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Abstract—In this survey paper, we characterize the learning
problem in cognitive radios (CRs) and state the importance of
artificial intelligence in achieving real cognitive communications
systems. We review various learning problems that have been
studied in the context of CRs classifying them under two main
categories: Decision-making and feature classification. Decision-
making is responsible for determining policies and decision
rules for CRs while feature classification permits identifying and
classifying different observation models. The learning algorithms
encountered are categorized as either supervised or unsupervised
algorithms. We describe in detail several challenging learning
issues that arise in cognitive radio networks (CRNs), in particular
in non-Markovian environments and decentralized networks, and
present possible solution methods to address them. We discuss
similarities and differences among the presented algorithms and
identify the conditions under which each of the techniques may
be applied.

Index Terms—Artificial intelligence, cognitive radio, decision-
making, feature classification, machine learning, supervised
learning, unsupervised learning, .

I. INTRODUCTION

HE TERM cognitive radio (CR) has been used to refer

to radio devices that are capable of learning and adapting
to their environment [1], [2]. Cognition, from the Latin word
cognoscere (to know), is defined as a process involved in
gaining knowledge and comprehension, including thinking,
knowing, remembering, judging and problem solving [3]. A
key aspect of any CR is the ability for self-programming or
autonomous learning [4], [5]. In [6], Haykin envisioned CRs
to be brain-empowered wireless devices that are specifically
aimed at improving the utilization of the electromagnetic
spectrum. According to Haykin, a CR is assumed to use the
methodology of understanding-by-building and is aimed to
achieve two primary objectives: Permanent reliable commu-
nications and efficient utilization of the spectrum resources
[6]. With this interpretation of CRs, a new era of CRs began,
focusing on dynamic spectrum sharing (DSS) techniques to
improve the utilization of the crowded RF spectrum [6]-[10].
This led to research on various aspects of communications and
signal processing required for dynamic spectrum access (DSA)
networks [6], [11]-[38]. These included underlay, overlay and
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interweave paradigms for spectrum co-existence by secondary
CRs in licensed spectrum bands [10].

To perform its cognitive tasks, a CR should be aware of its
RF environment. It should sense its surrounding environment
and identify all types of RF activities. Thus, spectrum sensing
was identified as a major ingredient in CRs [6]. Many sensing
techniques have been proposed over the last decade [15], [39],
[40], based on matched filter, energy detection, cyclostationary
detection, wavelet detection and covariance detection [30],
[41]-[46]. In addition, cooperative spectrum sensing was
proposed as a means of improving the sensing accuracy by
addressing the hidden terminal problems inherent in wireless
networks in [15], [33], [34], [42], [47]-[49]. In recent years,
cooperative CRs have also been considered in literature as in
[50]-[53]. Recent surveys on CRs can be found in [41], [54],
[55]. A survey on the spectrum sensing techniques for CRs
can be found in [39]. Several surveys on the DSA techniques
and the medium access control (MAC) layer operations for
the CRs are provided in [56]-[60].

In addition to being aware of its environment, and in order
to be really cognitive, a CR should be equipped with the
abilities of learning and reasoning [1], [2], [5], [61], [62].
These capabilities are to be embedded in a cognitive engine
which has been identified as the core of a CR [63]-[68],
following the pioneering vision of [2]. The cognitive engine
is to coordinate the actions of the CR by making use of
machine learning algorithms. However, only in recent years
there has been a growing interest in applying machine learning
algorithms to CRs [38], [69]-[72].

In general, learning becomes necessary if the precise effects
of the inputs on the outputs of a given system are not known
[69]. In other words, if the input-output function of the system
is unknown, learning techniques are required to estimate that
function in order to design proper inputs. For example, in
wireless communications, the wireless channels are non-ideal
and may cause uncertainty. If it is desired to reduce the proba-
bility of error over a wireless link by reducing the coding rate,
learning techniques can be applied to estimate the wireless
channel characteristics and to determine the specific coding
rate that is required to achieve a certain probability of error
[69]. The problem of channel estimation is relatively simple
and can be solved via estimation algorithms [73]. However,
in the case of CRs and cognitive radio networks (CRNs),
problems become more complicated with the increase in the
degrees of freedom of wireless systems especially with the
introduction of highly-reconfigurable software-defined radios
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(SDRs). In this case, several parameters and policies need to be
adjusted simultaneously (e.g. transmit power, coding scheme,
modulation scheme, sensing algorithm, communication pro-
tocol, sensing policy, etc.) and no simple formula may be
able to determine these setup parameters simultaneously. This
is due to the complex interactions among these factors and
their impact on the RF environment. Thus, learning methods
can be applied to allow efficient adaption of the CRs to
their environment, yet without the complete knowledge of
the dependence among these parameters [74]. For example,
in [71], [75], threshold-learning algorithms were proposed to
allow CRs to reconfigure their spectrum sensing processes
under uncertainty conditions.

The problem becomes even more complicated with hetero-
geneous CRNs. In this case, a CR not only has to adapt to
the RF environment, but also it has to coordinate its actions
with respect to the other radios in the network. With only
a limited amount of information exchange among nodes, a
CR needs to estimate the behavior of other nodes in order
to select its proper actions. For example, in the context of
DSA, CRs try to access idle primary channels while limiting
collisions with both licensed and other secondary cognitive
users [38]. In addition, if the CRs are operating in unknown
RF environments [5], conventional solutions to the decision
process (i.e. Dynamic Programming in the case of Markov
Decision Processes (MDPs) [76]) may not be feasible since
they require complete knowledge of the system. On the other
hand, by applying special learning algorithms such as the
reinforcement learning (RL) [38], [74], [77], it is possible to
arrive at the optimal solution to the MDP, without knowing
the transition probabilities of the Markov model. Therefore,
given the reconfigurability requirements and the need for
autonomous operation in unknown and heterogeneous RF
environment, CRs may use learning algorithms as a tool
for adaptation to the environment and to coordinate with
peer radio devices. Moreover, incorporation of low-complexity
learning algorithms can lead to reduced system complexities
in CRs.

A look at the recent literature on CRs reveals that both
supervised and unsupervised learning techniques have been
proposed for various learning tasks. The authors in [65], [78],
[79] have considered supervised learning based on neural
networks and support vector machines (SVMs) for CR ap-
plications. On the other hand, unsupervised learning, such as
RL, has been considered in [80], [81] for DSS applications.
The distributed Q-learning algorithm has been shown to be
effective in a particular CR application in [77]. For example, in
[82], CRs used the Q-learning to improve detection and clas-
sification performance of primary signals. Other applications
of RL to CRs can be found, for example, in [14], [83]-[85].
Recent work in [86] introduces novel approaches to improve
the efficiency of RL by adopting a weight-driven exploration.
Unsupervised Bayesian non-parametric learning based on the
Dirichlet process was proposed in [13] and was used for signal
classification in [72]. A robust signal classification algorithm
was also proposed in [87], based on unsupervised learning.

Although the RL algorithms (such as Q-learning) may pro-
vide a suitable framework for autonomous unsupervised learn-
ing, their performance in partially observable, non-Markovian
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and multi-agent systems can be unsatisfactory [88]-[91]. Other
types of learning mechanisms such as evolutionary learning
[89], [92], learning by imitation, learning by instruction [93]
and policy-gradient methods [90], [91] have been shown to
outperform RL on certain problems under such conditions.
For example, the policy-gradient approach has been shown to
be more efficient in partially observable environments since it
searches directly for optimal policies in the policy space, as
we shall discuss later in this paper [90], [91].

Similarly, learning in multi-agent environments has been
considered in recent years, especially when designing learning
policies for CRNs. For example, [94] compared a cognitive
network to a human society that exhibits both individual
and group behaviors, and a strategic learning framework for
cognitive networks was proposed in [95]. An evolutionary
game framework was proposed in [96] to achieve adaptive
learning in cognitive users during their strategic interactions.
By taking into consideration the distributed nature of CRNs
and the interactions among the CRs, optimal learning methods
can be obtained based on cooperative schemes, which helps
avoid the selfish behaviors of individual nodes in a CRN.

One of the main challenges of learning in distributed CRNs
is the problem of action coordination [88]. To ensure optimal
behavior, centralized policies may be applied to generate
optimal joint actions for the whole network. However, central-
ized schemes are not always feasible in distributed networks.
Hence, the aim of cognitive nodes in distributed networks is to
apply decentralized policies that ensure near-optimal behavior
while reducing the communication overhead among nodes. For
example, a decentralized technique that was proposed in [3],
[97] was based on the concept of docitive networks, from the
Latin word docere (to teach), which establishes knowledge
transfer (i.e. teaching) over the wireless medium [3]. The
objective of docitive networks is to reduce the cognitive
complexity, speed up the learning rate and generate better and
more reliable decisions [3]. In a docitive network, radios teach
each others by interchanging knowledge such that each node
attempts to learn from a more intelligent node. The radios are
not only supposed to teach end-results, but rather elements of
the methods of getting there [3]. For example, in a docitive
network, new upcoming radios can acquire certain policies
from existing radios in the network. Of course, there will
be communication overhead during the knowledge transfer
process. However, as it is demonstrated in [3], [97], this
overhead is compensated by the policy improvement achieved
due to cooperative docitive behavior.

A. Purpose of this paper

This paper discusses the role of learning in CRs and
emphasizes how crucial the autonomous learning ability in
realizing a real CR device. We present a survey of the state-of-
the-art achievements in applying machine learning techniques
to CRs.

It is perhaps helpful to emphasize how this paper is different
from other related survey papers. The most relevant is the
survey of artificial intelligence for CRs provided in [98] which
reviews several CR implementations that used the following
artificial intelligence techniques: artificial neural networks
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Fig. 1. An intelligent design can transform the acquired information into
knowledge by learning.

(ANNs), metaheuristic algorithms, hidden Markov models
(HMMs), rule-based reasoning (RBR), ontology-based reason-
ing (OBR), and case-based reasoning (CBR). To help readers
better understand the design issues, two design examples are
presented: one using an ANN and the other using CBR. The
first example uses ordinary laboratory testing equipment to
build a fast CR prototype. It also proves that, in general, an
artificial intelligence technique (e.g., an ANN) can be chosen
to accomplish complicated parameter optimization in the CR
for a given channel state and application requirement. The
second example builds upon the first example and develops
a refined cognitive engine framework and process flow based
on CBR.

