI, we present the self-reconfiguration of the sepsinumber of RF mixers used for IF conversions. To address
module. We show the simulation results in Section VII ansuch hardware limitations, we propose a round-robin sojfg j
conclude the paper in Section VIII. energy/cyclostationarity-based spectrum sensing giyai&/e
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Fig. 2. The wide spectrum of interest is divided into disjoint wide sub-

bands for the purpose of sequential processing.
purp q P 9 Fig. 3. The cyclostationarity based RF signal detectiorhveitscanning

superheterodyne receiver.

assume that the RF environment of interest is firstly segaakent
into a number ofV disjoint, still wide, sub-bands, as showrgenotes the response of the channel at the titoean impulse

in Fig. 2. o that stimulated the channel between tkté signal source and
We assume that these sub-bands are arbitrarily centereghat Radiobot at time — 7/ [25], [26]. The receiver noise,
frequenciesfy, - - - , fy, with bandwidths ofBy,---, By. It denoted byw(t), is assumed to be a white noise process with

is expected that this segmentation of the spectrum of istergoyple-sided power spectral density (pSD)N?f_ The average
into sub-bands will essentially be determined by the sensifgise power at the output of the sweeping IF filter will be
antenna system in use. For example, the reconfigurablewsengy, — ME \here B is the IF filter bandwidth. The resulting
antenna system that was developed in [24] in a parallghnal-to-noise ratio (SNR) at the output of the IF filter Iwil

research effort, is capable of scanning the UWB spectryfiys heSNR = L= where P, is the received signal power.
by segmenting it intoN = 5 sub-bands. In particular, this Fn

wideband sensing antenna was shown to be able to sgan

the spectrum from2 — 10GHz in N = 5 bands, with
f1 = 2.55GHz, f» = 3.2GHz, f; = 4.48GHz, f, = 5.8GHz, In order to detect active RF signals, we propose to identify
and f; = 8.15GHz [24]. their carrigr frequencies and the a;sociatgd cypl_ic fregies
We assume that the Radiobot system sequentially picks dhat are induced by the underlying periodicities of those
of the N sub-bands to sample at each time instant. In orgg@nals. Note that, it is well-known that almost all man-
to reduce the requirements on the sampling rate, as shoWade signals exhibit such underlying periodicities duefdo,
in Fig. 3, a local variable oscillator with frequengy, and €xample, their symbol rates, coding schemes, packet/frame
a corresponding digital bandpass filter is used to convert tAéader structures and training symbol sequences, etc.|[27]
received signal into an IF signal, where we denote fhy the followmg dlscuss_|on,. however, we will explicitly fosu.
the local oscillator frequency tuned for theth sub-band. ©n the cyclic properties induced by the symbol and coding
By sequentially sensing th& sub-bands, the Radiobot Carfateé._ Using the discrete-frequency smoothmg method [27]
scan the whole spectrum without requiring parallel hardwafiescribed below, we compute an estimate of the Spectral
nor unrealistic ADC’s. Note that, sequential spectrum ens Correlation Function (SCFpZ (¢, f) for a general discrete
may lead to certain limitations. For example, if the sensinggnal {z(t — kT.)}; 5!, for each sub-band, wher&; is
and processing durations are too long, the Radiobot may mig§ sampling period, and/ is the number of samples. Note
certain changes in RF conditions in the currently non-séns@at, this implies that the total time duration over whicle th
sub-bands. On the other hand, short sensing durations ticular frequency sub-band was scanned' is MT;.
lead to inaccurate sensing results. he FFT X(¢, f) of the sequencez(t — kTs)}i\%l is
Since our proposed detection/classification procedure &lgfined in (2) over the set of frequencigs-4, —%& +
plies to each of the sub-bands in the same way, in thé. -, % — Fs, &}, wheref, = ;- is the sampling rate and
following, we present the model formulation for a particulaFs = 177 is the frequency increment andt) is a triangular

sub-bandn. Hence, for brevity of notation, we drop thedata tapering window [27].

