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Abstract

In this paper, we address the issue of collaborative information processing for diffusive source localization and

tracking using wireless sensor networks (WSNs) capable of sensing in dispersive medium/environment. We first

determine the space-time concentration distribution of the dispersion from physical modeling and mathematical

formulations of an underwater oil spill scenario considering the effect of laminar water velocity as an external force.

For static diffusive source localization, we propose two parametric estimation techniques based on maximum-

likelihood (ML) and best linear unbiased estimator (BLUE) for the special case of our physical dispersion model.

We prove the consistency and asymptotic normality of the obtained ML solution when the number of sensor

nodes and samples approach infinity, and derive the Cramér-Rao lower bound (CRLB) on its performance. We

also propose a particle filter (PF) based target tracking scheme for moving diffusive source, and derive the posterior

Cramér-Rao lower bound (PCRLB) for the moving source state estimates as a theoretical performance bound. The

performance of the proposed schemes are shown through numerical simulations and compared with the derived

theoretical bounds.
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1 Introduction

The release of liquid petroleum hydrocarbon into the ocean or coastal water due to human activity has

attracted tremendous attention because of its environmental, biological and economical impact. Recent BP

oil disaster in the Gulf of Mexico is a perfect example of how spill stemmed from a sea-floor oil gusher

can severely damage the marine and wildlife habitats as well as the Gulf’s fishing and tourism industries.

Research in modeling and predicting the extent of such oil spill can assist in planning and emergency decision

making, thereby reducing the threats and hazardous effects on environment as well as the economic cost.

Considering the fact that this is a diffusive source estimation and tracking problem, such research can in

general be applicable in many other similar contexts such as homeland security, environmental and industrial

monitoring, pollution control, servers and data center temperature monitoring as well [1–8]. For example,

the spread of chemical and biological agents as homeland security problems are discussed in [5, 9–11].

Recent advances in sensor technology, such as smart/intelligent nodes with cognitive abilities, on-board

sensors and wireless networking capabilities have triggered the use of wireless sensor networks (WSNs) in

monitoring various physical phenomena [12–14]. Though sensor nodes are capable of a limited amount of local

processing and wireless communication, when large number of sensors communicate and share information

among themselves, they can measure a desired phenomenon-of-interest (PoI) in great detail. Also with the

developments of unmanned autonomous vehicles (UAV’s), WSNs are gaining popularity due to their potential

to be useful for a wide range of applications including environmental monitoring, intrusion detection, and

various military and civilian applications [12, 15, 16]. Due to advanced micro-electro-mechanical systems

(MEMS), many of the state-of-the-art sensors are now more accurate, robust against noise and energy

efficient [17, 18]. These new cutting-edge sensors can withstand severe unfavorable conditions in hazardous

areas where human deployment is impossible. All these useful and exciting features in recently developed

sensors make them suitable candidates for the set of applications involving monitoring of diffusion phenomena

that we are interested in.

Source or target localization using distributed sensor arrays is an area of active research interest for a

considerable period of time [19, 20]. In the past, detection and localization problems of diffusive sources in

WSN have been a topic of interest, specially in the case of chemical/biological threat detection. Interesting

research in this context can be found in [3, 4, 9, 10], where biochemical concentration distribution in space

and time for different types of diffusive sources, diffusion models and/or sensor networks are estimated. For

instance, remotely localizing a gas or odor source using mobile robot was proposed in [3] by fitting the gas

distribution model to the gas sensor response at the sensor locations. However, the mobile sensor dynamics
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model therein, was obtained empirically which does not allow for dynamic environment and moving diffusive

source. In [4], a maximum likelihood (ML) estimator was developed for localizing vapor emitting sources and

its asymptotic normality of the obtained maximum likelihood (ML) estimator was proved when the signal-

to-noise-ratio (SNR) approaches infinity. Many other estimation techniques have also been used in diffusive

source parameters estimation literature [9, 10, 21–23]. In particular, Bayesian estimation has been applied

in [9,21] in a sequential manner, which is not suitable in many practical scenarios where faster estimation and

immediate actions based on the estimation are top priorities. A real-time maximum-likelihood estimation

method was proposed in [23] for estimating diffusive source parameters, where consistency and asymptotic

efficiency of the obtained estimator were proved when the density of sensors becomes infinite. In [24], the

problem of impulsive diffusive source localization was solved assuming the spatial sensor measurements at

any sensor location as a scaled and shifted version of a common prototype function, leading to solving a

set of linear equations. However, the physical diffusion models used in [23, 24] are oversimplified with the

diffusive sources assumed to be impulsive or instantaneous in nature.

Although research has been done in tracking and/or estimating time-varying parameter estimation in

general [25–28], to the best of our knowledge, very few attempts have been made in time varying diffu-

sive source parameter estimation. Some of these methods cannot be applied directly into our time varying

parameter estimation model since, e.g., for a moving source, the concentration at the current time is af-

fected by all past values of source position. Therefore, time-cumulation effects on the concentrations (i.e.

observations) must be taken into account to estimate time-varying parameters. Among previous works, a

parametric moving path model for a diffusive moving source was discussed in [10], where the moving source

path was approximated using finite number basis functions. Tracking performance in this case depends on

the smoothness of the source trajectory, prior information about the moving source trajectory and choosing

a suitable finite set of basis functions. In [29], a novel recursive algorithm was proposed to track the intensity

of a diffusive point source, but the source location was considered as an unknown static value.

The aforementioned limitations may be overcome by developing or exploiting state-of-the-art Bayesian-

based location tracking methods suitable for handling highly non-linear diffusion processes. In the Bayesian

approach, the key is to construct the posterior probability density function (PDF) of the underlying state

vector based on all available information. For linear and Gaussian state dynamics and observation models,

the optimal minimum mean squared error (MMSE) solution is tractable and is given by the well-known

Kalman filter [30]. However, for most of the real world scenarios, dynamic state estimation problems are

nonlinear and non-Gaussian, and obtaining optimal closed-form solution is not tractable under the Bayesian
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approach. In these cases, suboptimal approached such as extended Kalman filter, Gaussian-sum filter [31]

are used with certain approximations. These sub-optimal algorithms become inefficient for highly nonlinear

and non-Gaussian systems. In these cases, numerical techniques based on sequential Monte-Carlo methods

are used to achieve better performance for highly nonlinear systems. To that end, the idea of particle filtering

was introduced in [32] as an effective method of representing PDF in terms of a set of random sampling.

In this paper, our main objectives are to efficiently estimate and track diffusive source location using a

wireless network of chemical sensor capable of sensing in diffusive environment. To cater to the objectives,

we formulate and derive physical model for the space-time substance dispersion mechanism of an under-

water diffusive source. The modeling and the proposed solution methods can also be extended to other

important diffusion phenomena involving bio-chemical contaminant materials as well. We propose and im-

plement maximum-likelihood (ML) and best linear unbiased estimator (BLUE) based parameter estimation

techniques for a static diffusive source continuously emitting substance [33]. In the previous literature, such

as in [4], the asymptotic normality of the obtained ML estimator was proved when the signal-to-noise-ratio

(SNR) approaches infinity. We prove both the consistency and asymptotical normality of our obtained ML

based solution when the number of sensor nodes and time samples go to infinity, thus allowing for the op-

tion of tweaking these two parameters. We derive the Cramér-Rao lower bound (CRLB) as a theoretical

performance bound for a special case of our obtained physical dispersion model. We also propose a particle

filter (PF) based target tracking method for moving diffusive source. To the best of our knowledge, moving

diffusive source tracking using particle filtering approach has not been attempted before. The Posterior

Cramér-Rao Lower Bound (PCRLB) for the moving source state estimates is also derived as a theoretical

performance bound [34].

The remainder of this paper is organized as follows: Section 2 and 3 discuss, respectively, modeling

of an underwater oil spill scenario and measurement model for static diffusive source localization using

sensor network. The proposed statistical methods for static diffusive source localization and corresponding

theoretical performance bound are discussed in section 4. Section 5 presents the proposed particle filter

based method for moving diffusive source tracking with theoretical performance bound analysis in detail.

Section 6 shows the validity and effectiveness of our proposed methods for diffusive source localization and

tracking through numerical simulations. Finally, section 7 concludes the paper by summarizing our results.
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2 Physical Model for Dispersion

We first derive the physical models for the space-time substance dispersion mechanisms from a diffusive

source, and then transform the obtained dispersion model to a statistical measurement model. The transport

model of a substance from a diffusive source can be obtained by solving the corresponding diffusion equation.

Diffusion equation describes the dispersion of particles from a region of high concentration to regions of lower

concentration due to random molecular motion. Let us denote the concentration of the diffused substance

at a position r = [x, y, z]T and at time t as c(r, t). Ignoring the effects of external forces for a source-free

volume and for space-invariant diffusivity constant κ, the concentration of a dispersed substance follows the

following diffusion equation [35]:

∂c(r, t)

∂t
= κ

(

∂2c(r, t)

∂x2
+

∂2c(r, t)

∂y2
+

∂2c(r, t)

∂z2

)

.