Artificial intelligence includes several sub-categories such
as knowledge representation and machine learning, machine
perception, among others. In our survey, however, we focus
on the special challenges that are encountered in applying
machine learning techniques to CRs, given the importance
of learning in CR applications, as we mentioned earlier. In
particular, we provide in-depth discussions on the different
types of learning paradigms in the two main categories:
supervised learning and unsupervised learning. The machine
learning techniques discussed in this paper include those
that have been already proposed in the literature as well as
those that might be reasonably applied to CRs in future. The
advantages and limitations of these techniques are discussed
to identify perhaps the most suitable learning methods in
a particular context or in learning a particular task or an
attribute. Moreover, we provide discussions on the central-
ized and decentralized learning techniques as well as the
challenging machine learning problems in the non-Markovian
environments.

B. Organization of the paper

This survey paper is organized as follows: Section II de-
fines the learning problem in CRs and presents the different
learning paradigms. Sections III and IV present the decision-
making and feature classification problems, respectively. In
Section V, we describe the learning problem in centralized
and decentralized CRNs and we conclude the paper in Section
VL

II. NEED OF LEARNING IN COGNITIVE RADIOS
A. Definition of the learning problem

A CR is defined to be “an intelligent wireless communi-
cation system that is aware of its environment and uses the
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Observe Decide

Learn—  — Act

Fig. 2. The cognition cycle of an autonomous cognitive radio (referred to
as the Radiobot) [5]. Decisions that drive Actions are made based on the
Observations and Learnt knowledge. The impact of actions on the system
performance and environment leads to new Learning. The Radiobot’s new
Observations are guided by this Learnt Knowledge of the effects of past
Actions.

methodology of understanding-by-building to learn from the
environment and adapt to statistical variations in the input
stimuli” [6]. As a result, a CR is expected to be intelligent
by nature. It is capable of learning from its experience by
interacting with its RF environment [5]. According to [99],
learning should be an indispensable component of any intelli-
gent system, which justifies it being designated a fundamental
requirement of CRs.

As identified in [99], there are three main conditions for
intelligence: 1) Perception, 2) learning and 3) reasoning, as
illustrated in Fig. 1. Perception is the ability of sensing the
surrounding environment and the internal states to acquire
information. Learning is the ability of transforming the ac-
quired information into knowledge by using methodologies
of classification and generalization of hypotheses. Finally,
knowledge is used to achieve certain goals through reasoning.
As a result, learning is at the core of any intelligent device
including, in particular, CRs. It is the fundamental tool that
allows a CR to acquire knowledge from its observed data.

In the followings, we discuss how the above three con-
stituents of intelligence are built into CRs. First, perception
can be achieved through the sensing measurements of the
spectrum. This allows the CR to identify ongoing RF activities
in its surrounding environment. After acquiring the sensing
observations, the CR tries to learn from them in order to
classify and organize the observations into suitable categories
(knowledge). Finally, the reasoning ability allows the CR
to use the knowledge acquired through learning to achieve
its objectives. These characteristics were initially specified
by Mitola in defining the so-called cognition cycle [1]. We
illustrate in Fig. 2 an example of a simplified cognition cycle
that was proposed in [5] for autonomous CRs, referred to
as Radiobots [62]. Figure 2 shows that Radiobots can learn
from their previous actions by observing their impact on the
outcomes. The learning outcomes are then used to update, for
example, the sensing (i.e. observation) and channel access (i.e.
decision) policies in DSA applications [6], [16], [35], [38].
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Fig. 3. Supervised and unsupervised learning approaches for cognitive radios.

B. Unique characteristics of cognitive radio learning prob-
lems

Although the term cognitive radio has been interpreted
differently in various research communities [5], perhaps the
most widely accepted definition is as a radio that can sense and
adapt to its environment [2], [5], [6], [69]. The term cognitive
implies awareness, perception, reasoning and judgement. As
we already pointed out earlier, in order for a CR to derive
reasoning and judgement from perception, it must possess
the ability for learning [99]. Learning implies that the current
actions should be based on past and current observations of
the environment [100]. Thus, history plays a major role in the
learning process of CRs.

Several learning problems are specific to CR applications
due to the nature of the CRs and their operating RF environ-
ments. First, due to noisy observations and sensing errors, CRs
can only obtain partial observations of their state variables.
The learning problem is thus equivalent to a learning process
in a partially observable environment and must be addressed
accordingly.

Second, CRs in CRNs try to learn and optimize their
behaviors simultaneously. Hence, the problem is naturally a
multi-agent learning process. Furthermore, the desired learn-
ing policy may be based on either cooperative or non-
cooperative schemes and each CR might have either full or
partial knowledge of the actions of the other cognitive users in
the network. In the case of partial observability, a CR might
apply special learning algorithms to estimate the actions of
the other nodes in the network before selecting its appropriate
actions, as in, for example, [88].

Finally, autonomous learning methods are desired in order
to enable CRs to learn on its own in an unknown RF
environment. In contrast to licensed wireless users, a truly CR
may be expected to operate in any available spectrum band, at
any time and in any location [5]. Thus, a CR may not have any
prior knowledge of the operating RF environment such as the
noise or interference levels, noise distribution or user traffics.
Instead, it should possess autonomous learning algorithms that
may reveal the underlying nature of the environment and its
components. This makes the unsupervised learning a perfect
candidate for such learning problems in CR applications, as
we shall point out throughout this survey paper.

To sum up, the three main characteristics that need to be
considered when designing efficient learning algorithms for
CRs are:

1) Learning in partially observable environments.
2) Multi-agent learning in distributed CRNs.
3) Autonomous learning in unknown RF environments.

A CR design that embeds the above capabilities will be able
to operate efficiently and optimally in any RF environment.

C. TDypes of learning paradigms: Supervised versus unsuper-
vised learning

Learning can be either supervised or unsupervised, as
depicted in Fig. 3. Unsupervised learning may particularly be
suitable for CRs operating in alien RF environments [5]. In
this case, autonomous unsupervised learning algorithms permit
exploring the environment characteristics and self-adapting
actions accordingly without having any prior knowledge [5],
[71]. However, if the CR has prior information about the envi-
ronment, it might exploit this knowledge by using supervised
learning techniques. For example, if certain signal waveform
characteristics are known to the CR prior to its operation,
training algorithms may help CRs to better detect signals with
those characteristics.

In [93], the two categories of supervised and unsupervised
learning are identified as learning by instruction and learn-
ing by reinforcement, respectively. A third learning regime
is defined as the learning by imitation in which an agent
learns by observing the actions of similar agents [93]. In
[93], it was shown that the performance of a learning agent
(learner) is influenced by its learning regime and its operating
environment. Thus, to learn efficiently, a CR must adopt the
best learning regime for a given learning problem, whether it
is learning by imitation, by reinforcement or by instruction
[93]. Of course, some learning regimes may not be applicable
under certain circumstances. For example, in the absence of an
instructor, the CR may not be able to learn by instruction and
may have to resort to learning by reinforcement or imitation.
An effective CR architecture is the one that can switch among
different learning regimes depending on its requirements, the
available information and the environment characteristics.
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Fig. 4. Typical problems in cognitive radio and their corresponding learning algorithms.

D. Learning problems in cognitive radio

In this survey, we discuss several learning algorithms that
can be used by CRs to achieve different goals. In order to
obtain a better insight on the functions and similarities among
the presented algorithms, we identify two main problem cate-
gories and show the learning algorithms under each category.
The hierarchical organization of the learning algorithms and
their dependence is illustrated in Fig. 4.

Referring to Fig. 4, we identify two main CR problems (or
tasks) as:

1) Decision-making.
2) Feature classification.

These problems are general in a sense that they cover a wide
range of CR tasks. For example, classification problems arise
in spectrum sensing while decision-making problems arise in
determining the spectrum sensing policy, power control or
adaptive modulation.

The learning algorithms that are presented in this paper
can be classified under the above two tasks, and can be
applied under specific conditions, as illustrated in Fig. 4. For
example, the classification algorithms can be split into two
different categories: Supervised and unsupervised. Supervised
algorithms require training with labeled data and include,
among others, the ANN and SVM algorithms. The ANN
algorithm is based on empirical risk minimization and does
require prior knowledge of the observed process distribution,
as opposed to structural models [101]-[103]. However, SVM
algorithms, which are based on structural risk minimization,
have shown superior performance, in particular for small
training examples, since they avoid the problem of overfitting
[101], [103].

For instance, consider a set of training data denoted as
{(z1,y1), -+ ,(@n,yn)} such that z; € X, y; € Y, Vi €
{1,---, N}. The objective of a supervised learning algorithm
is to find a function g : X — Y that maximizes a certain
score function [101]. In ANN, g is defined as the function

that minimizes the empirical risk:

N

> Ly, (1)) .

i=1

R(g) = Remp(9) = % (D
where L Y xY — RT is a loss function. Hence,
ANN algorithms find the function g that best fits the data.
However, if the function space G includes too many candidates
or the training set is not sufficiently large (i.e. small V),
empirical risk minimization may lead to high variance and
poor generalization, which is known as overfitting. In order to
prevent overfitting, structural risk minimization can be used,
which incorporates a regularization penalty to the optimization
process [101]. This can be done by minimizing the following
risk function:

R(g) = Remp(g) + /\0(9) > 2

where A controls the bias/variance tradeoff and C' is a penalty
function [101].

In contrast with the supervised approaches, unsupervised
classification algorithms do not require labeled training data
and can be classified as being either parametric or non-
parametric. Unsupervised parametric classifiers include the K-
means and Gaussian mixture model (GMM) algorithms and
require prior knowledge of the number of classes (or clusters).
On the other hand, non-parametric unsupervised classifiers do
not require prior knowledge of the number of clusters and
can estimate this quantity from the observed data itself, for
example using methods based on the Dirichlet process mixture
model (DPMM) [72], [104], [105].

Decision-making is another major task that has been widely
investigated in CR applications [17], [24]-[26], [35], [38],
[77], [106]-[110]. Decision-making problems can in turn be
split to policy-making and decision rules. Policy-making prob-
lems can be classified as either centralized or decentralized.
In a policy-making problem, an agent determines its optimal
set of actions over a certain time duration, thus defining
an optimal policy (or an optimal strategy in game theory
terminology). In a centralized scenario with a Markov state,
RL algorithms can be used to obtain optimal solution to the
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corresponding MDP, without prior knowledge of the transition
probabilities [74], [76]. In non-Markov environments, optimal
policies can be obtained based on gradient policy search
algorithms which search directly for solutions in the policy
space. On the other hand, for multi-agent scenarios, game
theory is proposed as a solution that can capture the distributed
nature of the environment and the interactions among users.
With a Markov state assumption, the system can be modeled
as a Markov game (or a stochastic game), while conventional
game models can be used, otherwise. Note that learning
algorithms can be applied to the game-theoretic models (such
as the no-regret learning [111]-[113]) to arrive at equilibrium
under uncertainty conditions.