Detection of RF Activities

frequency sub-band index in the following discussion. M-1
X(t, f) =Y alt — kTo)a(t — kT,)e 2™ =FE) 0 (2)
A. Observed Signals Model k=0

We denote by (¢) the total number of signals at tintein An estimate of the SCF can then be obtained as [27] based

the sub-band of interest. The corresponding IF sigifa) in  ©on the discrete-frequency smoothing method:
Fig. 3 can be expressed as [25]: (L—1)/2

NO Set. =17 Y,  XWI+5HF)X (1 f-SHvE)
y(t) =R { Z {(/ xi(t — Tl)hl(T/,t)dTl> ej2"(sz*f1)t} }+w(t), v=—(L—-1)/2
=1 0 whereT = MT, is the time length of the data segment,

where z;(t) denotes the-th baseband signal that is to pds the cyclic frequency and (an odd number) is the spectral

modulated .at a _Carrier_frequencﬂ:r The [-th baseband 1y j fairly straightforward to generalize the method to limte other
equivalent linear time-variant (LTV) impulse resporigér’, t)  periodicities that might be present in any given signal.



—¥sD point sites [32] are located at the detected carrier frequen
] points{(f¢,0) : f. € A}.
] In [33], it is shown that digital signals exhibit cyclostati

] arity at multiples of their baud rates. Moreover, the digita
signals may exhibit other periodicities as well, for exaeapl
due to coding. We denote the RF signature of the signal
centered atf, asRF(f.) = {a # 0 : IgL(t,o, f.) > C},
where Jg denotes the indicator function of evelf =
{I.(t,a, f.) is a local maximurh, and¢ € (0,1) is a thresh-
old for the peak detection in the cyclic sub-domain profile.

C. Spectral Correlation Function of Multiple SuperposedDi

ital Signals
Fig. 4. Carrier frequencies are estimated as the midpofriteedntersections . . . . . .
between the PSD curve and the threshold line. In practice, the Radiobot is more likely to deal with mulépl

RF activities in each spectrum sub-band of interest. Thus, i

needs to know the corresponding SCF properties of supetpose
smoothing window length. By setting = 0, we first obtain an digital signals, in order to identify the number and types of
estimation of the power spectral density (PSD) of the discrehe detected signals accurately.

signal {z(t — kT) 1o In order to analyze the impact of the superposition of
(1—1)/2 , multiple signals on the SCF of a sign#lt), let us assume that
S0t f) = —— 3 ‘X(t,f R @) y(t) = w(t)+ N @, (1), where{z,, (t)}2- | are indepen-
LT :
v=—(L—1)/2 dent zero-mean random processes (denofiigsuperposed

The active carrier frequencies in the spectrum sub—band%gnals) andu(t) Ilfj an !ndep[)engﬁnt white nm;se_ profcess_wnh
interest is determined by setting a threshold on the aboize ps powe.r spectra en;'oty d% gsautocorre ation function
According to [28], the thresholdpsp shown below can be Of ¥(t) 18 Ryy(t,7) = 526(7) + 52,2 Raypa,, (£,7) , Where

derived based on the Neyman-Pearson test: R., ., (t,7) is the autocorrelation functions aof,,(¢), for
m=1,---,N,. First, we define a Fourier Transform for the

v (L (1= ap) D(L)) Pn (4) cyclic autocorrelation function as [34]:

TsL '
T/2
where ar is the false alarm probabilityy~—! is the in- Ry, () 2 lim _/ Ry, (t, T)e 2 dt

npPsp =

verse lower incomplete gamma function (wheyé:,z) = /2

Jy t*7te7'dt and the inverse is w.rt. the second argu- 1 (T2 N, N e
ment), T'(k) = [~ t""te~'dt is the gamma function and = :}E};OT/T , — 0(r) + D Repa,(t,7)| €72 dt
P, is the noise power that can be estimated Rs = / N m=1

T, S /2 80(t, f), similar to [15], [29]. The impact of No -

S Luf=—f; /2 Px\" ) ) : ’ . = — o

noise power uncertainty was discussed and analyzed in [30], 2 o(r)d(a) + mz_lR””mIm (7) ()