To solve the above differential equation, appropriate boundary and initial conditions are required. We first

compute the concentration for a stationary impulse point source of unit mass to obtain the Green’s function.

The obtained result is then extended for a continuous source by integrating the source-release rate with the

Green’s function. Denoting the Green’s function of the impulse source as cG(r, t), the concentration of a

continuous point source with mass release rate µ(t) and initial release time tI , can then be given by the

following integral:

c(r, t) =

∫ t

tI

µ(τ)cG(r, t − τ)dτ. (1)

For parametric estimation case, it is to be noted that from the concentration measurements taken by the

sensors, we can first estimate the source parameters of interest, and then predict its cloud evolution in space

and time by inserting the estimated parameters into (1).

Although, the main focus of this paper are diffusive source localization and tracking, we introduce a

special diffusion phenomenon, i.e., an underwater oil spill, to demonstrate how to model and solve for

a practical diffusion phenomenon, and also to motivate the practical importance of the problem we are

discussing. As shown in Figure 1, we may model an under-water oil spill as diffusion occurring in a two-layer

semi-infinite medium (i.e. water and air). We assume that the oil spilling source is located at the bottom

(i.e. river/sea bed) at location r0 = [x0, y0, z0]
T . The depth of water level is 0 ≤ z ≤ L with diffusivity κw

and concentration cw. The same quantities for air (z > L) are denoted as κa and ca respectively. Along the
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z-axis, we need to solve the following differential equations:

∂cw

∂t
= κw

∂2cw

∂z2
, for 0 < z < L,

∂ca

∂t
= κa

∂2ca

∂z2
, for z > L.

Considering only point impulse source located at z = z0, where 0 ≤ z0 ≤ L and impermeable boundary at

z = 0, we have the following initial condition:

cw(z, t) = δ(z − z0), at t = tI

and boundary conditions:

cw = ca, at z = L, (2)

κw
∂cw

∂z
= κa

∂ca

∂z
, at z = L, (3)

∂cw

∂z
= 0, at z = 0. (4)

Boundary condition (2) implies the continuity of concentration at the interface z = L. Condition (3)

represents the fact that there is no accumulation of diffusing substance at z = L. Finally, the third boundary

condition in (4) reflects the assumption that the medium at z = 0 is impermeable. Applying the concept of

Laplace transform on the above system of partial differential equations, we can obtain the solution to the

spatio-temporal concentration distribution (omitting the details in [10, 35, 36]):

cw(z, t) =
1

2
√

πκw(t − tI)

∞
∑

n=0

ρn

[

exp

{

− (z − z0 − 2nL)2

4κw(t − tI)

}

+ exp

{

− (z + z0 + 2nL)2

4κw(t − tI)

}]

+
1

2
√

πκw(t − tI)

∞
∑

n=0

ρ(n+1)

[

exp

{

− (z − z0 − 2(n + 1)L)2

4κw(t − tI)

}

+ exp

{

− (z + z0 + 2(n + 1)L)2

4κw(t − tI)

}]

,

where ρ =
√

κw−√
κa√

κw+
√

κa
. As can be seen, the concentration curve can be considered to be the superimposed

curve resulting from each successive reflection (from the surface layer) being superimposed on the original

curve. In practice, if κw ≫ κa, then ρ → 1. Therefore we have,

cw(z, t) =
1

2
√

πκw(t − tI)

[

exp

{

− (z − z0)
2

4κw(t − tI)

}

+ exp

{

− (z + z0)
2

4κw(t − tI)

}]

+
1

√

πκw(t − tI)

∞
∑

n=1

[

exp

{

− (z − z0 − 2nL)2

4κw(t − tI)

}

+ exp

{

− (z + z0 + 2nL)2

4κw(t − tI)

}]

. (5)
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Considering the laminar water velocity working along the X-Y plane as an external force, we have

v = [vx, vy, 0]T . The diffusion equations along the x and y axes will include additional advection term [35]:

∂cw

∂t
= κw

∂2cw

∂x2
− vx

∂cw

∂x
,

∂cw

∂t
= κw

∂2cw

∂y2
− vx

∂cw

∂y
.

For X-Y plane, there is no boundary condition and the initial condition is given as:

c(x, y, t) = δ(x − x0, y − y0), at t = tI .

Using the concept of Fourier transform for solving partial differential equations, we can solve for the following

concentration distribution along x and y axes [37]:

cw(x, t) =
exp

[

− {x−x0−vx(t−tI)}2

4κw(t−tI)

]

2
√

πκw(t − tI)
, and (6)

cw(y, t) =
exp

[

− {y−y0−vy(t−tI )}2

4κw(t−tI)

]

2
√

πκw(t − tI)
. (7)

Based on our assumptions on initial and boundary conditions, and for rectangular parallelepiped space,

the Green’s function solution for 3-spatial-variable case is the product of the solutions of the three single

spatial-variable cases with stationary impulse point source [10, 35]. Therefore, the Green’s function cG(r, t)

for the space-time concentration distribution can be obtained as the product of the solutions in (5), (6) and

(7):

cG(r, t) =
1

8{πκw(t − tI)}3/2

[

exp

{

−|r − v(t − tI) − r0|2
4κw(t − tI)

}

+ exp

{

−|r − v(t − tI) − r′|2
4κw(t − tI)

}]

+
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

[

exp

{

−{z − z0 − 2nL}2

4κw(t − tI)

}

+ exp

{

−{z + z0 + 2nL}2

4κw(t − tI)

}]

, (8)

where r0 = [x0, y0, z0]
T and r′ = [x0, y0,−z0]

T . Considering the source mass release rate to be constant

µ(t) = µ, the final solution for concentration of oil diffusion in water for stationary continuous source with

mass rate of µ(t) can be obtained from (1):

c(r, t) = µ

∫ t

tI

cG(r, t − τ)dτ = c1(r, t) + c2(r, t) + c3(r, t) + c4(r, t), (9)

7



where

c1(r, t) =
µ

8πκw|r − r0|
exp

{

(r − r0) · v
2κw

}

[

exp

{ |r − r0||v|
2κw

}

erfc

{

|r − r0|
2
√

κw(t − tI)
+ |v|

√

t − tI
4κw

}

+ exp

{

−|r− r0||v|
2κw

}

× erfc

{

|r − r0|
2
√

κw(t − tI)
− |v|

√

t − tI
4κw

}]

,

c2(r, t) =
µ

8πκw|r − r′| exp

{

(r − r′) · v
2κw

}

[

exp

{ |r − r′||v|
2κw

}

erfc

{

|r − r′|
2
√

κw(t − tI)
+ |v|

√

t − tI
4κw

}

+ exp

{

−|r− r′||v|
2κw

}

× erfc

{

|r − r′|
2
√

κw(t − tI)
− |v|

√

t − tI
4κw

}]

,

c3(r, t) =
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0

τ−3/2 exp

{

− (x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z − z0 − 2nL)2

4κwτ

}

dτ,

c4(r, t) =
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0

τ−3/2 exp

{

− (x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z + z0 + 2nL)2

4κwτ

}

dτ.

Derivation to (9) is given in Appendix A. For the sake of simplicity, from here on, we denote the diffusivity

constant κw = κ.

2.1 Moving Diffusive Source

For a moving diffusive source emitting substance continuously in a semi-infinite medium similar to our case,

space-time concentration distribution can be obtained using the concept of convolution integral from the

Green’s function solution corresponding to stationary impulsive source. In this case, substance concentration

at any time instant is affected by all the past values of source position and release rate. Therefore, time-

cumulation effect on the concentrations has to be considered to obtain complete physical model. For a

moving diffusive source continuously releasing substance at a mass rate µ(t), the space-time concentration

distribution in a semi-infinite medium can be obtained for a given Green’s function cG(r, t) using the following

integral:

c(r, t) =

∫ t

tI

µ(τ)cG (r − r0(τ), t − τ) dτ, (10)

where r0(t) = [x0(t), y0(t), z0(t)]
T represents the source moving path. The advantage of solving the physical

diffusion model corresponding to a moving diffusive source using (10) is that the initial, boundary, and

other necessary conditions can be taken into account to solve for the stationary case in the first step before

extending it to the moving source case.
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3 Measurement and System Models for Static Diffusive Source Localization

We consider a WSN consisting of a fusion center (FC) and N spatially distributed biochemical static sensor

nodes capable of sensing in dispersive environment. For practical consideration, we assume that the N

distributed sensors are located in a rectangular volume in space such that rj = [xj , yj , zj]
T ∈ Λ, ∀j ∈

{1, 2, ..., N}, where Λ = [a1, a2] × [b1, b2] × [c1, c2] ⊆ R
3. It is also assumed that the source-to-sensor

distances are much higher than the source and sensor dimensions. Each sensor node takes measurements at

times tk; ∀k ∈ {1, 2, ..., T}, where T is the total number of time samples. Assuming that the physical model

discussed before is the underlying dispersion mechanism, we may obtain a measurement model for a sensor

at a position rj and at time tk as y(rj , tk) = c(rj , tk) + e(rj , tk) + b, where c(rj , tk) is the concentration of

interest, b is a bias term, and e(rj , tk) ∼ N (0, σ2) is the sensor noise assumed to be independent in both

time and space. For the sake of brevity, it can be rewritten in the simplified form as:

yj,k = cj,k(θ) + ej,k + b, (11)

where yj,k = y(rj , tk), ej,k = e(rj , tk), cj,k(θ) = c(rj , tk), θ ∈ R
n×1 is the unknown source and medium

parameter vector that we are interested to estimate, and b is the bias or clutter term representing the sensor’s

response to foreign substances that may be present in a diffusive field of interest. The bias term is assumed

to be space and time-invariant, such that the foreign substances interfering with the actual measurements

are in steady state. If we want to localize a static diffusive source, then only [x0, y0, z0] are the parameters

of interest. It is to be noted that some of the parameters, such as, the diffusivity constant κ, bias term b

and noise variance σ2 can be measured at the calibration stage, thereby reducing the cost of computation

during the detection/estimation phase.