Finally, decision rules form another class of decision-
making problems which can be formulated as hypothesis test-
ing problems for certain observation models. In the presence
of uncertainty about the observation model, learning tools can
be applied to implement a certain decision-rule. For example,
the threshold-learning algorithm proposed in [72], [114] was
used to optimize the threshold of the Neyman-Pearson test
under uncertainty about the noise distribution.

In brief, we have identified two main classes of problems
and have determined the conditions under which certain al-
gorithms can be applied for these problems. For example, the
DPMM algorithm can be applied for classification problems
if the number of clusters is unknown, whereas the SVM may
be better suited if labeled data is available for training.

The learning algorithms that are presented in this survey
help to optimize the behavior of the learning agent (in par-
ticular the CR) under uncertainty conditions. For example,
the RL leads to the optimal policy for MDPs [74] while
game theory leads to Nash equilibrium, whenever it exists, of
certain types of games [115]. The SVM algorithm optimizes
the structural risk by finding a global minimum, whereas the
ANN only leads to local minimum of the empirical risk [102],
[103]. The DPMM is useful for non-parametric classification
and converges to the stationary probability distribution of the
Markov chain in the Markov-chain Monte-Carlo (MCMC)
Gibbs sampling procedure [104], [116]. As a result, the pro-
posed learning algorithms achieve certain optimality criterion
within their application contexts.

III. DECISION-MAKING IN COGNITIVE RADIOS

A. Centralized policy-making under Markov states: Reinforce-
ment learning

Reinforcement learning is a technique that permits an agent
to modify its behavior by interacting with its environment
[74]. This type of learning can be used by agents to learn
autonomously without supervision. In this case, the only
source of knowledge is the feedback an agent receives from
its environment after executing an action. Two main features
characterize the RL: trial-and-error and delayed reward. By
trial-and-error it is assumed that an agent does not have any
prior knowledge about the environment, and executes actions
blindly in order to explore the environment. The delayed
reward is the feedback signal that an agent receives from the
environment after executing each action. These rewards can
be positive or negative quantities, telling how good or bad an
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Fig. 5. The reinforcement learning cycle: At the beginning of each learning
cycle, the agent receives a full or partial observation of the current state, as
well as the accrued reward. By using the state observation and the reward
value, the agent updates its policy (e.g. updating the Q-values) during the
learning stage. Finally, during the decision stage, the agent selects a certain
action according to the updated policy.

action is. The agent’s objective is to maximize these rewards
by exploiting the system.

An RL-based cognition cycle for CRs was defined in [81],
as illustrated in Fig. 5. It shows the interactions between the
CR and its RF environment. The learning agent receives an
observation o; of the state s; at time instant ¢. The observation
is accompanied by a delayed reward r;(s;—1, a;—1) represent-
ing the reward received at time ¢ resulting from taking action
ay—1 in state s;_; at time ¢ — 1. The learning agent uses
the observation o; and the delayed reward 7.(s¢—1,at—1) to
compute the action a; that should be taken at time t. The
action ay results in a state transition from s; to s;y; and a
delayed reward r¢11 (s, a¢). It should be noted that here the
learning agent is not passive and does not only observe the
outcomes from the environment, but also affects the state of
the system via its actions such that it might be able to drive the
environment to a desired state that brings the highest reward
to the agent.

1) RL for aggregate interference control: RL algorithms
are applied under the assumption that the agent-environment
interaction forms an MDP. An MDP is characterized by the
following elements [76]:

o A set of decision epochs T including the point of times
at which decisions are made. The time interval between
decision epoch ¢t € T and decision epoch t +1 € T is
denoted as period t.

« A finite set S of states for the agent (i.e. secondary user).

o A finite set A of actions that are available to the agent.
In particular, in each state s € S, a subset A; C A might
be available.

o A non-negative function p;(s’|s,a) denoting the proba-
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bility that the system is in state s’ at time epoch ¢ + 1,
when the decision-maker chooses action a € A in state
s € S at time t. Note that, the subscript ¢ might be
dropped from p;(s’|s,a) if the system is stationary.

o A real-valued function rMPF (s, a) defined for state s €
S and action a € A to denote the value at time ¢ of
the reward received in period ¢ [76]. Note that, in RL
literature, the reward function is usually defined as the
delayed reward r;41(s, a) that is obtained at time epoch
t + 1 after taking action a in state s at time ¢ [74].

At each time epoch ¢, the agent observes the current state
s and chooses an action a. An optimum policy maximizes
the total expected rewards, which is usually discounted by
a discount factor v € [0,1) in case of an infinite time
horizon. Thus, the objective is to find the optimal policy =
that maximizes the expected discounted return [74]:

oo
R(t) = Z”Yth+k+1(St+k, Atik) » (3)
k=0
where s; and a; are, respectively, the state and action at time
tcZ.

The optimal solution of an MDP can be obtained by using
several methods such as the value iteration algorithm based
on dynamic programming [76]'. Given a certain policy 7, the
value of state s € S is defined as the expected discounted
return if the system starts in state s and follows policy m
thereafter [74], [76]. This value function can be expressed as
[74]:

V7(s) = Ex {Z Verephir (Seeks aryr)|se = 8} G

k=0

where E,{.} denotes the expected value given that the agent
follows policy 7. Similarly, the value of taking action « in state
s under a policy 7 is defined as the action-value function [74]:

o0
Q" (s,a) = Er {Z’Yth+k+1(St+k,at+k)|St =Ss,a; = a} .

k=0

)
The value iteration algorithm finds an e-optimal policy
assuming stationary rewards and transition probabilities (i.e.
ri(s,a) = r(s,a) and py(s'|s,a) = p(s'|s, a)). The algorithm
initializes a v%(s) for each s € S arbitrarily and iteratively
updates v™(s) (where v™(s) is the estimated value of state s

after the n-th iteration) for each s € S as follows [76]:

v (s) = max T(s,a)+7§p(j|saa)v”(j) - (©
J

The algorithm stops when [[o" ! — ™| < at—j and the e-
optimal decision dc(s) of each state s € S is defined as:

de(s) = arg max T(s,a)+7;§p(jls,a)v"“(j) - (D
J

IThere are other algorithms that can be applied to find the optimal policy of
an MDP such as policy iteration and linear programming methods. Interested
readers are referred to [76] for additional information regarding these methods.
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Obviously, the value iteration algorithm requires explicit
knowledge of the transition probability p(s’|s, a). On the other
hand, an RL algorithm, referred to as the Q-learning, was
proposed by Watkins in 1989 [117] to solve the MDP problem
without knowledge of the transition probabilities and has
been recently applied to CRs [38], [77], [82], [118]. The Q-
learning algorithm is one of the important temporal difference
(TD) methods [74], [117]. It has been shown to converge
to the optimal policy when applied to single agent MDP
models (i.e. centralized control) in [117] and [74]. However, it
can also generate satisfactory near-optimal solutions even for
decentralized partially observable MDPs (DEC-POMDPs), as
shown in [77]. The one-step Q-learning is defined as follows:

Q(st,ar) < (1 —a)Q(se,a) +
+ « |:rt+1 (st,at) + vmng(sHl,a)} .(8)

The learned action-value function, ) in (8), directly approx-
imates the optimal action-value function Q* [74]. However, it
is required that all state-action pairs need to be continuously
updated in order to guarantee correct convergence to Q*.
This can be achieved by applying an e-greedy policy that
ensures that all state-action pairs are updated with a non-
zero probability, thus leading to an optimal policy [74]. If
the system is in state s € S, the e-greedy policy selects action
a*(s) such that:

o { ©

where U(A) is the discrete uniform probability distribution
over the set of actions .A.

In [77], the authors applied the Q-learning to achieve
interference control in a cognitive network. The problem setup
of [77] is illustrated in Fig. 6 in which multiple IEEE 802.22
WRAN cells are deployed around a Digital TV (DTV) cell
such that the aggregated interference caused by the secondary
networks to the DTV network is below a certain threshold. In
this scenario, the CR (agents) constitutes a distributed network
and each radio tries to determine how much power it can
transmit so that the aggregated interference on the primary
receivers does not exceed a certain threshold level.

,withPr= 1-—¢
, with Pr = €

argmaxXaea Q(s, a)

~ U(A)

In this system, the secondary base stations form the learning
agents that are responsible for identifying the current envi-
ronment state, selecting the action based on the Q-learning
methodology and executing it. The state of the i-th WRAN
network at time ¢ consists of three components and is defined
as [77]:

sy = {Ii di pi}
where I} is a binary indicator specifying whether the sec-
ondary network generates interference to the primary network
above or below the specified threshold, di denotes an estimate
of the distance between the secondary user and the interference
contour, and p,ﬁ denotes the current power at which the
secondary user ¢ is transmitting. In the case of full state
observability, the secondary user has complete knowledge of
the state of the environment. However, in a partially observable
environment, the agent ¢ has only partial information of the
actual state and uses a belief vector to represent the probability

(10)
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Fig. 6. System model of [77] which is formed of a Digital TV (DTV) cell
and multiple WRAN cells.

distribution of the state values. In this case, the randomness in
st is only related to the parameter I} which is characterized
by two elements B = {b(1),b(2)}, i.e. the values of the
probability mass function (pmf) of I;.

The set of possible actions is the set P of power levels
that the secondary base station can assign to the i-th user.
The cost ci denotes the immediate reward incurred due to the
assignment of action a in state s and is defined as:

(1)

where STN R is the instantaneous SINR at the control point
of WRAN cell ¢ whereas SIN Ry, is the maximum value of
SINR that can be perceived by primary receivers [77].

By applying the Q-learning algorithm, the results in [77]
showed that it can control the interference to the primary re-
ceivers, even in the case of partial state observability. Thus, the
network can achieve equilibrium in a completely distributed
way without the intervention of centralized controllers. By
using the past experience and by interacting with the en-
vironment, the decision-makers can achieve self-adaptation
progressively in real-time. Note that, a learning phase is
required to acquire the optimal/suboptimal policy. However,
once this policy is reached, the multi-agent system takes only
one iteration to reach the optimal power configuration, starting
at any initial state [77].

2) Docition in cognitive radio networks: As we have dis-
cussed above, the decentralized decision-makers of a CRN re-
quire a learning phase before acquiring an optimal/suboptimal
policy. The learning phase will cause delays in the adaptation
process since each agent has to learn individually from scratch
[3], [97]. In an attempt to resolve this problem, the authors in
[31, [97] proposed a timely solution to enhance the learning
process in decentralized CRNs by allowing efficient coop-

¢ = (SINR; — SINRzy)" |
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eration among the learning agents. They proposed docitive
algorithms aimed at reducing the complexity of cooperative
learning in decentralized networks. Docitive algorithms are
based on the concept of knowledge sharing in which different
nodes try to teach each other by exchanging their learning
skills. The learning skills do not simply consist of certain end
observations or decisions. Cognitive nodes in a docitive system
can learn certain policies and learning techniques from other
nodes that have demonstrated superior performance.