[31] where the deterioration of the detector performance wa _ _ _

upper-bounded by an expression involving the peak-to-pe‘é(li‘ere‘s(t) is the Dirac-delta function. The SCF can then be
range of noise uncertainty [30]. The carrier frequencies afXPressed as:

estimated as the midpoints of the segments formed by the N

; N,
intersection between the PSD curve and the threshold lin&(f) z/Rjy(T)e‘ﬂ”derz “25(a) + E Se (f)-
- R 2 — "o
npsp, as shown in Fig. 4. We denote by the set of all m=1 8
detected carrier frequencies in the sub-band of interest. (8)

Next, an estimate of the spectral autocoherence functignTh's result shows that the superposition of multiple indepe

maanitude 271 is comouted as: ent signals_ results in a superposition of spectral peak_@ein
gnitude [27] 1 Pu (f,«) domain. In other words, the SCF of the superposition of

G2 (¢, f)] = |Sa (¢, f) _ (5) Multiple signals has peaks at cyclic frequencies corresipgn
o S0(t, f +a/2)80(t, f — a/2) to integer multiples of, for example, the data rates of each
signal.

Note that|C2(t, f)| is normalized to be betweet and 1.
Due to the fact that for each carrier, the associated cyc_ﬁf Feature Extraction: Baud Rate and Coding Properties

components show up peaks in a close range of the carrier. . .
we define thecyclic sub-domairprofile of carrierf. € A as: The RF S|gna}tu.re R.) vectqr ltself can be useq as a
feature for classifying detected signals. For compactress
L(t,o, fo) = max |C(t, f)| ,(6) more convenient, however, to represent this vector by fewer
Felfe=Afe(fe) fetAfu(fe)] elements. To achieve this, we define two feature elements
where the linesf = f. — Af.(f.) and f = f. + Afu(f.) anday that are extracted from the RF signature, with
(Vf. € A) partition the(f, «)-plane into Voronoi cells whose representing the baud rate induced cyclic frequency and



representing the coding induced cyclic frequency. Based ¢ft) can then be expressed as:

the cyclostationarity properties, the cyclic profile extsthigh

peaks at the induced cyclic frequenciesand a,. Moreover, Ryy(t, 7) joE {yt+7)y(®)}

since the code length is usually a multiple of the symbol _E{ {/ a(t+ 71— (], t+ 7)d7] +w(t+7)} %
duration, the coding induced cyclic frequenay is smaller 0 ’

than the data rate induced cyclic frequengy By using this e , , ,

information, in Algorithm 1, a feature extraction proceelur x 0 2(t + 7 = 1)h(m, )dm; + w(t)

for determininga; and oy is proposed. Note that, in this 00 oo
algorithm, p € (0,1) with p >> 0. :E{/ / t+r—m)z(t+7—13)

X (1], t + T)h(7h, t)dridrs} + E{w(t + 7)w(t)}

Algorithm 1 Feature Extraction Procedure
for eachf. € A do :/ / E{z(t+7— )zt +7—15)} x
‘I*;l—: [écF(ch)’f]L\/} ;fC:JrarAgfrﬁanevl fttoy £) xE{h Tl,t—i- 7) (72, }chlclr2 + R (t, )
= RF(f:.)\M1, M> = arg max, 1(t, a, fe _
if p[(t, M1,fc) > [(t,MQ,fc) then Xth(Tl,TQ,t—f— T t)d/TldTQ + wa(T), (11)
(a1, o2) = (M1, 0)
else where Ry, (1], 74 t1,ta) = E{h(r],t1)h(1},t2)} is the au-
en((jai}’OQ) = (M, My) tocorrelation of the channel impulse resporige”’,¢), and
clse Ruw(t,7) = Ruw(T) is the autocorrelation function of the
(0, 00) = (Ma, My) WSS noise.
end if According to empirical studies, the channel can be consid-
end for ered as WSS as long as the mobile unit covers a distance
in the dimension of a few tens of the wavelength of the
carrier signal in an observation period [36]. We also assume
that scattering components with different propagatiorayel
are statistically uncorrelated. These channel modelsalledc
[1l. I MPACT OF CHANNEL FADING ON THE US (uncorrelated scattering) channel models or US models
CYCLOSTATIONARY FEATURES [25]. The most important class of stochastic LTV channel

models is represented by models belonging both to the class
In this section, we show that the cyclostationary featufes 8f WSS and 1o the class of US. These channel models are
y y \‘ed WSSUS models which are almost exclusively employed

signals can essentially be preserved even in the presenc
inCcurrent literature for modeling frequency selective imb
channel fading. In other words, we show that the proposed

radlo channels [25], [36]-[39].
cyclostationarity based detection method is robust agains Under this common assumption of WSSUS, the autocor-
channel fading effects.