We assume that the sensor nodes are in sleep mode until they are activated by some central control

(i.e. FC) due to a possible release of substance from a diffusive source. The activated sensor nodes take

measurements of substance concentration at time instants tk’s and then return to sleep mode. For N number

of nodes in a WSN and each node taking T number of time samples of the substance concentrations at their

respective locations, let y ∈ R
NT×1 be the measurement vector received at the FC.

4 Static Diffusive Source Localization

In this section, we use the maximum-likelihood estimator (MLE) and the BLUE to estimate the location of

an underwater diffusive source diffusing oil into water. For simplicity of exposition, we consider a special

case of our obtained physical model when an oil spill occurs in an infinite (L → ∞) underwater medium. In
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this case, the concentration at any position rj at time tk is reduced to the following expression [4, 35]:

cj,k(θ) =
µ

4πκ|rj − r0|
erfc

(

|rj − r0|
2
√

κ(tk − tI)

)

. (12)

where erfc(.) is the complementary error function.

4.1 Maximum-likelihood (ML) Based Source Localization

From the measurement model discussed in section 3, the conditional PDF of the measurements taken by the

j-th node at time tk is p(yj,k|θ) ∼ N (cj,k(θ) + b, σ2). Hence, the log-likelihood function formed at the FC

can be written as:

L = −NT

2
log(2πσ2) − 1

2σ2

N
∑

j=1

T
∑

k=1

(yj,k − cj,k(θ) − b)2 (13)

The log-likelihood equations are obtained by
∂ci,j(θ)

∂(θ) :

N
∑

j=1

T
∑

k=1

(yj,k − cj,k(θ) − b)

[

∂cj,k(θ)

∂θu

]

∣

∣

∣

∣

∣

∣

θ=θ̂

= 0, (14)

for u = 1, 2, 3, where θu is the u-th element of θ, and

∂cj,k(θ)

∂θu
=

µ [rj(u) − r0(u)]

4πκ|rj − r0|2









erfc

(

|rj−r0|
2
√

κ(tk−tI )

)

|rj − r0|
+

exp
{

− |rj−r0|2
4κ(tk−tI)

}

√

πκ(tk − tI)









. (15)

Since the system of equations in (14) is nonlinear, there is no closed-form solution to it. We can obtain an

ML estimation of the source location using any suitable nonlinear optimization technique. In this case, (14)

is solved using simplex search algorithm [38].

The Cramér-Rao lower bound (CRLB) provides a lower limit on the mean-squared estimation error of

an unbiased estimator of non-random parameter [30]. CRLB in this case can be obtained as CRLB ≥ I−1
θ

,

where Iθ ∈ R
3×3 is the Fisher information matrix (FIM) formed at the FC. The u-vth element of the FIM

can be found as:

[Iθ]u,v = E

[{

∂

∂θu
log p(y|θ)

}{

∂

∂θv
log p(y|θ)

}]

,

=
1

σ2

N
∑

j=1

T
∑

k=1

{

∂cj,k(θ)

∂θu

}{

∂cj,k(θ)

∂θv

}

, (16)

where (16) was obtained using the independence assumption of observations in space and in time.
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A sequence of estimators θ̂n to an unknown parameter vector θ is said to be consistent if the sequence

converges in probability to θ, i.e., limn→∞ θ̂n = θ, where n is the sample size [30]. It is desirable to have a

consistent MLE as consistency ensures that for large data sets, the MLE will converge to the true parameter.

The obtained MLE to our source localization problem is consistent when the number of sensor nodes in any

non-negligible open subset of Λ = [a1, a2] × [b1, b2] × [c1, c2] ⊆ R
3 and time samples go to infinity.

Theorem 1 : If the number of sensors N increases in such a way that for any open subset Λ = [a1, a2] ×

[b1, b2] × [c1, c2] ⊆ R
3 having positive area, the number of sensors N and/or the number of time samples T

tend to infinity, the obtained ML estimator is consistent.

Proof : See Appendix B.

Once consistency for the obtained MLE is established, the next important thing is to check the asymptotic

normality. An asymptotically normal estimator is a consistent estimator whose distribution around the true

parameter θ approaches a normal distribution with standard deviation shrinking in proportion to 1/
√

n as

the sample size n grows, i.e.,
√

nIθ

(

θ̂n − θ
)

−→ N
(

0, I−1
)

, where Iθ and I are the Fisher information

and identity matrices respectively [30]. It ensures that the estimator not only converges to the unknown

parameter, but it converges fast enough at a rate 1/
√

n. We address this issue with the following theorem

on asymptotic normality.

Theorem 2 : If the number of sensors N and time samples T increase as in Theorem 1, then for a true

parameter vector θ0 ∈ Λ̊, where Λ̊ ⊂ Λ is an open subset of Λ, the following is true

√
NT

(

θ̂ML (y) − θ0

)

−→ N
(

0,
(

Īθ0

)−1
)

,

in distribution where the (u, v)-th element of the matrix Īθ is given by

[

Īθ

]

u,v
= lim

N,T→∞

1

σ2NT

N
∑

j=1

T
∑

k=1

{

∂cj,k(θ)

∂θu

}{

∂cj,k(θ)

∂θv

}

.

Proof : See Appendix C.

4.2 Best Linear Unbiased Estimator (BLUE) Based Source Localization

The advantage of using the BLUE for static diffusive source localization is that there is no constraints

on the PDF, and also knowing only the mean and covariance of the measurements are enough. However,

observations have to be linear for performing the BLUE algorithm. In this subsection, we assume that the

distributed sensing nodes are capable of estimating their respective distances from the source using BLUE.
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Since the complementary error function can be approximated as erfc(z) ≈ 1− 2√
π
z, hence our observation

model for j-th node at the k-th time instant can be linearized in terms of the inverse of the source-to-node

distances from (11) and (12):

yj,k ≈ µ|rj − r0|−1

4πκ
+

[

b − µ

4
√

π3κ3(tk − tI)

]

+ ej,k

= hdinv
j + ak + ej,k, (17)

where h = µ
4πκ , dinv

j = |rj − r0|−1
and ak = b − µ

4
√

π3κ3(tk−tI)
. Since all the parameters are known except

for the diffusive source location, we can write ỹj,k = yj,k − ak = hdinv
j + ej,k. Therefore, the observation

vector formed at the j-th node can be written as:

ỹj =











yi1 − a1

yi2 − a2

...
yiT − aT











= hdinv
j + ej , (18)

where h is a column vector of all h’s and ej = [ei1, ei2, . . . , eiT ]T . Since ej,k ∼ N
(

0, σ2
)

for ∀j, k and

measurement noise is assumed to be independent and identically distributed across space and time, hence

the covariance matrix of ỹj is Σ̃j = diag
(

σ2, σ2, . . . , σ2
)

∈ R
T×T . The optimal BLUE estimator formed at

j-th node is given by

d̂inv
j =

hT Σ̃−1
j ỹj

hT Σ̃−1
j h

, (19)

with estimator variance Vj =
(

hT Σ̃−1
j h

)−1

.