In particular, the authors in [3], [97] applied the docition
paradigm to the same problem of aggregated interference
control that was presented in [77] and described above. The
authors compared the performance of the CRN under both
docitive and non-docitive policies and showed that docition
leads to superior performance in terms of speed of conver-
gence and precision (i.e. oscillations around the target SINR)
[3].

In [97], the authors proposed three different docitive ap-
proaches that can be applied in CRNs:

« Startup docition: Docitive radios teach their policies to
any newcoming radios joining the network. In practice,
this can be achieved by supplying the Q-table of the
incumbent radios to newcomers. Hence, new radios do
not have to learn from scratch, but instead can use
the learnt policies of existing radios to speed-up their
learning process. Note that, newcomer radios learn in-
dependently after initializing their Q-tables. However,
the information and policy exchange among radios is
useful at the beginning of the learning process due to
high correlation among the different learning nodes in
the cognitive network.

o Adaptive docition: According to this technique, CRs
share policies based on performances. The learning nodes
share information about the performance parameters of
their learning processes such as variance of the oscilla-
tions with respect to the target and speed of convergence.
Based on this information, cognitive nodes can learn from
neighboring nodes that are performing better.

o Iterative docition: Docitive radios periodically share parts
of their policies based on the reliability of their expert
knowledge. Expert nodes exchange rows of the Q-table
corresponding to the states that have been previously
visited.

By comparing the docitive algorithms with the independent
learning case described in [77], the results in [97] showed
that docitive algorithms achieve faster convergence and more
accurate results. Furthermore, compared to other docitive
algorithms, iterative docitive algorithms have shown superior
performance [97].

B. Centralized policy-making with non-Markovian states:
Gradient-policy search

While RL and value-iteration methods [74], [76] can lead
to optimal policies for the MDP problem, their performance
in non-Markovian environments remains questionable [90],
[91]. Hence, the authors in [89]-[91] proposed the policy-
search approach as an alternative solution method for non-
Markovian learning tasks. Policy-search algorithms directly
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look for optimal policies in the policy space itself, without
having to estimate the actual states of the systems [90], [91]. In
particular, by adopting policy gradient algorithms, the policy
vector can be updated to reach an optimal solution (or a local
optimum) in non-Markovian environments.

The value-iteration approach has several other limitations as
well: First, it is restricted to deterministic policies. Second, any
small changes in the estimated value of an action can cause
that action to be, or not to be selected [90]. This would affect
the optimality of the resulting policy since optimal actions
might be eliminated due to an underestimation of their value
functions.

On the other hand, the gradient-policy approach has shown
promising results, for example, in robotics applications [119],
[120]. Compared to value-iteration methods, the gradient-
policy approach requires fewer parameters in the learning
process and can be applied in model-free setups not requiring
prefect knowledge of the controlled system.

The policy-search approach can be illustrated by the fol-
lowing overview of policy-gradient algorithms from [91]. We
consider a class of stochastic policies that are parameterized
by 6§ € RX. By computing the gradient with respect to
0 of the average reward, the policy could be improved by
adjusting the parameters in the gradient direction. To be
concrete, assume r(X) to be a reward function that depends
on a random variable X. Let ¢(#, =) be the probability of the
event { X = x}. The gradient with respect to 6 of the expected
performance n(f) = E{r(X)} can be expressed as:

Vi(0) = E {mm%} .

An unbiased estimate of the gradient can be obtained via
simulation by generating /N independent identically distributed
(i.i.d.) random variables Xi,---, Xy that are distributed
according to ¢(6,x). The unbiased estimate of Vr(6) is thus
expressed as:

12)

Vq6‘X)

~0.X) (13)

1N
PN
=1

By the law of large numbers, @77(6‘) — Vn(f) with
probability one. Note that the quantity (ée)?( )) is referred
to as the likelihood ratio or the score functz()n By having an
estimate of the reward gradient, the policy parameter § € R¥
can be updated by following the gradient direction, such that:

(14)

k41 < O + akVn(e) S

for some step size oy > 0.

Authors in [119], [120] identify two major steps when

performing policy gradient methods:

1) A policy evaluation step in which an estimate of the
gradient V() of the expected return 1(6) is obtained,
given a certain policy 7.

2) A policy improvement step which updates the policy
parameter 6 through steepest gradient ascent f;;; =
O + a, Vn(0).

Note that, estimating the gradient V7(#) is not straight-

forward, especially in the absence of simulators that generate
the X;’s. To resolve this problem, special algorithms can be
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designed to obtain reasonable approximations of the gradient.
Indeed, several approaches have been proposed to estimate the
gradient policy vector, mainly in robotics applications [119],
[120]. Three different approaches have been considered in
[120] for policy gradient estimation:

1) Finite difference (FD) methods.
2) Vanilla policy gradient (VPG) methods.
3) Natural policy gradient (NG) methods.

Finite difference (FD) methods, originally used in stochastic
simulations literature, are among the oldest policy gradient
approaches. The idea is based on changing the current policy
parameter 6, by small perturbations 66; and computing d7; =
1(0x + 06;) — n(0). The policy gradient V7(6) can be thus
estimated as:

grp = (AGTAG) ' AGAY,
where A® = [66,,---,80;)7, An = [6n1,---, o077

I is the number of samples [119], [120]. Advantages of this
approach is that it is straightforward to implement and does not
introduce significant noise to the system during exploration.
However, the gradient estimate can be very sensitive to per-
turbations (i.e. §6;) which may lead to bad results [120].

Instead of perturbing the parameter 6, of a deterministic
policy u = m(x) (with uw being the action and z being
the state), the VPG approach assumes a stochastic policy
u ~ 7(u|z) and obtains an unbiased gradient estimate [120].
However, in using the VPG method, the variance of the gradi-
ent estimate depends on the squared average magnitude of the
reward, which can be very large. In addition, the convergence
of the VPG to the optimal solution can be very slow, even
with an optimal baseline [120]. The NG approach which leads
to fast policy gradient algorithms can alleviate this problem.
Natural gradient approaches use the Fisher information F'(6)
to characterize the information about the policy parameters
0 that is contained in the observed path 7 [120]. A path (or
a trajectory) T = [xo.pr, uo.pr] is defined as the sequence of
states and actions, where H denotes the horizon which can
be infinite [119]. Thus, the Fisher information F'(#) can be
expressed as:

F(0) = E{Vylogp(r]0)Velogp(r|0)"} .

5)

and

(16)

where p(7]0) is the probability of trajectory 7, given certain
policy parameter 6. For a given policy change 6, there is an
information loss of 14(30) ~ 66T F(6)36, which can also be
seen as the change in path distribution p(7]0). By searching
for the policy change §6 that maximizes the expected return
7(0 + 00) for a constant information loss lg(d0) =~ &, the
algorithms searches for the highest return value on an ellipse
around the current parameter 6 and then goes in the direction
of the highest values. More formally, the direction of the
steepest ascent on the ellipse around € can be expressed as
[120]:

50 = arg 50"V n(0) = F~1(0)Von(9) .

max

17
80 s.t. 1g(80)=¢ a7

This algorithm is further explained in [120] and can be easily
implemented based on the Natural Actor-Critic algorithms
[120].
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By comparing the above three approaches, the authors in
[120] showed that NG and VPG methods are considerably
faster and result in better performance, compared to FD. How-
ever, FD has the advantage of being simpler and applicable in
more general situations.

C. Decentralized policy-making: Game Theory

Game theory [121] presents a suitable platform for mod-
eling rational behavior among CRs in CRNs. There is a rich
literature on game theoretic techniques in CR, as can be found
in [11], [122]-[132]. A survey on game theoretic approaches
for multiple access wireless systems can be found in [115].

Game theory [121] is a mathematical tool that attempts to
implement the behavior of rational entities in an environment
of conflict. This branch of mathematics has primarily been
popular in economics, and has later found its way into
biology, political science, engineering and philosophy [115].
In wireless communications, game theory has been applied
to data communication networking, in particular, to model
and analyze routing and resource allocation in competitive
environments.

A game model consists of several rational entities that
are denoted as the players. Assuming a game model G =
(N, (Adien, (Ui)ien), where NV = {1,--- | N} denotes the
set of N players and each player ¢ € A has a set A; of avail-
able actions and a utility function U;. Let A = Ay X --- X Ay
be the set of strategy profiles of all players. In general, the
utility function of an individual player i € N depends on
the actions taken by all the players involved in the game and
is denoted as U;(a;,a—;), where a; € A; is an action (or
strategy) of player ¢ and a—; € A_; is a strategy profile of
all players except player i. Each player selects its strategy in
order to maximize its utility function. A Nash equilibrium of a
game is defined as a point at which the utility function of each
player does not increase if the player deviates from that point,
given that all the other players’ actions are fixed. Formally,
a strategy profile (af,---,a}) € A is a Nash equilibrium if
[112]:

Ui(aj,a—;) > Ui(aj,a—),¥i € N, Va; € A; . (18)

A key advantage of applying game theoretic solutions to
CR protocols is in reducing the complexity of adaptation algo-
rithms in large cognitive networks. While optimal centralized
control can be computationally prohibitive in most CRNs, due
to communication overhead and algorithm complexity, game
theory presents a distributed platform to handle such situations
[98]. Another justification for applying game theoretic ap-
proaches to CRs is the assumed cognition in the CR behavior,
which induces rationality among CRs, similar to the players
in a game.

1) Game Theoretic Approaches: There are two major game
theoretic approaches that can be used to model the behavior of
nodes in a wireless medium: Cooperative and non-cooperative
games. In a non-cooperative game, the players make rational
decisions considering only their individual payoff. In a co-
operative game, however, players are grouped together and
establish an enforceable agreement in their group [115].
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A non-cooperative game can be classified as either a
complete or an incomplete information game. In a complete
information game, each player can observe the information
of other players such as their payoffs and their strategies.
On the other hand, in an incomplete information game, this
information is not available to other players. A game with
incomplete information can be modeled as a Bayesian game
in which the game outcomes can be estimated based on
Bayesian analysis. A Bayesian Nash equilibrium is defined
for the Bayesian game, similar to the Nash equilibrium in the
complete information game [115].