) ) ] _relation function of the impulse response of the LTV fading
A continuous-time real-valued stochastic procegs) is

/ ) | ) > channel can be expressed as [25]:
said to be second-ordeyclostationary in the wide sense
its meanE{z(t)} and autocorrelation functiom,(t,7) £ Run(r), mo5t + 7,1) = 0(13 — 7)Shn(m1, 7). (12)

E{x(t +7)o(t)} are periodic with some period, sd: where Sy, (11, 7) is called thedelay cross-power spectral

density[25]. We substitute (12) back into (11) to obtain:

Ry,(t,7) = / / va(t, T — 7] +T3) X

X8(1y — 1) Shn (11, 7)dT]dTh + Ry (T)

E{z(t+To)} = E{z(1)}, Rex(t + To,7) = Rza(t,7), (9)

for all ¢ and = [35]. We consider a cyclostationary digital
signalz(¢) and an LTV fading channel (i.e. due to the Doppler o
effect), having an impulse response/gfr’, t). According to = / Ryw(t, 7)Spn (71, 7)d7] + R ()
the definition of cyclostationarity, we know that the auteco 0

relation function ofz(t) is a periodic function of, such that

R, (t+ Ty, 7) = Rux(t, 7), for some periody. The received
signaly(t) through the LTV fading channel can be expressesh that
as:

Rm(t,T)/ Shn (11, 7)d7] 4+ R (),
0

- Ryy(t +To,7) = Rye(t+To,7) fooo Shn (71, 7)dT] + Rupen (7)
y(t) = / x(t — 7)h(' t)dT" + w(t), (10) = Ryo(t,7) fooo Shn(T], 7)d7] + R (T)
0 = Ry, (t,7).

wherew(t) is an additive wide sense stationary (WSS) noise This shows that the autocorrelation function of the reaive
process. The autocorrelation function of the receivedaigrsignal y(¢) is also periodic with the same peridf) as the



transmitted signak(¢). As a result, the received signg(t) is Based on (16), the convolution of%(f) with a window of
also cyclostationary with the same cyclic components(@s length 2f,,,, causes the PSD to spread at most-by,,q.

A more general class of stochastic processes is obtairsceach point. If the Doppler PSB,,(f) is symmetric (such
if the autocorrelation functiod®,..(¢, 7) is almost periodic in as Jakes’ type [25]), the carrier frequency components ®f th
t for eachr [34]: A continuous-time real-valued stochasticletected feature points do not shift since the main lobes of
processe(t) is said to bealmost-cyclostationary (ACS) in thethe PSD are spread evenly in both left and right directions.
wide sensé its autocorrelation functio,.. (¢, 7) is an almost However, if S,,,,(f) is not symmetric (such as Rice’s, Gauss
periodic function oft (with frequencies not depending o) | or Gauss Il types [25]), the detected carrier frequenciils w
[35]. When the input signak(t) is considered as ACS, theshift by an amount smaller thaf),..... Therefore, due to the
output signaly(t) through the LTV fading channel is alsoDoppler shift, it may not be possible to detect and distisui
ACS with the same cyclic components @&), since we can signals that are separated by less thfan. in the spectrum.
see from (13) and (13) the autocorrelation funct®p,(¢,7) However, based on the users activity and by using apprepriat
is also almost periodic with the same periodfas, (¢, 7). learning algorithms, the Radiobot might be able to detechea