After the distributed nodes estimate their respective distances d̂j = |rj −r0| from the source using BLUE,

all nodes send d̂j ’s to the fusion center (FC) for further processing. It is to be noted that the source-to-node

distance estimation can also be performed at the FC. Signal received at the FC from the j-th node can be

expressed as fj = d̂j + wj , where wj is normally distributed with mean 0 and variance σ2
m. For N number

of nodes, the data vector available at the FC can be written as:

F = [f1, f2, . . . , fN ]T = D̂ + w,

where D̂ =
[

d̂1, d̂2, . . . , d̂N

]T

, dj =
√

(xj − x0)2 + (yj − y0)2 + (zj − z0)2 and w = [w1, w2, . . . , wN ]T . The

data vector F formed at the FC can be used to estimate the diffusive source location using the nonlinear

least-square approach:

r̂0 = arg min
r0=[x0,y0,z0]

∣

∣

∣

∣

∣

∣F − D̂

∣

∣

∣

∣

∣

∣

2

2
. (20)

To solve for the source location from (20), simplex search algorithm [38] has been used.
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5 Moving Diffusive Source Tracking
5.1 State dynamics model

For the simplicity of exposition and computation, we consider the problem of tracking a diffusive source

moving in a 2-dimensional X-Y plane. The assumption can be easily extended to 3-dimensional case without

any loss of generality. Let us denote by sk = [xs,k ys,k ẋs,k ẏs,k]T , the state vector associated with the moving

source at time tk, where the first two elements represent the source position in 2D and the next two elements

represent the speed of the moving source respectively. We assume linear dynamic model for the source state

vector:

sk = Fsk−1 + uk, (21)

for k = 1, 2, ..., with the initial known distribution p(s0) for sk, where F is a 4 × 4 matrix that models the

state kinematics [39]:

F =









1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1









, (22)

where Ts is the time difference between two consecutive measurements. The noise vector uk is assumed to

be zero mean Gaussian with covariance matrix Q [39]:

Q = σ2
u













T 3
s

3 0
T 2

s

2 0

0
T 3

s

3 0
T 2

s

2
T 2

s

2 0 Ts 0

0
T 2

s

2 0 Ts













, (23)

which models the acceleration terms in the spatial directions, and σ2
u is the variance of the process noise.

5.2 Observation model

In case of a moving diffusive source continuously emitting diffusing substance in 2D, we may obtain a

measurement model for a sensor at a position rj,k and at time tk as:

zj,k = c(rj,k, tk) + ν(rj,k, tk) + b, for j ∈ N

= cj,k + νj,k + b, (24)

where zj,k is the j-th node’s observation at time tk, cj,k , c(rj,k, tk) =
∫ tk

tI
µ(τ)cG (rj,k − rs(τ), t − τ) is

the substance concentration at j-th node location at time tk, moving diffusive source location at time tk is

rs,k = s̃k = [xs,k, ys,k]
T
, location of j-th node at time tk is rj,k = [xj,k, yj,k]

T
and νj,k ∼ N

(

0, σ2
ν

)

is the

13



sensor measurement noise assumed to be independent in both time and space. Note that for static sensor

node locations, we use rj,k = rj = [xj , yj ]
T , by dropping the time index since node locations do not change

over time. Assuming additive white Gaussian noise (AWGN) channel for the sake of simplicity, the received

signal at the FC from the j-th node at time tk can be written as:

yj,k = zj,k + ǫj,k, for j ∈ N

= cj,k + b + ǫj,k + νj,k = cj,k + b + ej,k,

where ǫj,k is the received noise which is assumed to be Gaussian with mean zero, variance σ2
ǫ and ej,k =

ǫj,k + νj,k and σ2 = σ2
ν + σ2

ǫ . We denote yj,1:k as the measurement vector from j-th node upto time tk,

and yc,1:k , {y1,1:k, y2,1:k, . . . , yN,1:k}T as the collection of all measurements at the FC from N distributed

sensor nodes.

In a realistic moving source scenario, the instantaneous velocity is restricted by some practical upper

limit. Hence, for lower sampling time Ts, we can assume that the moving diffusive source moves in a linear

fashion between two observations with an average velocity determined by the source locations rs,k and

rs,k+1. For 2D moving diffusive source tracking with no external force in action, the Green’s function can

be obtained from (6) and (7) as:

cG (rj , tk) =
1

4πκ(tk − tI)
exp

[

−||rj − r0(tk)||2
4κ(tk − tI)

]

.

Therefore, for a continuous moving diffusive source with constant mass rate µ(t) = µ, observations taken by

the j-th node at k-th time instant can be written as,

yj,k = cj,k−1 + ζj,k + b + ej,k, (25)

where

ζj,k = µ

∫ tk

tk−1

cG (rj − rs(τ), tk − τ) dτ,

=
µ

4πκ

∫ tk

tk−1

(

1

tk − τ

)

exp






−

∣

∣

∣

∣

∣

∣rj −
{

rs,k−1 +
(

rs,k−rs,k−1

Ts

)

(τ − tk−1)
}∣

∣

∣

∣

∣

∣

2

4κ(tk − τ)






dτ. (26)

5.3 Target tracking using particle filters

In Bayesian belief update, to estimate state vector sk at time instant k, we need to construct posterior

distribution p (sk|yc,1:k) with initial PDF p(s0). The Bayesian belief update is done in two stages: prediction

and update.

14



Prediction: Considering that p (sk−1|yc,1:k−1) is available at time k, the PDF p (sk|yc,1:k−1) can be

obtained as [40]:

p (sk|yc,1:k−1) =

∫

p (sk|sk−1) p (sk−1|yc,1:k−1) dsk−1.

Update: If observations yc,1:k are available at time instant k, the posterior distribution to estimate the

state vector sk is given by [40]:

p (sk|yc,1:k) =
p (yc,k|sk) p (sk|yc,1:k−1)

p (yc,k|yc,1:k−1)
. (27)

Since the observation model is highly nonlinear, analytical solution for the optimal estimator is not tractable

in our case. Hence, we use sequential Monte Carlo method to approximate the posterior PDF (27) with

particle filters [32].

Let us denote Xk =
{

si
k, wi

k

}P

i=1
to be the random measure that characterizes the posterior PDF

p (sk|yc,1:k), where P is the number of particles. Then p (sk|yc,1:k) ≈ ∑P
i=1 wi

kδ
(

sk − si
k

)

, where δ(.) is

the Dirac delta function. The state vector estimate at time tk can be obtained as ŝk|k ≈ ∑P
i=1 wi

ks
i
k, and

the covariance matrix Uk|k of the estimate is Uk|k ≈ ∑P
i=1 wi

k

(

si
k − ŝk|k

) (

si
k − ŝk|k

)T
. The predicted state

ŝk+1|k and the corresponding covariance matrix Uk+1|k can be obtained from the state dynamics in (21), as

ŝk+1|k = Fŝk|k and Uk+1|k = FUk|kF
T + Q.

5.4 Posterior Cramer-Rao Lower Bound (PCRLB) Analysis

Analogous to the CRLB, the PCRLB provides a lower bound for the mean-squared error of random pa-

rameter estimation [34]. Let us define the joint probability distribution of Sk and yc,1:k for an arbitrary

k is p (Sk,yc,1:k) = pk, where yc,1:k is the observation vector formed at the FC at k-th time instant and

Sk = (s0, s1, . . . , sk). Following (26), the concentration at any time k + 1 for any node j can be written as:

c(rj , tk+1) , cj,k+1 = ζj,0:1 + ζj,1:2 + . . . + ζj,k−1:k + ζj,k:k+1.

Based on the assumed observation model in (25), the log-likelihood function Lk+1 = log p (yc,k+1|sk+1,Sk)

at (k + 1)-th time instant formed at the FC is given by

Lk+1 = −N

2
log(2πσ2) −

N
∑

j=1

1

2σ2
(yj,k+1 − c (rj , tk) − ζj,k+1 − b)2 .

Let I(Sk) ∈ R4k×4k be the information matrix derived from the joint distribution pk. We wish to solve for

the information submatrix for estimating sk, denoted by Ik. The following theorem gives a two-step recipe

for computing Ik.
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Theorem 3 : The sequence {Ik+1} of the posterior information submatrices for estimating state vectors

sk+1 can be computed as follows:

Ik+1 = Dk+1 −
[

Lk+1 −Q−1F + Mk+1

]

[I(Sk) + Rk+1]
−1

[

LT
k+1

−FTQ−1 + MT
k+1

]

, (28)

where Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

, Dk+1 = −E
{

∆
sk+1
sk+1 log pk+1

}

, Lk+1 =
[

−E

{

∆s0
sk+1

Lk+1

}

− E

{

∆s1
sk+1

Lk+1

}

. . . − E
{

∆
sk−1
sk+1Lk+1

}

]

,

Rk+1 =











−E
{

∆s0
s0
Lk+1

}

−E
{

∆s1
s0
Lk+1

}

. . . −E
{

∆sk
s0
Lk+1

}

−E
{

∆s0
s1
Lk+1

}

−E
{

∆s1
s1
Lk+1

}

. . . −E
{

∆sk
s1
Lk+1

}

...
...

. . .
...

−E
{

∆s0
sk
Lk+1

}

−E
{

∆s1
sk
Lk+1

}

. . . −E
{

∆sk
sk
Lk+1

}

+ FTQ−1F











, (29)

and ∆Θ
Φ = ∇Φ∇T

Θ with ∇ being the Laplacian operator.

Proof : See Appendix D.

Note that the information submatrix computation in (28) involves computation of the inverse of a matrix

of size 4k × 4k. This is because of the output yj,k+1 at the j-th node at (k + 1)-th time instant being a

function of all the previous states Sk+1.

6 Simulation Results

In the following, we show the performances of our proposed models and schemes through numerical simula-

tions.