In addition, a game can also be classified as either static or
dynamic. In a static game, each player takes its actions without
knowledge of the strategies taken by the other players. This
is denoted as a one-shot game which ends when actions of
all players are taken and payoffs are received. In a dynamic
game, however, a player selects an action in the current stage
based on the knowledge of the actions taken by the other
players in the current or previous stages. A dynamic game is
also called a sequential game since it consists of a sequence
of repeated static games. The common equilibrium solution
in dynamic games is the subgame perfect Nash equilibrium
which represents a Nash equilibrium of every subgame in the
original game [115].

2) Applications of Game Theory to Cognitive Radios:
Several types of games have been adapted to model different
situations in CRNs [98]. For example, supermodular games
(the games having the following important and useful prop-
erty: there exists at least one pure strategy Nash equilibrium)
have been used for distributed power control in [133], [134]
and for rate adaptation in [135]. Repeated games were applied
for DSA by multiple secondary users that share the same
spectrum hole in [136]. In this context, repeated games are
useful in building reputations and applying punishments in
order to reinforce a certain desired outcome. The Stackelberg
game model can be used as a model for implementing CR
behavior in cooperative spectrum leasing where the primary
users act as the game-leaders and secondary cognitive users
as the followers [50].

Auctions are one of the most popular methods used for
selling a variety of items, ranging from antiques to wireless
spectrum. In auction games the players are the buyers who
must select the appropriate bidding strategy in order to max-
imize their perceived utility (i.e., the value of the acquired
items minus the payment to the seller). The concept of auction
games has successfully been applied to cooperative dynamic
spectrum leasing (DSL) in [37], [137], as well as to spectrum
allocation problems in [138]. The basics of the auction games
and the open challenges of applying auction games to the field
of spectrum management are discussed in [139].

Stochastic games (or Markov games) can be used to model
the greedy selfish behavior of CRs in a CRN, where CRs
try to learn their best response and improve their strategies
over time [140]. In the context of CRs, stochastic games
are dynamic, competitive games with probabilistic actions
played by secondary spectrum users. The game is played
in a sequence of stages. At the beginning of each stage,
the game is in a certain state. The secondary users choose
their actions, and each secondary user receives a reward that
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depends on both its current state and its selected actions. The
game then moves to the next stage having a new state with
a certain probability, which depends on the previous state
as well as the actions selected by the secondary users. The
process continues for a finite or infinite number of stages.
The stochastic games are generalizations of repeated games
that have only a single state.

3) Learning in Game Theoretic Models: There are sev-
eral learning algorithms that have been proposed to estimate
unknown parameters in a game model (e.g. other players’
strategies, environment states, etc.). In particular, no-regret
learning allows initially uninformed players to acquire knowl-
edge about their environment state in a repeated game [111].
This algorithm does not require prior knowledge of the number
of players nor the strategies of other players. Instead, each
player will learn a better strategy based on the rewards
obtained from playing each of its strategies [111].

The concept of regret is related to the benefit a player feels
after taking a particular action, compared to other possible
actions. This can be computed as the average reward the
player gets from a particular action, averaged over all other
possible actions that could be taken instead of that particular
action. Actions resulting in lower regret are updated with
higher weights and are thus selected more frequently [111]. In
general, no-regret learning algorithms help players to choose
their policies when they do not know the other players’ ac-
tions. Furthermore, no-regret learning can adapt to a dynamic
environment with little system overhead [111].

No-regret learning was applied in [111] to allow a CR to
update both its transmission power and frequencies simul-
taneously. In [113], it was used to detect malicious nodes
in spectrum sensing whereas in [112] no-regret learning
was used to achieve a correlated equilibrium in opportunis-
tic spectrum access for CRs. Assuming the game model
G = (N, (Adien (Ui)ien) defined above, in a correlated
equilibrium, a strategy profile (a1,---,an) € A is chosen
randomly according to a certain probability distribution p
[112]. A probability distribution p is a correlated strategy, if
and only if, for all i € N/, a; € A;, a_; € A_; [112]:

Z p(ai,a—;) [Ui(aj, a—;) — Uia;,a—;)] < 0,Vaj € A; .

a_;€A_;

19)
Note that, every Nash equilibrium is a correlated equilibrium
and Nash equilibria correspond to the special case where
p(a;,a—;) is a product of each individual player’s probability
for different actions, i.e. the play of the different players is
independent [112]. Compared to the non-cooperative Nash
equilibrium, the correlated equilibrium in [112] was shown
to achieve better performance and fairness.

Recently, [141] proposed a game-theoretic stochastic learn-
ing solution for opportunistic spectrum access when the chan-
nel availability statistics and the number of secondary users
are unknown a priori. This model attempts to resolve non-
feasible opportunistic spectrum access solution which requires
prior knowledge of the environment and the actions taken by
the other users. By applying the stochastic learning solution
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in [141], the communication overhead among the CR users
is reduced. Furthermore, the model in [141] provides an
alternative solution to opportunistic spectrum access schemes
proposed in [107], [108] that do not consider the interactions
among multiple secondary users in a partially observable MDP
(POMDP) framework [141].

Thus, learning in a game theoretic framework can help CRs
to adapt to environment variations given a certain uncertainty
about the other users’ strategies. Therefore, it provides a
potential solution for multi-agent learning problems under
partial observability assumptions.

D. Decision rules under uncertainty: Threshold-learning

A CR may be implemented on a mobile device that changes
location over time and switches transmissions among several
channels. This mobility and multi-band/multi-channels oper-
ability may pose a major challenge for CRs in adapting to
their RF environments. A CR may encounter different noise or
interference levels when switching between different bands or
when moving from one place to another. Hence, the operating
parameters (e.g. test thresholds and sampling rate) of CRs need
to be adapted with respect to each particular situation. More-
over, CRs may be operating in unknown RF environments and
may not have perfect knowledge of the characteristics of the
other existing primary or secondary signals, requiring special
learning algorithms to allow the CR to explore and adapt to
its surrounding environment. In this context, special types of
learning can be applied to directly learn the optimal values of
certain design and operation parameters.

Threshold learning presents a technique that permits such
dynamic adaptation of operating parameters to satisfy the per-
formance requirements, while continuously learning from the
past experience. By assessing the effect of previous parameter
values on the system performance, the learning algorithm op-
timizes the parameters values to ensure a desired performance.
For example, in considering energy detection, after measuring
the energy levels at each frequency, a CR decides on the
occupancy of a certain frequency band by comparing the
measured energy levels to a certain threshold. The threshold
levels are usually designed based on Neyman-Pearson tests in
order to maximize the detection probability of primary signals,
while satisfying a constraint on the false alarm. However, in
such tests, the optimal threshold depends on the noise level.
An erroneous estimation of the noise level might cause sub-
optimal behavior and violation of the operation constraints
(for example, exceeding a tolerable collision probability with
primary users). In this case, and in the absence of perfect
knowledge about the noise levels, threshold-learning algo-
rithms can be devised to learn the optimal threshold values.
Given each choice of a threshold, the resulting false alarm
rate determines how the test threshold should be regulated
to achieve a desired false alarm probability. An example of
application of threshold learning can be found in [75] where
a threshold learning algorithm was derived for optimizing
spectrum sensing in CRs. The resulting algorithm was shown
to converge to the optimal threshold that satisfies a given false
alarm probability.
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IV. FEATURE CLASSIFICATION IN COGNITIVE RADIOS

A. Non-parametric unsupervised classification: The Dirichlet
Process Mixture Model

A major challenge an autonomous CR can face is the lack
of knowledge about the surrounding RF environment [5], in
particular, when operating in the presence of unknown primary
signals. Even in such situations, a CR is expected to be able to
adapt to its environment while satisfying certain requirements.
For example, in DSA, a CR must not exceed a certain collision
probability with primary users. For this reason, a CR should
be equipped with the ability to autonomously explore its
surrounding environment and to make decisions about the
primary activity based on the observed data. In particular, a
CR must be able to extract knowledge concerning the statistics
of the primary signals based on measurements [5], [72]. This
makes unsupervised learning an appealing approach for CRs
in this context. In the following, we may explore a Dirichlet
process prior based [142], [143] technique as a framework for
such non-parametric learning and point out its potentials and
limitations. The Dirichlet process prior based techniques are
considered as unsupervised learning methods since they make
few assumptions about the distribution from which the data is
drawn [104], as can been seen in the following discussion.

A Dirichlet process DP(ag,Go) is defined to be the
distribution of a random probability measure G that is
defined over a measurable space (©,85), such that, for
any finite measurable partition (A,---,A,) of ©, the
random vector (G(A4;),---,G(A,)) is distributed as a
finite dimensional Dirichlet distribution with parameters

(w0Go(A1), -+ ,a0Go(A,)), where apg > 0 [104]. We de-
note:
(G(A1),--,G(Ay)) ~ Dir(anGo(Ar), -+, a0Go(4r))
(20)

where G ~ DP(ay, Gy), denotes that the probability measure
G is drawn from the Dirichlet process DP(«ag,Go). In other
words, G is a random probability measure whose distribution
is given by the Dirichlet process D P (v, Go) [104].

1) Construction of the Dirichlet process: Teh [104] de-
scribes several ways of constructing the Dirichlet process. A
first method is a direct approach that constructs the random
probability distribution G based on the stick-breaking method.
The stick-breaking construction of G can be summarized as
follows [104]:

1) Generate independent i.i.d. sequences {7}, and
{¢r}72, such that
mlao, Go  ~  Beta(l, ap) @1
Pkleo, Go  ~  Go '
where Beta(a,b) is the beta distribution whose prob-
ability density function (pdf) is given by f(z,a,b) =
m17.—1(171)17—1
fgl we—1(l—u)b—1du"

2) Define m, = m, H;:ll(l — m). We can write m =
(my,m2,+-+) ~ GEM(cy), where GEM stands for
Griffiths, Engen and McCloskey [104]. The GEM («)
process generates the vector 7 as described above, given
a parameter oy in (21).
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G ~ DP(wg. Gy)

G = >0 Tl
G(H)I\ mhlan, Go ~ Beta(l, )
e = m, T (1)
|
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Fig. 7. One realization of the Dirichlet process.

3) Define G = Z,;“;lwkdm, where J, is a probability
measure concentrated at ¢ (and > oo, T = 1).