As a result, we see that when fading channels are consid-the signals when they are the only transmitted signals.
ered as general LTV systems, the cyclostationary propertiehen using this knowledge, it may be able to distinguish
of the transmitted signals are not altered at the output tifem when both signals are transmitted simultaneouslys Thi
the channel, or the received signal at the Radiobot. Thagain emphasizes the importance of true learning from past
justifies the robustness of the proposed cyclostationbaged experience during the signal detection and classificatiepss
detection/classification method in this paper, in the pres®f
channel fading. Note that, the proposed cyclostationbased
detection method introduced in Section II-B also applies to
the ACS assumption, since the SCF is also defined under the
assumption of ACS and it has been shown that an ACS signaln the following, we develop a non-parametric technique
exhibits cyclostationarity at cycle frequenayif RS, (1) # 0, to obtain statistical information on the association of licyc
similarly to the cyclostationary stochastic processe$, [35]. frequencies and carrier frequencies. Many existing unsupe

vised machine learning techniques used for classificatielys
IV. IMPACT OF THEDOPPLERSHIFT ON THE DETECTED  on certain assumptions on the data, such as the number of
CARRIER FREQUENCIES classes present. However, a non-parametric approach makes
The cyclic autocorrelation function RS, ()  of few assumptions about the distribution from which the data

the received signaly(t) is defined as R?;;(T) 4 is drawn [14], [40], [41]. We believe this is the appropriate

V. AUTONOMOUSSIGNAL CLASSIFICATION USING THE
CRP

i L L ioret . framework so as to enable the Radiobot to work in a wide-

lme oo 7 f—f% Ryy(t’_T)e 7retde[34] Replacing o060 of possible RF environments which may contain arbi-

Ryy(t,7) by its value in (13), we obtain: trary number of wireless systems with arbitrary number of
RS, (1) = H(T)R2, () + R ()65 (), (13) users in each system at any given time. The non-parametric

-~ model used in this paper is based on the Dirichlet Process
where H(r) = [ Sun(7{,7)dr{ andd* denotes the Kro- \Mixture Model (DPMM) [14], [41], [42], in which, the number
necker delta function. We may compute the PS[3f) of the of clusters/mixtures present in data is not knowrpriori.
received signay(t) as the Fourier transform (denoted by thén contrast with parametric approaches, such as the Gaussia
operator¥) of Ry(r) ata = 0, such that: mixture model (GMM) and K-means classification methods,

oo non-parametric classification methods assume an unknown
Sy(f) F {/ Shn (71, T)dT{} « SO(f) + Sw(/f) number of mixture components while assigning each observed
- feature point to a corresponding cluster. Hence, non-peairém

= / F{Snn(r],7)} dr| * Sg(f) + Sw(f) classification methods can infer the number of clusters from
—00 the data itself, making them suitable for identifying thener

_ /OO S(rl, f)dr! + SO(f) + Su(f) (14) of RF systems in an unknown environment. Thus, we propose
o * the DPMM as a framework for classifying the observed feature

= Suu(f) *S2f) + Su(f) , (15) points in the RF environment. A description of the DPMM can

/ _ ) be found, for example, in [14], [41].
where 5(7;, f) and 5,,,,(f) are, respectively, thecattering | o4 ;5 define ag-dimensional (where; could also be

i i 0
functionand theDoppler power spectral densitand S;(f) infinite) feature vecto@. The elements of each feature vedior

is the PSD of the transmitted signal. .Note that (14) _and amclude the observed carrier frequency and the differealicy

are obtained using (7.37) and (7.42) in [25], respectively. ,nnonents, which determine the RF signature of a sensed
The Doppler PSD s L_Jsually def_med over a ranganal. Theg-dimensional feature vector is denoted 8y=