6.1 Simulations for the Physical Model in section 2

We show the space-time concentration distribution of a static continuous point source (oil spill source)

located at the bottom of a sea at r0 based on the physical diffusion model formulated in section 2. The

parameters used for this simulation are: oil release rate µ = 103Kg/s, diffusivity constant of oil in saline

water κ = 25m2/s, initial release time tI = 0 sec and laminar water velocity v = [50, 50, 0]m/s. The oil

spill source is assumed to be located at r0 = [0, 0, 0]T and the depth of water is taken to be L = 100m from

the sea bed. Figure 2 shows the spatial concentration distribution for two different time instants t = 1 and

t = 100 sec. It can be seen from Figure 2 that as the oil source is located at the origin, concentration is high

near the origin at t = 1 sec. By the time it is 100 sec, oil has diffused over larger distance from the source.

It is interesting to see that since laminar water flow is assumed to be only active in the positive x and y

directions, concentration increases more along the positive X-Y plane with the increase in time.
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6.2 Static Diffusive Source Localization

Here, we show simulation results in estimating the location of a static diffusive source using the proposed

MLE and BLUE based methods from the concentration observations taken by the sensing nodes. For the

sake of simplicity, we consider a 2D diffusive field volume of Λ = [−50, 50]× [−50, 50] m2. We assume that

the sensors are placed in a uniform 2D grid such that the distance between adjacent sensors along the same

ordinate is approximately 14.3 m. Parameters used for simulations are: number of nodes N =64, r0 = [0, 0]T ,

µ= 1000 Kg/s, b = 10−4 Kg/m2, tI = 0 sec and κ = 25m2/s. The observation noise is assumed to have

Gaussian distribution with mean 0 and variance σ2 = 1×10−4 Kg/m2. Total number of random realizations

used for simulations is 100. The measurements are taken at every 0.5 sec time-step starting from 0.5 sec and

ending at 30 sec. In case of BLUE estimator, received noise variance at the fusion center is assumed to be

σ2
m = 0.01, 10 m2.

Figure 3 shows the normalized mean-squared-error (MSE) and CRLB (in dB) with the increase in the

number of nodes and samples. The normalized MSE and CRLB are obtained by dividing each with the

diffusive field volume. As one would except, estimation error decreases as more distributed nodes and

samples are considered for estimation purpose. Since it is a 2D location estimation problem, we at least need

3 nodes to determine the source location correctly. It is interesting to note that the estimation performance

is slightly better than the CRLB in some cases. This is due to the fact that the ML estimator in this case is

biased (suggested from simulation), and thus it can outperform the CRLB by trading variance for bias. In

this particular case, the continuous diffusive source can be localized with a resolution of less than 12 cm.

The estimated source location using the BLUE estimator is shown in Figure 4 as a function of the number

of nodes and time samples for different values of σ2
m’s. As one would expect, the overall performance obtained

from the BLUE estimator is not as good as that from the MLE due to the linear approximation applied on

the observation model in (17). However, performance of the BLUE estimator based localization improves as

the number of nodes and/or time samples increases. This is because for N, T → ∞, the complementary error

function in (12) tends to be equal to 1, causing the linearization having almost no effect on the approximation.

6.3 Moving Diffusive Source Tracking

In this subsection, we analyze the performance of our proposed moving diffusive source tracking scheme. We

use the same sensor network setup as described in section 6.2. The initial source state vector is assumed

to be Gaussian with mean µ = [0, 0, 0, 0]T and covariance matrix Σ0 = diag
(

[0.01, 0.01, 0.01, 0.01]T
)

. The

intensity of the state process noise is σ2
u = 0.1. Sampling time is assumed to be Ts = 0.5sec. Total number
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of random realizations used for simulations is 50. The tracking is performed for 30 sec and the number

of particles in the particle filter (PF) is Np = 1000. Rest of the parameters are same as in section 6.2.

The performance measure is taken as the root-mean-squared-error (RMSE) of the moving source position

estimate given by RMSEk =
√

(xs,k − x̂s,k)2 + (ys,k − ŷs,k)2. The RMSE is compared with the square root

of the PCRLB components of the position error, PCRLBk ≈
√

[

I−1
k

]

11
+
[

I−1
k

]

22
.

Figure 5 and 6 show the tracking performances of the proposed tracking scheme using particle filter for

grid-based and random node deployment strategies respectively. It can be seen that the target trajectory can

be tracked with better accuracy in Figure 6 with compared to that in Figure 5. Figure 5(b) and 6(b) show the

RMSE’s on the tracking performances for the aforementioned two node deployment strategies respectively.

The obtained RMSE with the random node deployment case is better and closer to the derived PCRLB

than those for the grid-based node deployment case. This is because for a fixed node density, the expected

nearest neighbor node distance (from the source) in case of random node deployment is less than the inter-

node spacing in grid-based node deployment, which in our case is 14.3 m. The random node deployment is

specially suitable when there is no pre-designed infrastructure for sensor network and also when the diffusive

field is hazardous for human deployment.

It is of interest also to investigate the performance of the proposed target tracking method when the

sampling time Ts is varying. Figure 7 shows the effect of sampling time Ts on the tracking performances of

the proposed moving diffusive source tracking scheme using grid-based node deployment strategy keeping all

the other parameters same as mentioned before. As one would expect, the tracking performance decrease

with the increase of sampling time Ts. This is because for higher values of Ts, the process noise will increase

according to (23). Since we are also assuming that the movement of the diffusive source is almost linear

between two successive time instant, the lower Ts will result in better accuracy of the proposed tracking

scheme.

7 Conclusion

In this paper, we obtained spatio-temporal distribution of the substance concentration by solving physical

diffusion model for an underwater oil spill scenario considering laminar water velocity as an external force.

The obtained mathematical model was found to be capable of satisfactorily model the underlying physical

diffusion phenomenon. We proposed two parametric estimation methods based on the MLE and the BLUE

for estimating static diffusive source location using wireless sensor network. We also obtained the CRLB as

theoretical performance bound for source localization. It was observed that though the MLE performs better
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than the BLUE-based diffusive source localization method, the later shows satisfactory performance trend

for large number of sensing nodes and time samples. We also proposed a particle filter based target tracking

method for moving diffusive source emitting substance continuously into the dispersive medium. The PCRLB

corresponding to moving diffusive source tracking was obtained as a theoretical performance measure and

compared with the simulation results. The effect of sampling time on the moving source tracking was also

investigated. The performance of the proposed estimation and tracking methods are shown to be excellent

using numerical simulations. In future research, we plan to combine our obtained analytical results with

non-model based numerical techniques to make them applicable for more realistic and complex scenarios.

Appendix A
Derivation of Spatio-Temporal Concentration in (9)

To derive and verify the spatio-temporal concentration distribution in (9), the Green’s function cG (r, t) in

(8) can be written as cG (r, t) = c′1(r, t) + c′2(r, t) + c′3(r, t) + c′4(r, t), where

c′1(r, t) =
1

8{πκw(t − tI)}3/2
exp

{

−|r− r0 − v(t − tI)|2
4κw(t − tI)

}

,

c′2(r, t) =
1

8{πκw(t − tI)}3/2
exp

{

−|r− r′ − v(t − tI)|2
4κw(t − tI)

}

,

c′3(r, t) =
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

exp

{

− (z − z0 − 2nL)2

4κw(t − tI)

}

, and

c′4(r, t) =
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

exp

{

− (z + z0 + 2nL)2

4κw(t − tI)

}

.

Therefore, we can rewrite c1(r, t) in (9) as:

c1(r, t) = µ

∫ t

tI

c′1(r, t − τ)dτ,

=

∫ t

tI

µ

8{πκw(t − τ + tI)}3/2
exp

{

−|r− r0 − v(t − τ + tI)|2
4κw(t − τ + tI)

}

dτ,

=

∫ t−tI

0

µ

(4πκwτ)3/2
exp

{

−|r− r0 − vτ |2
4κwτ

}

dτ ;[performing change of variables], (30)

To prove that (30) indeed translates into the expression given in (9), we will use the concept of first fun-

damental theorem of calculus [41]. Since c′1(r, t) is a continuous real-valued function within the limits of
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the integral, derivate of the expression given in (9) will be taken to obtain (30). Replacing γ = t − tI and

assuming F (r, t) = c1(r, t) in (9), we have:

F (r, γ) =
µ

8πκw|r − r0|
exp

{

(r − r0) · v
2κw

}[

exp

{ |r − r0||v|
2κw

}

erfc

{ |r − r0|
2
√

κwγ
+ |v|

√

γ

4κw

}

+ exp

{

−|r − r0||v|
2κw

}

× erfc

{ |r − r0|
2
√

κwγ
− |v|

√

γ

4κw

}]

.