In the above construction G is a random probability measure
distributed according to DP(ag, Go). The randomness in G
stems from the random nature of both the weights 7 and the
weights positions ¢j. A sample distribution G of a Dirichlet
process is illustrated in Fig. 7, using the steps described above
in the stick-breaking method. Since G has an infinite discrete
support (i.e. {¢x}7 ), this makes it a suitable candidate for
non-parametric Bayesian classification problems in which the
number of clusters is unknown a priori (i.e. allowing for
infinite number of clusters), with the infinite discrete support
(i.e. {¢r}32, being the set of clusters. However, due to the
infinite sum in G, it may not be practical to construct G
directly by using this approach in many applications. An
alternative approach to construct G is by using either the
Polya urn model [143] or the Chinese Restaurant Process
(CRP) [144]. The CRP is a discrete-time stochastic process. A
typical example of this process can be described by a Chinese
restaurant with infinitely many tables and each table (cluster)
having infinite capacity. Each customer (feature point) that
arrives at the restaurant (RF spectrum) will choose a table
with a probability proportional to the number of customers on
that table. It may also choose a new table with a certain fixed
probability.

A second approach to constructing a Dirichlet process
does not define G explicitly. Instead, it characterizes the
distribution of the drawings 6 of G. Note that G is discrete
with probability 1. For example, the Polya urn model [143]
does not construct GG directly, but it characterizes the draws
from G. Let 01,605, be i.i.d. random variables distributed
according to G. These random variables are independent,
given G. However, if G is integrated out, 61,0, -+ are no
more conditionally independent and they can be characterized
as:

K
0:{0,}i"1 a0, Go~ Y

k=1

my
i—].—f'ao

ag
5 G b
¢k+i—1+0¢0 0

(22)
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where {qﬁk}kK:l are the K distinct values of 6;’s and my, is
the number of values of 6; that are equal to ¢;. Note that this
conditional distribution is not necessarily discrete since Gy
might be a continuous distribution (in contrast with G which
is discrete with probability 1). The 6;’s that are drawn from
G exhibit a clustering behavior since a certain value of 6;
is most likely to reoccur with a nonnegative probability (due
to the point mass functions in the conditional distribution).
Moreover, the number of distinct 6; values is infinite, in
general, since there is a nonnegative probability that the new 6;
value is distinct from the previous 61, - - - , 6;_1. This conforms
with the definition of GG as a pmf over an infinite discrete set.
Since 6;’s are distributed according to G, given GG, we denote:

0;,|G ~ G . (23)

2) Dirichlet Process Mixture Model: The Dirichlet process
makes a perfect candidate for non-parametric classification
problems through the DPMM. The DPMM imposes a non-
parametric prior on the parameters of the mixture model [104].
The DPMM can be defined as follows:

G ~ DP(O(O,GO)
0;,|G ~ G , (24)
vl ~  f(6;)

where 6;’s denote the mixture components and the y; is drawn
according to this mixture model with a density function f
given a certain mixture component 6;.

3) Data clustering based on the DPMM and the Gibbs
sampling: Consider a sequence of observations {y;}¥ , and
assume that these observations are drawn from a mixture
model. If the number of mixture components is unknown,
it is reasonable to assume a non-parametric model, such as
the DPMM. Thus, the mixture components 6; are drawn
from G ~ DP(ag,Go), where G can be expressed as
G = Z,;“;l 04, Pk’s are the unique values of 6;, and 7y, are
their corresponding probabilities. Denote y = (y1,- -+ ,yn)-

The problem is to estimate the mixture component 0; for
each observation y;, for all ¢ € {1,---,N}. This can be
achieved by applying the Gibbs sampling method proposed
in [116] which has been applied for various unsupervised
clustering problems, such as speaker clustering problem in
[145]. The Gibbs sampling is a technique for generating
random variables from a (marginal) distribution indirectly,
without having to calculate the density. As a result, by using te
Gibbs sampling, one can avoid difficult calculations, replacing
them instead with a sequence of easier calculations. Although
the roots of the Gibbs sampling can be traced back to at least
Metropolis et al. [146], the Gibbs sampling perhaps became
more popular after the paper of Geman and Geman [147], who
studied image-processing models.

In the Gibbs sampling method proposed in [116], the
estimates éz is sampled from the conditional distribution of 6;,
given all the other feature points and the observation vector
y. By assuming that {y;}}¥, are distributed according to the
DPMM in (24), the conditional distribution of 8; was obtained
in [116] to be
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Algorithm 1 Clustering algorithm.

Initialize 6; = y;, Vi € {1,--- ,N}.
while Convergence condition not satisfied do
for i = shuffle {1,---, N} do
Use Gibbs sampling to obtain 6; from the distribution
in (25).
end for
end while

6‘j with Pr = B(ly,i) fg]. (yl)
~ h(9|yz) with Pr = B(lyq)A(yl) ’
(25)
where Bly:) = A(y:) + Xilyypi fow), h(0ily) =
Aty fo. (yi)Go(0:) and A(y) = ao [ fo(y)Go(0)db.

In order to illustrate this clustering method, consider a
simple example summarizing the process. We assume a set
of mixture components # € R. Also, we assume Gg(f) to
be uniform over the range [fyin, Omas]. Note that this is a
worst-case scenario assumption whenever there is no prior

knowledge of the distribution of 6, except its range. Let
_w=0)?

foly) = \/ﬁe 207
Hence,

o Omin =4\ _ ¢ (fmaz —y
A(y) o amaz; - anin |:Q ( o ) Q ( g ):| (26)

and

0il{0;} i,y = {

1 _wi—?
h(91|yz) — B /—27'r_a'2€ 202 lf emln S 91 S amam i
0 otherwise
27

1 . Initially, we set 6; = y;

mis*yi 7Q =
for all i € {1,---, N}. The algorithm is described in Algo-
rithm 1.

If the observation points y; € RF (with & > 1), the
distribution of h(6;|y;) may become too complicated to be
used in the sampling process of 6;’s. In [116], if Go(6) is
constant in a large area around y;, h(6|y;) was shown to be
approximated by the Gaussian distribution (assuming that the
observation pdf fy(y;) is Gaussian). Thus, assuming a large
uniform prior distribution on 6, we may approximate h(6|y)
by a Gaussian pdf so that (27) becomes:

h(0ilyi) = N(yi, %) ,

where X is the covariance matrix.

In order to illustrate this approach in a multidimensional
scenario, we may generate a Gaussian mixture model having
4 mixture components. The mixture components have different
means in R? and have an identity covariance matrix. We will
assume that the covariance matrix is known.

We plot in Fig. 8 the results of the clustering algorithm
based on DPMM. Three of the clusters were almost perfectly
identified, whereas the forth cluster was split into three parts.
The main advantage of this technique is its ability for learning
the number of clusters from the data itself, without any prior
knowledge. As opposed to heuristic or supervised classifi-

where B =

6

Omaz —y;

(28)
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Fig. 8. The observation points y; are classified into different clusters, denoted
with different marker shapes. The original data points are generated from a
Gaussian mixture model with 4 mixture components and with an identity
covariance matrix.

cation approaches that assume a fixed number of clusters
(such as the K-mean approach), the DPMM-based clustering
technique is completely unsupervised, yet, provides effective
classification results. This makes it a perfect choice for au-
tonomous CRs that rely on unsupervised learning for decision-
making, as suggested in [72].

4) Applications of Dirichlet process to cognitive radios:
The Dirichlet process has been used as a framework for
non-parametric Bayesian learning in CRs in [13], [148]. The
approach was used for identifying and classifying wireless
systems in [148], based on the CRP. The method consists
of extracting two features from the observed signals (in
particular, the center frequency and frequency spread) and to
classify these feature points in a feature space by adopting
an unsupervised clustering technique, based on the CRP. The
objective is to identify both the number and types of wireless
systems that exist in a certain frequency band at a certain
moment. One application of this could be when multiple
wireless systems co-exist in the same frequency band and
try to communicate without interfering with each other. Such
scenarios could arise in ISM bands where wireless local area
networks (WLAN IEEE 802.11) coexist with wireless personal
area networks (WPANSs), such as Zigbee (IEEE 802.15.4) and
Bluetooth (IEEE 802.15.1). In that case, a WPAN should sense
the ISM band before selecting its communication channel so
that it does not interfere with the WLAN or other WPAN
systems. A realistic assumption in that case is that individual
wireless users do not know the number of other coexisting
wireless users. Instead, these unknown variables should be
learnt based on appropriate autonomous learning algorithms.
Moreover, the designed learning algorithms should account for
the dynamics of the RF environment. For example, the number
of wireless users might change over time. These dynamics
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should be handled by the embedded flexibility offered by non-
parametric learning approaches.

The advantages of the Dirichlet process-based learning tech-
nique in [148] is that it does not rely on training data, making
it suitable for identifying unknown signals via unsupervised
learning. In this survey, we do not delve into details of
choosing and computing appropriate feature points for the
particular application considered in [148]. Instead, our focus
below is on the implementation of the unsupervised learning
and the associated clustering technique.

After sensing a certain signal, the CR extracts a feature
point that captures certain spectrum characteristics. Usually,
the extracted feature points are noisy and might be affected by
estimation errors, receiver noise and path loss. Moreover, the
statistical distribution of these observations might be unknown
itself. It is expected that feature points that are extracted from a
particular system will belong to the same cluster in the feature
space. Depending on the feature definition, different systems
might result in different clusters that are located at different
places in the feature space. For example, if the feature point
represents the center frequency, two systems transmitting at
different carrier frequencies will result in feature points that
are distributed around different mean points.

The authors in [148] argue that the clusters of a certain
system are random themselves and might be drawn from a
certain distribution. To illustrate this idea, assume two WiFi
transmitters located at different distances from the receiver
that both uses WLAN channel 1. Although the two transmitters
belong to the same system (i.e. WiFi channel 1), their received
powers might be different, resulting in variations of the
features extracted from the signals of the same system. To
capture this randomness, it can be assumed that the position
and structure of the clusters formed (i.e. mean, variance, etc.)
are themselves drawn from some distribution.

To be concrete, denote x as the derived feature point
and assume that z is normally distributed with mean g,
and covariance matrix Y. (i.e. * ~ N (pe, X)). These two
parameters characterize a certain cluster and are drawn from
a certain distribution. For example, it can be assumed that
pe ~ N(unr,Xn) and B, ~ W(V,n), where W denotes
the Wishart distribution, which can be used to model the
distribution of the covariance matrix of multivariate Gaussian
variables.

In the method proposed in [148], a training stage? is re-
quired to estimate the parameters (s and X 5. This estimation
can be performed by sensing a certain system (e.g. WiFi, or
Zigbee) under different scenarios and estimating the centers
of the clusters resulting from each experiment (i.e. estimating
te). The average of all u.’s forms a maximum-likelihood
(ML) estimate of the parameter pp; of the corresponding
wireless system. This step is equivalent to estimating the
hyperparameters of a Dirichlet process [104]. A similar es-
timation method can also be performed to estimate ;.

