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Abstract—We propose wide-band spectrum sensing scheduling
solutions for cognitive radios that are equipped with reconfig-
urable RF front-ends. The wide frequency spectrum of interest
is segmented into frequency sub-bands due to software and
hardware limitations. These sub-bands can be non-contiguous,
and each may contain an arbitrary number of channels from an
arbitrary number of systems. It is assumed that the CR can only
sense one sub-band at a time. Three sub-band selection policies
are proposed to find spectrum opportunities taking into account
realistic hardware reconfiguration energy consumptions and time
delays. Two of the proposed policies rely on the individual
channel Markov properties and the sub-band Markov properties,
respectively. Although these two policies may achieve good per-
formance, they rely on complete knowledge of RF environment
dynamics and thus may become computationally demanding.
The third sub-band selection policy based on Q-learning is
proposed to circumvent this. Performance of the three policies
are compared and discussed against a performance upper-bound
of the optimal solution to the corresponding partially observable
Markov decision process formulation. The suitability of the Q-
learning technique is validated by showing that it achieves good
performance through numerical results in both simulated and
real measured RF environments.

Index Terms—Bandwidth aggregation, cognitive radios,
Markov decision processes, Partially observable Markov decision
processes, Q-learning, sub-band selection, wide-band cognitive
radios, wide-band spectrum sensing.

I. INTRODUCTION

The radio frequency (RF) spectrum is a limited resource
regulated by government agencies. Conventional radios are
designed to communicate within a specified RF spectrum
range. Nowadays, the increasing demand for mobile wireless
services, such as web browsing, video telephony, and video
streaming, with various constraints on delay and bandwidth
requirements, poses new challenges to be met by future gen-
eration wireless communication networks. On the other hand,
it has been reported that the static RF spectrum allocation
scheme has caused low efficiency of the spectrum utilizations.
Unlike conventional radios, cognitive radios (CRs) [1]–[5] are
proposed to achieve dynamic utilization of the limited RF
spectrum resource and to settle the spectral under-utilization
problem.

The National Broadband Plan (NBP) [6] recommends to
free up 500 MHz of spectrum for broadband use in the next
10 years with 300 MHz being made available for mobile use in
the next five years. The plan proposes to achieve this goal in a
number of ways: incentive auctions, repacking spectrum, and

enabling innovative spectrum access models that take advan-
tage of opportunistic spectrum access and cognitive techniques
to better utilize the spectrum. The plan urges the FCC to
initiate further developments on opportunistic spectrum access
beyond the already completed TV white spaces proceedings.
The Radiobot architecture proposed in [3], [7] is in-line with
above vision and proposes CRs that are wide-band, multi-
mode and multi-band. A Radiobot is a wide-band CR that
would be able to optimally respond to its RF environment
in order to achieve its performance objectives. However, these
kind of wide-band CR capabilities do rely on both state-of-the-
art RF hardware front-end (such as wide-band antennas, real-
time reconfigurable antennas, etc.) and sophisticated signal
processing techniques1.

Spectrum sensing has been identified as a fundamental
task for CRs to detect spectrum opportunities and achieve
awareness of the surrounding RF environment [1], [4], [5],
[8], [9]. Several sensing techniques have been proposed for
sensing primary signals2 in either narrow or wide frequency
bands [8]–[12]. In narrowband applications, a CR senses a
particular channel (or a particular set of channels) to identify
the existence of primary signals. In this case, the decision-
making reduces to a binary hypothesis testing problem to
determine whether a particular channel is idle or busy [13]–
[16]. In a wide-band CR application, however, in order to
maximize its communication throughput, a CR not only has
to determine the existence of primary signals, but it also has
to determine the spectrum range to sense in the first place.
This is due to the limitations of the RF hardware and the
signal processing capabilities, which often prohibit a wide-
band CR from sensing the whole spectrum range of interest at
the same time and the spectrum usage patterns are in general
non-homogeneous across the wide spectrum range of interest
[17].

In this paper, we propose a dynamic spectrum sensing
scheduling framework for wide-band CRs. The considered
wide-band CR is assumed to be equipped with a reconfigurable
RF front-end (reconfigurable antennas and reconfigurable RF
circuitry) that may operate over several wide frequency bands,
with each configuration corresponding to one of the wide
frequency bands. Each of the wide frequency bands is assumed

1The details on the software and hardware requirements for a Radiobot
architecture are discussed in [3].

2A primary signal refers to a signal that is licensed to a certain frequency
range by the regulations of static RF spectrum allocation.
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to be further segmented into several non-overlapping sub-
bands and each of the segmented sub-bands is assumed to
contain multiple communication channels. Without loss of
generality, we assume that the CR can only operate in one of
the sub-bands at a time due to hardware and signal processing
limitations. We also assume that the wide-band CR is capable
of simultaneous transmissions of multiple signals on multiple
channels within a single sub-band. Note that there may exist
multiple distinguishable radio interfaces or communication
protocols within any particular sub-band. The simultaneous
transmission over multiple radio interfaces by a single mobile
terminal has been previously discussed in the literature under
the term of bandwidth aggregation (BAG) [18]–[20], which
aims at performing simultaneous use of multiple interfaces
to improve transmission quality or throughput depending on
designs. In this work, however, the focus is on the sub-band
selection problem that arise in wide-band spectrum sensing
instead of the optimization of the BAG problem.