Since d
dz erfc(z) = − 2√

π
exp(−z2), we can obtain the following:

∂F (r, γ)

∂γ
=

µ

4π3/2κw|r − r0|
exp

{

(r − r0) · v
2κw

}[

exp

{ |r − r0||v|
2κw

}{ |r − r0|
4
√

κwγ3/2
− |v|

4
√

γκw

}

× exp

{

−|r− r0|2
4κwγ

− |v|2γ
4κw

− |r− r0||v|
2κw

}

+ exp

{

−|r − r0||v|
2κw

}{ |r − r0|
4
√

κwγ3/2
+

|v|
4
√

γκw

}

× exp

{

−|r− r0|2
4κwγ

− |v|2γ
4κw

+
|r− r0||v|

2κw

}]

,

=
µ

4π3/2κw|r − r0|
exp

{

(r − r0) · v
2κw

}[{ |r − r0|
4
√

κwγ3/2
− |v|

4
√

γκw

}

exp

{

−|r− r0|2
4κwγ

− |v|2γ
4κw

}

+

{ |r − r0|
4
√

κwγ3/2
+

|v|
4
√

γκw

}

exp

{

−|r− r0|2
4κwγ

− |v|2γ
4κw

}]

,

=
µ

(4πκwγ)3/2
exp

{

(r − r0) · v
2κw

}

exp

{

−|r− r0|2
4κwγ

− |v|2γ
4κw

}

,

=
µ

(4πκwγ)3/2
exp

{

−|r− r0|2 − 2γ(r− r0) · v + |v|2γ2

4κwγ

}

,

∴
∂F (r, γ)

∂γ
=

µ

(4πκwγ)3/2
exp

{

−|r− r0 − vγ|2
4κwγ

}

. (31)

Hence, the resulting expression for c1(r, t) in (9) is valid. The expression for c3(r, t) can be obtained as

follows:

c3(r, t) = µ

∫ t

tI

c′3(r, t − τ)dτ,

=

∫ t

tI

µ

4{πκw(t − τ + tI)}3/2
exp

[

−{x − x0 − vx(t − τ + tI)}2

4κw(t − τ + tI)
− {y − y0 − vy(t − τ + tI)}2

4κw(t − τ + tI)

]

×
∞
∑

n=1

exp

{

− (z − z0 − 2nL)2

4κw(t − τ + tI)

}

dτ,

=
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0

τ−3/2 exp

{

− (x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z − z0 − 2nL)2

4κwτ

}

dτ,

Similarly, we can also verify the expressions for c2(r, t) and c4(r, t). Therefore, the spatio-temporal concen-

tration distribution c(r, t) given in (9) is valid. �
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Appendix B
Proof of Theorem 1

We first show the proof for the x coordinate θ0(1) = x0 and it can be easily followed to prove the consistency

for the y and z coordinates without any loss of generality. Based on the technique in [30], we have to prove

that

lim
N,T→∞

1

dN,T

N
∑

j=1

T
∑

k=1

KN,T (x0; x
′
0) exists, and (32)

lim
N,T→∞

1

d2
N,T

N
∑

j=1

T
∑

k=1

[

∂cj,k(θ)

∂x0

]2

= 0, (33)

for some sequence {dN,T > 0}∞N,T=1, where
∂cj,k(θ)

∂x0
is defined by (15), and

KNT (x0; x
′
0) ,

∑N
j=1

∑T
k=1

∂cj,k(θ′)
∂x′

0
[cj,k(θ) − cj,k (θ′)] with x0 6= x′

0 ⇒ r0 6= r′0 and θ 6= θ′. Since both

cj,k(θ) and
∂cj,k(θ)

∂x0
are continuous functions of x0, hence using Cauchy-Schwartz inequality, we can obtain

KN,T (x0; x
′
0) ≤





N
∑

j=1

T
∑

k=1

µ|xj − x′
0|

4πκ|rj − r′0|2
+

1
√

πκ(tk − tI)









N
∑

j=1

T
∑

k=1

µ

4πκ

[

1

|rj − r0|
+

1

|rj − r′0|

]



 .

Also because tk < tI , therefore
∑T

k=1
1√

tk−tI
≤ TS with S being some positive real value. For practical

consideration, assuming 0 ≤ |xj−x′

0|
|rj−r

′

0|2
≤ P , 0 < 1

|rj−r0| ≤ M1, and 0 < 1
|rj−r

′

0|
≤ M2, KN,T (x0; x

′
0) can be

written as:

KN,T (x0; x
′
0) ≤

(

µP

4πκ
+

S√
πκ

)(

µ(M1 + M2)N
2T 2

4πκ

)

.

If dN,T = N3T 3 > 0 for N ≥ 1, T ≥ 1, then we can claim limN,T→∞
1

dN,T

∑N
j=1

∑T
k=1 KN,T (x0; x

′
0) exists.

For the proof of (33), assuming 0 ≤ |xj−x0|2
|rj−r0|2 ≤ Q1 and

∑T
k=1

1
tk−tI

< TQ2 with Q1 and Q2 being some

positive real numbers, we obtain the following from (15),

N
∑

j=1

T
∑

k=1

[

∂cj,k(θ)

∂x0

]2

<
µ2Q1NT

16π2κ2

[

M2
1 +

Q2

πκ
+

2M1S√
πκ

]

.

Choosing dN,T = NT > 0 for N ≥ 1, T ≥ 1, we have limN,T→∞
1

d2
N,T

∑N
j=1

∑T
k=1

[

∂cj,k(θ)
∂x0

]2

= 0. Similarly,

for y0 and z0, we can also claim that the MLE to the diffusive source localization problem is consistent when

the number of sensor nodes and time samples go to infinity. �

Appendix C
Proof of Theorem 2

To prove the asymptotic normality of the MLE, we define Φj,k (yj,k|θ) = log p (yj,k|θ), Φ̇j,k,u (yj,k|θ) =

∂
∂θu

{Φj,k (yj,k|θ)}, and Φ̈j,k,u,v (yj,k|θ) = ∂2

∂θu∂θv
{Φj,k (yj,k|θ)}. Below, we verify the necessary conditions
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mentioned in [42] for our obtained MLE to be asymptotically normal.

From practical point of view, there is no loss in generality in assuming that θ0 ∈ Λ̊, where Λ̊ ⊂ Λ is an

open subset of Λ. Also because the obtained MLE to source localization is consistent, it is also consistent

even when θ0 ∈ Λ̊ ⊂ Λ. Thus conditions N1 and N2 are satisfied.

From the notations defined above, since
∂cj,k(θ)

∂θu
and

∂2cj,k(θ)
∂θu∂θv

exist for u, v = 1, 2, 3, it can be easily

verified that both Φ̇j,k,u (yj,k|θ) and Φ̈j,k,u,v (yj,k|θ) exist almost surely. Therefore N3 is satisfied.

Since θ ∈ Λ and Φ̈j,k (yj,k|θ) is a continuous mapping of θ, we can claim that Φ̈j,k (yj,k|θ) is indeed

uniformly continuous on θ in j and k [41]. Also because Φ̈j,k (yj,k|θ) : yj,k → R is a continuous function

of yj,k with yj,k being Lebesgue measurable, hence Φ̈j,k (yj,k|θ) is also a measurable function of yj,k and

condition N4 is satisfied. To satisfy N5, it is easy to verify that E

[

Φ̇j,k,u (yj,k|θ)
]

= 0 for all j, k and u.

Since p(yj,k|θ) ∼ N
(

cj,k(θ) + b, σ2
)

, and p(yj,k|θ) is continuous and Lebesgue measurable in yj,k, hence

∂2

∂θu∂θv

∫

p(yj,k|θ)dyj,k =
∫

∂2

∂θu∂θv
p(yj,k|θ)dyj,k is valid for all j, k, u and v, and thus N6 is satisfied.

From Appendix B, it can be claimed that
∑N

j=1

∑T
k=1

{

∂cj,k(θ)
∂θu

}2

and
∑N

j=1

∑T
k=1

{

∂cj,k(θ)
∂θu

}{

∂cj,k(θ)
∂θv

}

exist, and are bounded for all u, v. Hence using the Cauchy-Schwarz inequality, all the leading prin-

ciple minors of Īθ (in Theorem 2 ) can be shown to be positive. Thus we can claim that Īθ is also

positive-definite and therefore N7 is satisfied. Because E {|ej,k|} = σ
√

2
π , we have E

[

∣

∣

∣Φ̇j,k,u (yj,k|θ)
∣

∣

∣

3
]

≤
E[|yj,k−cj,k(θ)−b|3]

σ6

∣

∣

∣

∂cj,k(θ)
∂θu

∣

∣

∣

3

≤ 2
σ2

√

2
π

∣

∣

∣

∂cj,k(θ)
∂θu

∣

∣

∣

3

= K1, ∀j, k, u, where K1 is some real positive finite number,

and N8 is satisfied.