The knowledge of ujps and ¥, helps identify the corre-
sponding wireless system of each cluster. That is, the maxi-

ZNote that the training process used in [148] refers to the cluster formation
process. The training used in [148] is done without data labeling nor human
instructions, but with the CRP [144] and the Gibbs sampling [116], thus
qualifying to be an unsupervised learning scheme.
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mum a posteriori (MAP) detection can be applied to a cluster
center y. to estimate the wireless system that it belongs to.
However, the classification of feature points into clusters can
be done based on the CRP.

The classification of a feature point into a certain cluster is
made based on the Gibbs sampling applied to the CRP. The
algorithm fixes the cluster assignments of all other feature
points. Given that assignment, it generates a cluster index for
the current feature point. This sampling process is applied
to all the feature points separately until certain convergence
criterion is satisfied. Other examples of the CRP-based feature
classification can be found in speaker clustering [145] and
document clustering applications [149].

B. Supervised Classification Methods in Cognitive Radios

Unlike the unsupervised learning techniques discussed in
the previous section that may be used in alien environments
without having any prior knowledge, supervised learning
techniques can generally be used in familiar/known envi-
ronments with prior knowledge about the characteristics of
the environment. In the following, we introduce some of the
major supervised learning techniques that have been applied
to classification tasks in CRs.

1) Artificial Neural Network: The ANN has been motivated
by the recognition that human brain computes in an entirely
different way compared to the conventional digital comput-
ers [150]. A neural network is defined to be “a massively
parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experiential
knowledge and making it available for use” [150]. An ANN
resembles the brain in two respects [150]: 1) Knowledge
is acquired by the network from its environment through
a learning process and 2) interneuron connection strengths,
known as synaptic weights, are used to store the acquired
knowledge.

Some of the most beneficial properties and capabilities of
ANNSs include: 1) Nonlinear fitness to underlying physical
mechanisms, 2) adaptation ability to minor changes in sur-
rounding environment and 3) providing information about the
confidence in the decision made. However, the disadvantages
of ANNSs are that they require training under many different
environment conditions and their training outcomes may de-
pend crucially on the choice of initial parameters.

Various applications of ANNs to CRs can be found in recent
literature [102], [151]-[155]. The authors in [151], for ex-
ample, proposed the use of Multilayered Feedforward Neural
Networks (MFNN) as a technique to synthesize performance
evaluation functions in CRs. The benefit of using MFNNSs is
that they provide a general-purpose black-box modeling of
the performance as a function of the measurements collected
by the CR; furthermore, this characterization can be obtained
and updated by a CR at run-time, thus effectively achieving a
certain level of learning capability. The authors in [151] also
demonstrated in several IEEE 802.11 based environments how
these modeling capabilities can be used for optimizing the
configuration of a CR.

In [152], the authors proposed an ANN-based cognitive
engine that learns how environmental measurements and the
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status of the network affect its performance on different
channels. In particular, an implementation of the proposed
Cognitive Controller for dynamic channel selection in IEEE
802.11 wireless networks was presented. Performance eval-
uation carried out on an IEEE 802.11 wireless network de-
ployment demonstrated that the Cognitive Controller is able
to effectively learn how the network performance is affected
by changes in the environment, and to perform dynamic
channel selection thereby providing significant throughput
enhancements.

In [153], an application of a Feedbackward ANN in con-
junction with the cyclostationarity-based spectrum sensing was
presented to perform spectrum sensing. The results showed
that the proposed approach is able to detect the signals at
considerably low signal-to-noise ratio (SNR) values. In [102],
the authors designed a channel status predictor using a MFNN
model. The authors argued that their proposed MFNN-based
prediction is superior to the HMM based approaches, by
pointing out that the HMM based approaches require a huge
memory space to store a large number of past observations
with high computational complexity.

In [154], the authors proposed a methodology for spectrum
prediction by modeling licensed-user features as a multivariate
chaotic time series, which is then input to an ANN that
predicts the evolution of RF time series to decide if the
unlicensed user can exploit the spectrum band. Experimental
results showed a similar trend between predicted and observed
values. This proposed spectrum evolution prediction method
was done by exploiting the cyclostationary signal features to
construct an RF multivariate time series that contain more
information than the univariate time series, in contrast to most
of the previously suggested modeling methodologies which
focused on univariate time series prediction [156].

To illustrate the operation of ANNs in CR contexts, we
present the model proposed in [78] and describe the main steps
in the implementation of ANNSs. In particular, [78] considers
a multilayer perceptron (MLP) neural network which maps
sets of input data onto a set of appropriate outputs. An MLP
consists of multiple layers of nodes in a directed graph, which
is fully connected from one layer to the next [78]. Except the
input nodes, each node in the MLP is a neuron with a nonlinear
activation function that computes a weighted sum of the up-
layer output (denoted as the activation). An example of one
of the most popular activation functions that is used in ANNs
is the sigmoid function:

fla) = —

T ltea”

(29)

The ANN proposed in [78] has an input layer, output
layer and multiple hidden layers. Note that, having additional
hidden layers improves the nonlinear performance of the
ANN in terms of classifying linearly non-separable data.
However, adding more hidden layers makes the network more
complicated and may require longer training time.

In the following, we consider an MLP network and let yé
to be the output of the j-th neuron in the [-th layer. Denote
L the weight between the j-th neuron in the [-th

also by wj;
layer and the i-th neuron in the [ — 1-th layer. The output yé
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is given by: )
l
yj = T 1—1 (30)
1+e” 22 W;iY;
During the training, the network tries to match the target
value ¢, to the output o of the k-th output neuron’. The
error between the target and actual outputs is evaluated, for

example, according to the mean-squared error (MSE):
K

1 2
MSEZF;(%—OI@) .

€2y

where K is the number of output nodes. The update process
will repeat until the MSE is smaller than a certain threshold.

The update rule can be performed according to a delta rule
which adjusts the weights wé—i by an amount [78]:

Awl, =ndtyi", (32)

where 7 is a learning rate and 5; is defined as:

st — 0;j(t; — 0;)(1 = 05)
i~ { Y (=) 20 0w

The authors in [78] used the above described MLP neural
network to implement a learner in a cognitive engine. By
assuming a WiMax configurable radio technology, the learner
is able to choose a certain modulation mode according to
the SNR, such that a certain bit-error rate (BER) will be
achieved. Thus, the inputs of the neural network consists of
the code rate and SNR values and the output is the resulting
SNR. By supplying training data to the neural network, the
cognitive engine is trained to identify the BER that results
from a certain choice of modulation, given a certain SNR level.
By comparing the performance of different scales of neural
networks, the simulation results in [78] showed that increasing
the number of hidden layers reduces the speed of convergence
but leads to a smaller MSE. However, more training data are
required for larger number of hidden layers. Thus, given a
certain set of training data, a trade-off must be made between
the speed of convergence and the convergence accuracy of the
neural network.

2) Support Vector Machine: The SVM, developed by Vap-
nik and others [157], has been used for many machine learning
tasks such as pattern recognition and object classifications. The
SVM is characterized by the absence of local minima, the
sparseness of the solution and the capacity control obtained
by acting on the margin, or on other dimension independent
quantities such as the number of support vectors [157]. SVM
based techniques have achieved superior performances in a
wide variety of real world problems due to their generalization
ability and robustness against noise and outliers [158].

The basic idea of SVMs is to map the input vectors into a
high-dimensional feature space in which they become linearly
separable. This mapping from the input vector space to the
feature space is a non-linear mapping which is achieved by
using kernel functions. Depending on the application different
types of kernel functions can be used. A common choice
for classification problems is the Gaussian kernel which is a

if [ is the output layer
if [ is the hidden layer

3Since a certain target value (i.e. a label) is required during the training
process, neural networks are considered as supervised learning algorithms.
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Optimal Separating
Hyperplane

Fig. 9. A diagram showing the basic idea of SVM: optimal separation
hyperplane (solid red line) and two margin hyperplanes (dashed lines) in
a binary classification example; Support vectors are bolded.

polynomial kernel of infinite degree. In performing classifica-
tion, a hyperplane which allows for the largest generalization
in this high-dimensional space is found. This is so-called
a maximal margin classifier [159]. Note that, the margin is
defined as the distance from a separating hyperplane to the
closest data points. As shown in Fig. 9, there could be many
possible separating hyperplanes between the two classes of
data, but only one of them allows for the maximum margin.
The corresponding closest data points are named support
vectors and the hyperplane allowing for the maximum margin
is called an optimal separating hyperplane. The interested
reader is referred to [79], [160], [161] for insightful discussion
on SVMs.

An SVM-based classifier was described in [161] for signal
classification in CRs. The classifier in [161] assumed a training
set {(x;,y:)}_, with z € RN and y € {—1,1}. The objective
is to find a hyperplane:

wlp(x)+b=0, (33)

where ¢ can be a non-linear function that maps x into a higher
dimensional Hilbert space [160], w is a weight vector and b
is a scalar parameter. In general, it is not possible to obtain an
expression for the mapping function . However, this function
can be characterized by a Kernel function K (x;,x;) and, as
it turns out fortunately, the Kernel function is sufficient to
optimize the parameters w and b in (33) [160].

The hyperplane in (33) is assumed to separate the data into
two classes such that the distance between the closest points
of each class to the hyperplane is maximized. This can be
achieved by minimizing the norm ||w/||? [160].

In order to solve the optimization problem, the slacks vari-
ables {&,i = 1,--- 1} are introduced and the optimization
problem can be formulated as [161]:

ming 4, 2w w+C Y & (34)
S.t.y; (WTQO(Xi)—Fb) >1-&,Vi=1,---,1 (35
§>0Vi=1,---,1 (36)
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where C is the penalty parameter that controls the training
error.

The Lagrangian of the above optimization problem can be
written as:

! I
1
L = §HWH2 +CY &= Biki—
i=1 =1

l
- > i [whelxi+b) -1+ &]
i=1
where «;, 5; > 0 are the Lagrange multipliers. By computing
the derivatives with respect to w, b and &;, the dual represen-
tation of the optimization problem can be expressed as [161]:

l l
MAX 0y, 00) Dojmy i — 3 2 o1 oYy K (%, x5)
st. 0<; <C Vi=1,---,1

l
Zi:l yio; =0
where K (x;,%x;) = p(x;)T¢(x;) is the Kernel function.

In this case, the decision function (i.e. the learning machine

[160]) is computed as:

1
f(z) = sgn {Z oy K (x4,%) + b} .

Other applications of SVMs to CR can be found in current
literature, including [65], [79], [103], [158], [161]-[167]. Most
of these applications of the SVM in CR context, however, has
been for performing signal classification.