[_fm““’fm.‘”]' Where foao i the_ maximum Doppler fre- a1, -+ ,a4-1)7, wherea; € R represents théth cyclic

qu-ency shift [25]. Thus, the received PSD can be eXpreSﬁ%amponentin the signal centeredfat In practice, of course, it

as. is not possible to observe the featéeirectly, instead we get

frnam H H T H
0 . 0(s a noisy observation vectar = (z1,--- , z,)" . Generally, this
5,(f) = / Sun(V) Sz (f = v)dv + Swu(f) - (16) noise depends on the environment, numerical approximgtion

f7na'1:



guantization errors in ADC’s and estimation errors. Thhs, tto obtain analytical solutions to this problem due to the
observed feature vector can be modeled &as= 6 + v, complexity of the cyclic profile equation and to the uncentyai
wherev is assumed as a Gaussian noise vectamdépendent in the surrounding environment. A possible solution is e
components, capturing the environmental noise and estimatthe optimal threshold value iteratively based on the sensin
errors, as in [15] Each observation is classified into clusters observations, as in [19].
{C; :i=1,2,---}, with each cluster representing a certain RF An online learning algorithm was proposed in [19] to
system or a class of signals having similar RF charactesistiadapt the threshold value of Neyman-Pearson test when the
We denote the cluster centers By, : i« = 1,2,---} and probability distribution of the detected signals is unkmow
corresponding covariance matrices b¥; : ¢ = 1,2,---}. The threshold is thus dynamically updated to achieve aefsir
Each cluster centeu, is an unbiased estimate of its associatefélse-alarm probability. The learning process is condiicte
feature vecto#,. We denote the cluster assignment variable ljuring a training period in which the observed data are
A € {1,2,---} which represents a certain class of systems thdétawn from a null hypothesis. In our case, however, we
share a common RF characteristic. In general, the properti® not assume a training period and we propose a learning
of a clusterA € {1,2,---} (for example, its mean and co-algorithm that updates the cyclic sub-profile threstiothiring
variance) are unknown and to be estimated from the obsertbd normal operation time itself to achieve a desired false
feature points themselves. For each observatiowe apply alarm probability¢. By the help of the energy detection,
the Maximum a Posteriori (MAP) rule to assigninto the the learning algorithm identifies the absence of transnhitte
cluster \(z), such that:\(z) = argmax;e(1,...} P{z|A = signals to perform the learning process. The objective of
i}P{A = i}. The likelihood ofz being in clusterC; is the learning algorithm is to minimize the Kullback-Leibler
Pr{z|A = i} = [[}_, f(zk|pik,oix), where f(z|u,0) is distancek (P||Q) between two probability distribution and
the probability density function (pdf) of a Gaussian randoi®, similar to [19], where:
variable Z ~ N(u,0?). After each assignment, we update P(i)
the center and covariance matrix of the correspondingeust K(P||Q) = P(i)log = . (18)
_ ; . : Q(i)
Given a sequence of cluster assignmeénts - - , A,,,, by using i
the DPMM properties, the probability distribution af, ., is: We denote by” and@ the desired and actual probability dis-
v tributions of the cyclostationary detector output, coiodied
Ami1|A, - A ~ 1 (aDH + an(gm> . (17) onthe absence of transmitted signals. These probabibtyidi
ap +m =1 § butions correspond to Bernoulli random variables, reprisg
whereA$,---, A} are the unique values amorg,--- , A, whether a signal islo_or is not () detected. By definin@ N
(corresponding tay distinct clusters);, is the number of and Pf(g_“) as the desired and ac_tual false alarm proba}b|llt|es
repeats ofA% (i.e. number of feature points in clustdr), (f_or a given threshold)), respectively, the Kullback-Leibler
5 is a point mass located at, and~ is shorthand for “js distance can then be expressed as:
distributed as”. The probability distributiod/ represents a ¢ 1-¢
prior distribution of the cluster assignment variablessdzhon KPIIQ) = K(9, F;(()) = log Pr(¢) +(1=¢)log 1—Ps(¢)
previous knowledge. If no such knowledge is available, the ' (19)
choice of H can be made irrelevant by setting, = 0. Note Note thati (¢, P;(¢)) = 0iff ¢ = P;({). Due to its convexity
that, if max;c(;,...; P{A = i|z} < 6 (for somes > 0), we in Pr(¢), the Kullback-Leibler distance guarantees a global

create a new clustét centered az and with a suitably chosen minimum. Moreover, it was shown in [19] thdt (¢, Pr(())
covariance matrix. is convex in¢ iff P;(¢) is monotonous, which is satisfied in
our case. However, since the analytical expressioRut) is