To prove condition N9, because Φ̈j,k,u,v (yj,k|θ) is a uniformly continuous function of θ (shown in con-

dition N4), hence for any ǫ > 0, there exists one δ > 0 such that,
∣

∣

∣Φ̈j,k,u,v (yj,k|θ) − Φ̈j,k,u,v (yj,k|θ0)
∣

∣

∣ <

δ, ∀ ||θ − θ0|| < ǫ. Therefore, for all ||θ − θ0|| ≤ ǫ, since
∂cj,k(θ0)

∂θu
and

∂2cj,k(θ0)
∂θu∂θv

are continuous functions

of θ0 ∈ Λ̊ ⊂ Λ, ∀j, k, u and v, hence we have sup
{∣

∣

∣Φ̈j,k,u,v (yj,k|θ)
∣

∣

∣

}

≤ δ +
[

|ej,k|Ksup
j,k,u,v + Qsup

j,k,u,v

]

=

Bj,k,u,v(ej,k), where Ksup
j,k,u,v and Qsup

j,k,u,v are some finite real numbers and Bj,k,u,v(ej,k) is random variable.

Since E {|ej,k|} = σ
√

2
π and E

{

|ej,k|2
}

= σ2, hence E

[

|Bj,k,u,v(ej,k)|2
]

≤ K2, where K2 is a finite real

number.

Therefore, the obtained MLE of the diffusive source location is asymptotically normal when the number

of sensor nodes and time samples go to infinity.�
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Appendix D
Proof of Theorem 3

For p (s0) ∼ N (µ0,Σ0), the initial condition for the FIM is I(S0) = E
{

−∆s0
s0

log p (s0)
}

= Σ−1
0 . Decompos-

ing S1 as S1 = [sT
0 , sT

1 ]T , I(S1) can be written as

I(S1) =

[

E
{

−∆s0
s0

log p1

}

E
{

−∆s1
s0

log p1

}

E
{

−∆s0
s1

log p1

}

E
{

−∆s1
s1

log p1

}

]

,

=

[

I(S0) + R1

[

E
{

−∆s1
s0
L1

}

− Q−1F
]T

E
{

−∆s1
s0
L1

}

− Q−1F E
{

−∆s1
s1
L1

}

+ Q−1

]

,

[

A1 BT
1

B1 D1

]

.

Since error is independent across space and time, using concept from block matrix inversion, the information

submatrix that provides the mean square error estimate of s1 is given by

I1 = D1 − B1A
−1
1 BT

1 = D1 − B1 [I(S0) + R1]
−1

BT
1 ,

where D1 = E
{

−∆s1
s1
L1

}

+Q−1, R1 = E
{

−∆s0
s0
L1

}

+FTQ−1F and B1 = E
{

−∆s0
s1
L1

}

−FTQ−1. Similarly,

decomposing S2 as S2 = [sT
0 , sT

1 , sT
2 ]T , the FIM I(S2) can be written as follows:

I(S2) =





E
{

−∆s0
s0

log p2

}

E
{

−∆s1
s0

log p2

}

E
{

−∆s2
s0

log p2

}

E
{

−∆s0
s1

log p2

}

E
{

−∆s1
s1

log p2

}

E
{

−∆s2
s1

log p2

}

E
{

−∆s0
s2

log p2

}

E
{

−∆s1
s2

log p2

}

E
{

−∆s2
s2

log p2

}



 ,

=





A1 + E
{

−∆s0
s0
L2

}

BT
1 + E

{

−∆s1
s0
L2

}

E
{

−∆s2
s0
L2

}

B1 + E
{

−∆s0
s1
L2

}

D1 + FTQ−1F + E
{

−∆s1
s1
L2

}

−FTQ−1 + E
{

−∆s2
s1
L2

}

E
{

−∆s0
s2
L2

}

−Q−1F + E
{

−∆s1
s2
L2

}

Q−1 + E
{

−∆s2
s2
L2

}



 ,

,

[

I(S1) + R2 BT
2

B2 D2

]

. (34)

The information submatrix I2 can be found as an inverse of the right-lower 4 × 4 submatrix of [I(S2)]
−1

:

I2 = D2 − B2 [I(S1) + R2]
−1

BT
2 ,

where D2 = Q−1 + E
{

−∆s2
s2
L2

}

, B2 =
[

E
{

−∆s0
s2
L2

}

− Q−1F + E
{

−∆s1
s2
L2

}]

, and

R2 =

[

E
{

−∆s0
s0
L2

}

E
{

−∆s1
s0
L2

}

E
{

−∆s0
s1
L2

}

FTQ−1F + E
{

−∆s1
s1
L2

}

]

.

By extending the above procedure and decomposing Sk+1 =
[

sT
0 , sT

1 , . . . , sT
k+1

]T
, I (Sk+1) can be obtained

as:

I(Sk+1) =













−E
{

∆s0
s0

log pk+1

}

−E
{

∆s1
s0

log pk+1

}

. . . −E
{

∆
sk+1
s0 log pk+1

}

−E
{

∆s0
s1

log pk+1

}

−E
{

∆s1
s1

log pk+1

}

. . . −E
{

∆
sk+1
s1 log pk+1

}

...
...

. . .
...

−E

{

∆s0
sk+1

log pk+1

}

−E

{

∆s1
sk+1

log pk+1

}

. . . −E
{

∆
sk+1
sk+1 log pk+1

}













,

,





I(Sk) + Rk+1

[

LT
k+1

−FTQ−1 + MT
k+1

]

[

Lk+1 −Q−1F + Mk+1

]

Dk+1



 . (35)
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The information submatrix Ik+1 can be generalized as an inverse of the right-lower 4 × 4 subma-

trix of [I(Sk+1)]
−1 in (35), where Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

, Dk+1 = −E
{

∆
sk+1
sk+1 log pk+1

}

= Q−1 +

E
{

−∆
sk+1
sk+1Lk+1

}

, Q−1+D̃k+1, Lk+1 =
[

−E

{

∆s0
sk+1

Lk+1

}

− E

{

∆s1
sk+1

Lk+1

}

. . . − E
{

∆
sk−1
sk+1Lk+1

}

]

, and

Rk+1 is defined in (29). The only non-zero elements of D̃k+1 = E
{

−∆
sk+1
sk+1Lk+1

}

∈ R
4×4 are given by,

[

D̃k+1

]

11
=

1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(1)

]2

,

[

D̃k+1

]

12
=

[

D̃k+1

]

21
=

1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(1)

] [

∂ζj,k:k+1

∂sk+1(2)

]

,

[

D̃k+1

]

22
=

1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(2)

]2

.

Similarly the only non-zero elements of Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

∈ R
4×4, can be obtained as

[Mk+1]11 =
1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(1)

] [

∂ζj,k−1:k

∂sk(1)
+

∂ζj,k:k+1

∂sk(1)

]

,

[Mk+1]12 =
1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(1)

] [

∂ζj,k−1:k

∂sk(2)
+

∂ζj,k:k+1

∂sk(2)

]

,

[Mk+1]21 =
1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(2)

] [

∂ζj,k−1:k

∂sk(1)
+

∂ζj,k:k+1

∂sk(1)

]

,

[Mk+1]22 =
1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(2)

] [

∂ζj,k−1:k

∂sk(2)
+

∂ζj,k:k+1

∂sk(2)

]

,

where the partial-derivative components are defined as follows:

∂ζj,k:k+1

∂sk(1) = µ
8πTsκ2

∫ tk+1

tk

|xj−x0(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛rj−
n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o˛

˛

˛

2

4κ(tk+1−τ)

]

(tk+1 − τ)dτ,

∂ζj,k:k+1

∂sk(2) = µ
8πTsκ2

∫ tk+1

tk

|yj−ys(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛rj−
n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o˛

˛

˛

2

4κ(tk+1−τ)

]

(tk+1 − τ)dτ,

∂ζj,k:k+1

∂sk+1(1)
= µ

8πTsκ2

∫ tk+1

tk

|xj−xs(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛rj−
n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o˛

˛

˛

2

4κ(tk+1−τ)

]

(τ − tk)dτ,

∂ζj,k:k+1

∂sk+1(2)
= µ

8πTsκ2

∫ tk+1

tk

|yj−ys(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛rj−
n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o˛

˛

˛

2

4κ(tk+1−τ)

]

(τ − tk)dτ,































































, (36)

and

xs(τ) =

(

tk+1 − τ

Ts

)

xs(tk) +

(

τ − tk
Ts

)

xs(tk+1),

ys(τ) =

(

tk+1 − τ

Ts

)

ys(tk) +

(

τ − tk
Ts

)

ys(tk+1).
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Following the same approach as above, the elements of the matrix Lk+1 ∈ R
4×4k can easily be obtained at

each time instant. �

List of Abbreviations
WSN Wireless sensor network
PoI Phenomenon-of-interest
ML Maximum-likelihood
BLUE Best linear unbiased estimator
CRLB Cramér-Rao lower bound
PF Particle filter
PCRLB Posterior Cramér-Rao lower bound
UAV Unmanned autonomous vehicle
MEMS Micro-electro-mechanical-systems
SNR Signal-to-noise ratio
FC Fusion center
MLE Maximum-likelihood estimator
FIM Fisher information matrix
PDF Probability density function
MSE Mean-squared-error
RMSE Root mean-squared-error

Competing Interests

The authors declare that they have no competing interests.