(37)

In [164], for example, a MAC protocol classification scheme
was proposed to classify contention-based and control-based
MAC protocols in an unknown primary network based on
SVMs. To perform the classification in an unknown primary
network, the mean and variance of the received power are
chosen as two features for the SVM. The SVM is embedded
in a CR terminal of the secondary network. A TDMA and a
slotted Aloha network were setup as the primary networks.
Simulation results showed that TDMA and slotted Aloha
MAC protocol could be effectively classified by the CR
terminal and the correct classification rate was proportional
to the transmission rate of the primary networks, where the
transmission rate for the primary networks is defined as the
new packet generating/arriving probability in each time slot.
The reason for the increase in the correct classification rate
when the transmission rate increases is the following: for
slotted Aloha network, the higher transmission rate brings the
higher collision probability, and thus the higher instantaneous
received power captured by a CR terminal; for TDMA net-
work, however, there is no relation between transmission rate
and instantaneous captured received power. Therefore, when
the transmission rates of both primary networks increase, it
makes a CR terminal easier to differentiate TDMA and slotted
Aloha.

SVM classifiers can not only be a binary classifier as shown
in the previous example, but also it can be easily used as
a multi-class classifiers by treating a K-class classification
problem as K two-class problems. For example, in [165] the
authors presented a study of multi-class signal classification
based on automatic modulation classification (AMC) through
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SVMs. A simulated model of an SVM signal classifier was
implemented and trained to recognize seven distinct modula-
tion schemes; five digital (BPSK, QPSK, GMSK, 16-QAM
and 64-QAM) and two analog (FM and AM). The signals
were generated using realistic carrier frequency, sampling
frequency and symbol rate values, and realistic Raised- cosine
and Gaussian pulse-shaping filters. The results showed that the
implemented classifier can correctly classify signals with high
probabilities.

V. CENTRALIZED AND DECENTRALIZED LEARNING IN
COGNITIVE RADIO

Since noise uncertainties, shadowing, and multi-path fading
effects limit the performance of spectrum sensing, when the
received primary SNR is too low, there exists a SNR wall,
below which reliable spectrum detection is impossible in
some cases [168], [169]. If secondary users cannot detect the
primary transmitter, while the primary receiver is within the
secondary users transmission range, a hidden terminal problem
occurs [170], [171], and the primary user’s transmission will
be interfered with. By taking advantage of diversity offered
by multiple independent fading channels (multiuser diversity),
cooperative spectrum sensing improves the reliability of spec-
trum sensing and the utilization of idle spectrum [25], [26],
as opposed to non-cooperative spectrum sensing.

In centralized cooperative spectrum sensing [25], [26], a
central controller collects local observations from multiple
secondary users, decides the spectrum occupancy by using
decision fusion rules, and informs the secondary users which
channels to access. In distributed cooperative spectrum sensing
[55], [172], on the other hand, secondary users within a CRN
exchange their local sensing results among themselves without
requiring a backbone or centralized infrastructure. On the other
hand, in the non-cooperative decentralized sensing framework,
no communications are assumed among the secondary users
[173].

In [174], the authors showed how various centralized and
decentralized spectrum access markets (where CRs can com-
pete over time for dynamically available transmission opportu-
nities) can be designed based on a stochastic game (discussed
above in Section III-C) framework and solved using a learning
algorithm. Their proposed learning algorithm was to learn the
following information in the stochastic game: state transition
model, state and the policy of other secondary users and the
network resource state. The proposed learning algorithm was
similar to Q-learning. However, the main difference compared
to Q-learning was that it explicitly considered the impact of
other secondary user actions through the state classifications
and transition probability approximation. The computational
complexity and performance were also discussed in [174].

In [37] the authors proposed and analyzed both a central-
ized and a decentralized decision-making architecture with
RL for the secondary CRN. In this work, a new way to
encourage primary users to lease their spectrum was proposed:
the secondary users place bids indicating how much power
they are willing to spend for relaying the primary signals
to their destinations. In this formulation, the primary users
achieve power savings due to asymmetric cooperation. In the
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Has better performance for small
training examples, compared to

= Requires prior knowledge of the
distribution of the observed
process

1153

ANN

= Requires data labeling

Fig. 10. A comparison among the learning algorithms that are presented in this survey.

centralized architecture, a secondary system decision center
(SSDC) selects a bid for each primary channel based on
optimal channel assignment for secondary users. In a decen-
tralized CRN architecture, an auction game-based protocol
was proposed in which each secondary user independently
places bids for each primary channel and receivers of each
primary link pick the bid that will lead to the most power
savings. A simple and robust distributed RL mechanism was
developed to allow the users to revise their bids and to increase
their subsequent rewards. The performance results given in
[37] showed the significant impact of RL in both improving
spectrum utilization and meeting individual secondary user
performance requirements.

In [12], the authors considered DSA among CRs from an
adaptive, game theoretic learning perspective, in which CRs
compete for channels temporarily vacated by licensed primary
users in order to satisfy their own demands while minimizing
interference. For both slowly varying primary user activity
and slowly varying statistics of fast primary user activity, the
authors applied an adaptive regret based learning procedure
which tracks the set of correlated equilibria of the game,
treated as a distributed stochastic approximation. The proposed
approach was decentralized in terms of both radio awareness
and activity; radios estimate spectral conditions based on their
own experience, and adapt by choosing spectral allocations
which yield them the greatest utility. Iterated over time, this
process converges so that each radio’s performance is an
optimal response to others’ activity. This apparently selfish
scheme was also used to deliver system-wide performance by a
judicious choice of utility function. This procedure was shown
to perform well compared to other similar adaptive algorithms.

The results of the estimation of channel contention for a simple
carrier sense multiple access (CSMA) channel sharing scheme
was also presented.

In [175], the authors proposed an auction framework for
CRNss to allow secondary users to share the available spectrum
of licensed primary users fairly and efficiently, subject to
the interference temperature constraint at each primary user.
The competition among secondary users was studied by for-
mulating a non-cooperative multiple-primary users multiple-
secondary users auction game. The resulting equilibrium was
found by solving a non-continuous two-dimensional optimiza-
tion problem. A distributed algorithm was also developed
in which each secondary user updates its strategy based
on local information to converge to the equilibrium. The
proposed auction framework was then extended to the more
challenging scenario with free spectrum bands. An algorithm
was developed based on the no-regret learning to reach a
correlated equilibrium of the auction game. The proposed
algorithm, which can be implemented distributedly based
on local observation, is especially suited in decentralized
adaptive learning environments. The authors demonstrated the
effectiveness of the proposed auction framework in achieving
high efficiency and fairness in spectrum allocation through
numerical examples.

In general, there is always a trade-off between the cen-
tralized and decentralized control in radio networks. This is
also true for CRNs. While the centralized schemes ensure
efficient management of the spectrum resources, they often
suffer from signaling and processing overhead. On the other
hand, a decentralized scheme can reduce the complexity of
the decision-making in cognitive networks. However, radios
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that act according to a decentralized scheme may adopt a
selfish behavior and try to maximize their own utilities, at
the expense of the sum-utility of the network (social welfare),
leading to overall network inefficiency. This problem can
become particularly severe when considering heterogeneous
networks in which different nodes belong to different types
of systems and have different objectives (usually conflicting
objectives). To resolve this problem, [176] proposes a hybrid
approach for heterogeneous CRNs where the wireless users
are assisted in their decisions by the network which broadcasts
aggregated information to the users [176]. At some states of
the system, the network manager imposes its decisions on
users in the network. In other states, the mobile nodes may
take autonomous actions in response to the information sent
by the network center. As a result, the model in [176] avoids
having a completely decentralized network, due to possible
inefficiency of such non-cooperative networks. Nevertheless,
a large part of the decision-making is still delegated to the
mobile nodes to reduce the processing overhead at the central
node.

In the problem formulation of [176], the authors consider a
wireless network composed of .S systems that are managed by
the same operator. The set of all serving systems is denoted by
S ={1,---,5}. Since the throughput of each serving system
drops as a function of the distance of between the mobile and
the base station, the throughput of a mobile changes within
a given cell. To capture this variation, each cell is split into
N circles of radius d,, (n € N = {1,---, N}). Each circle
area is assumed to have the same radio characteristics. In
this case, all mobile systems that are located within circle
n € N and are served by system s € S achieve the same
throughput. The network state matrix is denoted by M € F,
where F = INV>*9_ The (n, s)-th element M? of the matrix
M denotes the number of users with radio condition n € N’
which are served by system s € S in the circle. The network
is fully characterized by its state M, but this information is
not available to the mobile nodes when the radio resource
management (RRM) is decentralized. In this case, by using
the radio enabler proposed in IEEE 1900.4, the network
reconfiguration manager (NRM) broadcasts to the terminal
reconfiguration manager (TRM) an aggregated load informa-
tion that takes values in some finite set £ = {1,--- L}
indicating whether the load state at mobile terminals are either
low, medium or high. The mapping f : M — L specifies
a macro-state f(M) for each network micro-state M. This
state encoding reduces the signaling overhead, while satisfying
the requirements of the IEEE 1900.4 standard which state
that “the network manager side shall periodically update the
terminal side with context information” [177]. Given the load
information [ = f(M) and the radio condition n € N/, the
mobile makes its decision P, ; € S, specifying which system
it will connect to, and the user’s decision vector is denoted by
Pl =[P -, PnJ.

The authors in [176] find the association policies by fol-
lowing three different approaches:

1) Global optimum approach.

2) Nash equilibrium approach.

3) Stackelberg game approach.

The global optimum approach finds the policy that maximizes
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the global utility of the network. However, since it is not
realistic to consider that individual users will seek the global
optimum, another policy (corresponding to the Nash equilib-
rium) was obtained such that it maximizes the users’ utilities.
Finally, a Stackelberg game formulation was developed for
the operator to control the equilibrium of its wireless users.
This leads to maximizing the operator’s utility by sending
appropriate load information [ € £ to the distributed radios.

The authors of [176] analyzed the network performance
under these three different association policies. They demon-
strated, by means of Stackelberg formulation, how the operator
can optimize its global utility by sending appropriate infor-
mation about the network state, while users maximize their
individual utilities. The resulting hybrid architecture achieved
a good trade-off between the global network performance and
the signaling overhead, making it a viable alternative to be
considered when designing CRNs.

VI. CONCLUSION

In this survey paper, we have characterized the learning
problems in CRs and stated the importance of machine learn-
ing in developing real CRs. We have presented the state-of-
the-art learning methods that have been applied to CRs clas-
sifying them under supervised and unsupervised learning. A
discussion of some of the most important, and commonly used,
learning algorithms was provided along with their advantages
and disadvantages. We also showed some of the challenging
learning problems encountered in CRs and presented possible
solution methods to address them.
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