VI. SELF-RECONFIGURATION OF THESPECTRUMSENSING Unknown, it can be estimated as the ratio of sample points tha
MODULE exceed the threshold in the cyclic profile/(«), when there

ls no transmitted signals. As noted in [19], to achieve aateur

gtimate forPs((), the recursive adaptation i should not

ET: too frequent. This is taken into account in the proposed

arning algorithm (Algorithm 2), in which the threshold

The performance of the Radiobot is related to the quali
and accuracy of the sensing observations. It is required
optimize the sensing module so that it best estimates the
activity in the surrou_no_lmg environment. Seyeral params;etels updated after eaclV. > 1 updates of the false alarm
may need to be optimized during the sensing process, SupCerabiIitfo(g)
asllth.e sentsm% durgnon,t(rj‘etectc;r thlresg('):Ids, gpectrumltﬂgfn The update rule in Algorithm 2 minimizes the Kullback-
policies, elc. based on the particuiar environment 1t €z ar function since it follows a gradient descent direat
counters at a given time. It is the task of the learning an

. i~ ) at reduces the differend®,({) — ¢| at a learning rate of
reasoning abilities of the Radiobot to make the CE dynamib-ﬁ 0. Moreover, due to the convexity of the Kullback-Leibler

cally ad"?‘Pt these parameters base_d on its past EXpEremcey, ction, this algorithm is guaranteed to converge to a waiq
be specific, assume that the Radiobot needs to optimize dﬁimal threshold value

cyclic sub-profile threshold such that it achieves a certain
false alarm probability. Of course, it is almost impossible VIl. SIMULATION RESULTS

2While Gaussianity is assumed here for simplicity to illagrour concepts, 1N order to .demgnStrate the performarjce of our pro-
better noise models are to be investigated in our on-goingc.wo posed cyclostationarity-based autonomous signal deteatid
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Fig. 5. CRP-based data clustering with active carrier feagies f. = 62, 87,112 MHz, symbol rates 1012 and 14 Mbaud, respectively.

Algorithm 2 Learning algorithm to control the cyclic sub-
profile threshold,

Initialize: counter = 1.
while No signal is detected by the energy deteator
Update the false alarm probability’s(¢) and counter =
counter + 1.
if counter = N, then
Update¢ such that¢ < ¢ + ¢ (Pr(¢) — ¢).
Resetcounter = 1.

end if

i N —e— Sliding-window ED: SNR= -10 dB, L= 11
end Whlle ! -e-ED: SNR=-10dB
—4— Sliding-window ED: SNR=-15 dB, L= 11
-4-ED: SNR=-15dB
—=— Sliding-window ED: SNR=-20 dB, L= 11
ED: SNR= -20 dB

Probability of Detection of Carrier Frequencies

=

Probability of Detection

i : : :
03 04 05 06 07 08 09 1
False Alarm Probabllltw@

classification procedure, we simulate several signals @ th
2.4GHz ISM band. These signals are assumed to have carriers
at2.412GHz, 2.437GH~ and2.462G H z and symbol rates of Fig. 6. Comparison between the receiver operating chaistits (ROC's) of
10, 12 and 14 Mbauds, respectively. The signals are allowethe sliding-window and conventional energy detectionse $hding-window
to use different QAM schemes and are equally likely to bength isL = 11.

in ON or OFF states during each sensing period. Wireless

Channel |S assumed tO be Raylelgh fadlng. The fadlng Channel Prubabgity ofdelfciicn Of‘lhe fealu‘re point \‘NithlOD I‘\IIHZ. smomh-ing;wmdowfnglh Li59 and sensing tim
coefficientsh are normalized, such th@{s?} = 1. Also, the ool A
Radiobot’s receiver is subjected to white Gaussian noise.

We assume that the sensed signal is downconverted to IF
band with an IF oscillator with frequency ¢ = 2.35GH z.
After IF conversion, the three signals are supposed to be
centered a2, 87 and 112 MHz. Each sensing observation

takes12us with a receiver SNR oR0dB.