Acknowledgements

This research was supported in part by the National Science foundation (NSF) under the grant CCF-0830545.

25



References
1. Fitch JP, Raber E, Imbro DR: Technology Challenges in Responding to Biological or Chemical Attacks

in the Civilian Sector. Science 2003, 302(5649):1350–1354.

2. Banks HT, Castillo-Chavez C: Bioterrorism: Mathematical Modeling Applications in Homeland Security. Society
for Industrial Mathematics 2003.

3. Ishida H, Nakamoto T, Moriizumi T: Remote Sensing and Localization of Gas/Odor Source and Dis-
tribution using Mobile Sensing System. In International Conference on Solid State Sensors and Actuators,
Chicago, IL 1997:559–562.

4. Nehorai A, Porat B, Paldi E: Detection and Localization of Vapor-Emitting Sources. IEEE Transactions
on Signal Processing 1995, 43:243 – 253.

5. Jeremic A, Nehorai A: Design of Chemical Sensor Arrays for Monitoring Disposal Sites on the Ocean
Floor. IEEE Journal of Oceanic Engineering 1998, 23(4):334 – 343.

6. Hughes RC, Osboum GC, Bartholomew JW, Rodriguez JL: The Detection Of Mixtures Of NOx’s With
Hydrogen Using Catalytic Metal Films On The Sandia Robust Sensor With Pattern Recognition.
In The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Transducers ’95
1995:730–733.

7. Weimer J, Sinopoli B, Krogh BH: Multiple Source Detection and Localization in Advection-Diffusion
Processes Using Wireless Sensor Networks. In Proc. 30th IEEE Real-Time Systems Symposium (RTSS),
Philadelphia, PA 2009:333–342.

8. Bianchini R, Rajamony R: Power and energy management for server systems. IEEE Computer 2004,
37(11):68–76.

9. Ortner M, Nehorai A, Jeremic A: Biochemical Transport Modeling and Bayesian Source Estimation
in Realistic Environments. IEEE Transactions on Signal Processing 2007, 55(6):2520–2532.

10. Zhao T, Nehorai A: Detecting and Estimating Biochemical Dispersion of a Moving Source in a Semi-
infinite Medium. IEEE Transactions on Signal Processing 2006, 54(6):2213–2225.

11. Ortner M, Nehorai A: A Sequential Detector for Biochemical Release in Realistic Environments. IEEE
Transactions on Signal Processing 2007, 55(8):4173 – 4182.

12. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E: Wireless sensor networks: A survey. Computer
Networks 2002, 38(4):393–422.

13. Trankler HR, Kanoun O: Recent Advances in Sensor Technology. In Proceedings of the 18th IEEE Instru-
mentation and Measurement Technology Conference (IMTC), Volume 1 2001:309–316.

14. Hamrita TK, Kaluskar NP, Wolfe KL: Advances in smart sensor technology. In 40th IAS Annual Meeting
Industry, Industry Applications Conference, Volume 3 2005:2059–2062.

15. Zhiyong CH, Pan LY, Zeng Z: A Novel FPGA-Based Wireless Vision Sensor Node. In Proceedings of the
IEEE International Conference on Automation and Logistics Shenyang, Shenyang, China 2009:841–846.

16. Lebold MS, Murphy B, Boylan D, Reichard K: Wireless technology study and the use of smart sensors
for intelligent control and automation. In IEEE Aerospace Conference, Big Sky, MT 2005:1–15.

17. Micro-Chemical Sensors for In-Situ Monitoring and Characterization of Volatile Contaminants.
[Available at http://www.sandia.gov/sensor/MainPage.htm].

18. Cheaper Chemical Sensor. [Available at http://www.technologyreview.com/tomarket/22861/].

19. Chen J, Yao K, Hudson R: Source localization and beamforming. IEEE Signal Processing Magazine 2002,
19(2):30–39.

20. Stoica P, Li J: Lecture Notes - Source Localization from Range-Difference Measurements. IEEE Signal
Processing Magazine 2006, 23(6):63–66.

21. Zhao T, Nehorai A: Distributed Sequential Bayesian Estimation of a Diffusive Source in Wireless
Sensor Networks. IEEE Transactions on Signal Processing 2007, 55(4):1511–1524.

22. Zhang H, Moura JMF, Krogh B: Dynamic Field Estimation Using Wireless Sensor Networks: Tradeoffs
Between Estimation Error and Communication Cost. IEEE Transactions on Signal Processing 2009,
57(6):2383–2395.

26



23. Vijayakumaran S, Levinbook Y, Wong TF: Maximum likelihood localization of a diffusive point source
using binary observations. IEEE Transactions on Signal Processing 2007, 55(2):665–675.

24. Lu Y, Dragotti P, Vetterli M: Localization of diffusive sources using spatiotemporal measurements. In
49th Annual Allerton Conference on Communication, Control, and Computing 2011:1072–1076.

25. Wang X, Wang S: Collaborative signal processing for target tracking in distributed wireless sensor
networks. Journal of Parallel and Distributed Computing 2007, 67:501–515.

26. Ma H, Ng BW: Collaborative Data and Information Processing for Target Tracking In Wireless
Sensor Networks. In Proc. of IEEE International Conference on Industrial Informatics, Singapore 2006:647–
652.

27. Li D, Wong K, Hu YH, Sayeed A: Detection, Classification and Tracking of Targets in Distributed
Sensor Networks. IEEE Signal Processing Magazine 2002, 19(2):17–29.

28. Zhao F, Shin J, Reich J: Information-Driven Dynamic Sensor Collaboration for Target Tracking. IEEE
Signal Processing Magazine 2002, 19(2):61–72.

29. Ram SS, Veeravalli VV: Localization and intensity tracking of diffusing point sources using sensor
networks. IEEE Global Telecommunications Conference (GLOBECOM) 2007, :3107–3111.

30. Poor HV: An Introduction to Signal Detection and Estimation. Springer 1994.

31. Tam WI, Hatzinakos D: An adaptive Gaussian sum algorithm for radar tracking. In IEEE Intl. Conf.
on Communications ‘Towards the Knowledge Millenium’ (ICC), Volume 3 1997:1351–1355.

32. Gordon NJ, Salmond DJ, Smith AM: Novel approach to non-linear/non-Gaussian Bayesian state esti-
mation. In Radar and Signal Processing, IEEE Proc. F, Volume 140 1993:107–113.

33. Kay SM: Fundamentals of statistical signal processing: Estimation theory. Prentice Hall 1993.

34. Tichavsky P, Muravchik CH, Nehorai A: Posterior Cramer-Rao Bounds for Discrete-time Nonlinear
Filtering. IEEE Transactions on Signal Processing 1998, 46:1386–1396.

35. Crank J: The Mathematics of Diffusion. Oxford University Press 1975.

36. Jost W: Diffusion in solids, liquids, gases. Academic Press Inc. 1952.

37. Duffy D: Transform Methods for Solving Partial Differential Equations. Symbolic and Numeric Computation
Series, Chapman & Hall/CRC 2004.

38. Lagarias JC, Reeds JA, Wright MH, Wright PE: Convergence properties of the Nelder-Mead simplex
method in low dimensions. SIAM Journal of Optimization 1998, 9:112–147.

39. Chhetri AS, Morrell D, Papandreou-Suppappola A: Scheduling multiple sensors using particle filters in
target tracking. In IEEE Workshop on Statistical Signal Processing 2003:549–552.

40. Djuric P, Kotecha J, Zhang J, Huang Y, Ghirmai T, Bugallo M, Miguez J: Particle Filtering. IEEE Signal
Processing Magazine 2003, 20:19–38.

41. Rudin W: Principles of Mathematical Analysis. McGraw-Hill, Inc. 1976.

42. Hoadley B: Asymptotic properties of maximum likelihood estimators for the independent not iden-
tically distributed case. The Annals of Mathematical Statistics 1971, 42(6):1977–1991.

Figures
Figure 1 - An underwater oil spill scenario

Figure 2 - Spatio-temporal concentration distribution

Concentration distribution in space (x-y-z coordinates) at times (a) t = 1 sec, and (b) t = 100 sec with

velocity vector v = [50, 50, 0] m/s. (Magnitude of concentration is proportional to darkness)

Figure 3 - Performance of the MLE

Normalized MSE and CRLB of the MLE as function of (a) number of nodes, and (b) time samples.
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Figure 4 - Performance of the BLUE

Normalized MSE of the BLUE as function of (a) number of nodes, and (b) time samples.

Figure 5 - Performance of the proposed tracking method with grid-based sensor node deployment

(a) Actual and estimated trajectories of the moving diffusive source, and (b) RMSE (dB) for grid-based

sensor node deployment.

Figure 6 - Performance of the proposed tracking method with random sensor node deployment

(a) Actual and estimated trajectories of the moving diffusive source, and (b) RMSE (dB) for random sensor

node deployment.

Figure 7 - Effect of sampling time on tracking performance

(a) Actual and estimated trajectories of the moving diffusive source, and (b) RMSE (dB) for different values

of sampling time Ts.
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