0.8r

0.7+

0.6r

Probability of Detection
°
@

Initially, we assume that the signals are not coded and we o3t —e—No fading: T=4 s
plot the detected feature poir(ts., a1, az) in Fig. 5(a), where odf o N faing: T2
it is found thatas = 0 (meaning that no coding is detected). oah e s
We observe that the carrier frequencies and symbol rates wer -A-Fading: T=20 s

0 L
-18 -16 -14 -12 -10 -4 -2 0 2

accurately specified for each system. Also, we use boldesrcl snRinds
to represent the clusters that occur with a probability érgh

than0.1. We remark that an erroneous feature point is detecteig. 7.  Probability of identification of feature points with sampling
at «; = 0. However, its corresponding cluster has a very lof{eauencyfs = 200M Hz and sliding-window length. = 59. The detected

o . : . ignal is a4-QAM with symbol rate of5 Mbauds and down-converted to
prObablllty' thus it can be negIeCtEd in the sensing outcom carrier frequency oR0M Hz. The performance is compared under both

Next, we repeat the same simulation, but assuming that tiue-fading and Rayleigh fading channels.
system on channé uses a coding with rateé/2. The coding
rate is manifested through the featurg which is expected to
be equal tol/2 times the symbol rate of the second signahas ane, = 6, which corresponds to its coding rate.
We plot the result in Fig. 5(b) and Fig. 5(c). As expected, In Fig. 6, we show the ROC curves of the adopted sliding-
the signals on the first and third channels that are not usingvandow energy detection scheme [28], [43]. This detector is
coding structure have, = 0. Only the signal on chann@ compared to the conventional energy detection and it shows



Learning curves of the cyclic sub-profile threshold ¢ and the false alarm probability F’f with = 0.2
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Fig. 9. Detection of multiple users i separate sub-bands.

superior detection performance. Next, we show in Fig. 7 thE!
detection performance of the cyclostationary detection fo
different values of SNR’'s and for different sensing times/5

The results show tha®5% of detection probability can be
achieved at an SNR of-6dB and with a sensing time of

T = 30us. Afterwards, we verify, in Fig. 8, the convergence

of the learning algorithm proposed in Section VI. We deto
be the desired false alarm probability of the cyclostatipna
detection and let{ be the control threshold. Starting from
¢ = 0, Algorithm 2 converges to constant threshold at whic
the actual false alarm probabili®;({) converges tap. The
learning rate is set t@ = 0.2 and the threshold is updated
after eachN, = 20 updates of the false alarm probability

P;(¢). Note that a similar learning procedure could be appliegb)

to adapt the energy detector threshaglgsp. However, this

step is not required in our case since we have an analytical

expression fompgsp in (4).

Finally, in order to verify the multi-band operability ofeh [10]

Radiobot, we simulate, in Fig. 9, the sequential sensingion t
different sub-bands. Each sub-band batfferent systems and

we assume that these users can be either QM OFF ()

at each time instant, as shown in the user activity curves of
Fig. 9. The Radiobot senses sequentially these sub-barals. W
plot the sensing outcomes and represent kesp.0) whether

the corresponding system is detected (resp. not deted&ed).
outcome of0.5 implies that the corresponding sub-band is
not sensed at a certain time. The results in Fig. 9 show that
the Radiobot can accurately detect the different systerds an
allocate them to appropriate clusters, while switchingveein
different sub-bands.

VIII. CONCLUSION

In this paper, we have proposed an autonomous CR archi-
tecture, referred to as the Radiobot [5]. This model is aimed
at emphasizing the cognitive aspects of CR’s by requiring
that the Radiobot is able to achieve self-learning and self-
reconfigurability. In this paper, a Radiobot employs a joint
energy/cyclostationary detection to extract differerdatfiees
from the sensed signals. It then applies a DPMM-based
clustering method to identify/classify the observed signa
learning algorithm is proposed to allow self-reconfiguligbi
of the Radiobot sensing module to match its RF environment.
We analyzed the performance of the energy detection through
the ROC and showed the robustness of the cyclostationary
detection to fading and to wide-sense stationary noise. We
verified, through simulations, the expected convergenctheof
proposed learning algorithm and the multi-band operabilit
of the Radiobot architecture with the proposed wideband
spectrum sensing approach..
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