Note that many schemes presented in CR literature, such
as in [13], [21], [22], have previously proposed and derived
the channel sensing algorithms for narrow-band scenarios.
As opposed to the wide-band spectrum sensing, in narrow-
band spectrum sensing problems, hardware reconfigurations
are generally not considered. For example, the authors in [13]
developed an optimal myopic3 sensing scheduling policy in a
centralized multi-agent setup for a group of traditional narrow-
band CRs with a given set of channels. In [21], assuming that
the channel state transition probabilities are partially known,
the authors developed a myopic channel sensing strategy for
the narrow-band CRs and showed that this myopic policy
is the optimal Partially Observable Markov Decision Process
(POMDP) solution under the assumption of a certain ordering
of the state transition probabilities of individual channels.
In [22], the authors developed stationary optimal spectrum
sensing and access policies under the framework of POMDP
to maximize the CR’s throughput on a given set of channels
in a narrow-band setup with battery life constraints. However,
these spectrum sensing policies cannot be easily applied in a
wide-band spectrum sensing scenario since the reconfigurable
RF front-end is not considered and the reconfiguration costs
are not taken into account to jointly optimize the performance.
As a result, in this paper, we propose the wide-band spectrum
sensing scheduling policies with realistic reconfigurable RF
front-end considerations. In [25], the authors investigated
optimal sensing time and power allocation strategies in order to
maximize the transmission throughput in a wide-band sensing
setup. However, there is a fundamental difference between
our system setup and the one in [25]. In particular, what is
meant by ‘wide-band’ in our system is different from that of
[25], and all similar previous work. In [25], wide-band sensing
refers to simultaneous sensing of a frequency band containing
multiple narrowband channels. The term wide-band is justified
because the spectrum spanned by these channels can be larger
compared to a single narrowband channel. However, the wide-

3Myopic policies aims at maximizing an instantaneous reward at each time
step, as opposed to a long-term reward as considered in a Partially Observable
Markov Decision Process (POMDP) setup [23], [24]. The optimal myopic
solution refers to the optimal solution within the class of myopic policies.

band system assumed in this work is conceivably much wider
than that of [25]. In fact, the wide spectrum band considered
in [25] is somewhat equivalent to a single sub-band assumed
in our setup. In [25] and other similar previous work, the
wide-band operation is limited by the RF front-end and the
A/D circuits, whereas our wide-band CRs are presumed to be
equipped with real-time reconfigurable RF front-ends covering
a set of wide spectrum ranges in each mode of operation,
and each of these spectrum ranges are divided into a set
of sub-bands that are still wide and may contain multiple
(narrowband) channels [3], [7], [26]. Clearly, given the state-
of-the-art wide-band antenna/RF front-end designs [27]–[30],
and the signal processing burdens, the wide-band assumption
in those previous proposals can only imply something akin
to one of the sub-bands assumed in our work. As a result,
while spectrum sensing decisions in many of the previous
proposals are concerned with channel selection, our focus is
on the problem of which subset of channels (i.e. the sub-band)
to sense.

Note that although the wide-band spectrum sensing schedul-
ing problem may be formulated as a POMDP problem4 when
the RF environment exhibit Markov properties, the optimal
solution to the POMDP is computationally prohibitive because
of the continuum of the state space, as also noted in [13], [21],
[31]. As a result, three myopic sub-band selection policies
are proposed in this paper to myopically maximize the prob-
ability of finding spectrum opportunities and communication
throughput. The proposed policies take into account realistic
reconfiguration energy consumptions and time delays. The
first sub-band selection policy rely on the knowledge of the
channel Markov properties. The second sub-band selection
policy is proposed to rely on the Markov properties of the
sub-bands to reduce the complexity. Note that, although both
of these two policies may achieve good results, they rely on the
knowledge of the Markov properties of the RF environment
and thus may become computationally infeasible when the
knowledge of the Markov models are unavailable. As a result,
the third sensing policy based on the Q-learning [32] technique
is proposed to avoid the necessity of any knowledge of the
Markov properties.

The Q-learning algorithm is one of the most important
temporal difference (TD) reinforcement learning (RL) methods
and it has been shown to converge to the optimal policy
when applied to single agent Markov decision process (MDP)
models [32], [33]. The Q-learning has also been recently
applied to CRs [34], [35]. Although the sub-band selection
problem is a POMDP problem, we may still use the Q-learning
technique to achieve reasonable performance results since it
has been shown that the application of Q-learning in POMDP
problems may achieve near-optimal solutions [14], [36], [37].
Performance of the three policies are compared and discussed
against a performance upper-bound of the optimal solution to
the POMDP formulation. We validate the suitability of the Q-
learning technique for this type of wide-band spectrum sensing

4The wide-band spectrum sensing scheduling problem can be formulated
as a POMDP problem since at each time step, only the state of the sensed
sub-band is revealed and the complete state of the RF environment is not fully
observable.
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problems by showing that it achieves good performance in
both simulated and real measured RF environments.

The remainder of the paper is organized as follows: In
Section II we introduce the system model and problem for-
mulation. In Section III, the sub-band selection policies for
spectrum sensing are developed. In Section IV, the alternative
Q-learning based solution is proposed. In Section V we
show the simulation results. In Section VI we conclude by
summarizing our results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Spectrum Segmentation Model for Wide-band Sensing

The proposed CR architecture consists of a tunable RF
front-end with wide-band capabilities and a cognitive engine
(CE), as shown in Fig. 1. The CE is equipped with signal
processing, autonomous learning and decision-making capa-
bilities, as proposed in the Radiobot architecture in [3]. The
CE controls the RF front-end to perform spectrum sensing and
communication functionalities.

We assume that a reconfigurable antenna is adopted to
cover R number of different frequency bands W1, · · · ,WR

spanning a wide range of frequency spectrum. Note that
the frequency bands W1, · · · ,WR are determined by the
capabilities of each configuration of the antenna. We denote
by Wl = |Wl| > 0 the bandwidth of the frequency band
Wl, for l ∈ {1, · · · , R}. Since the bandwidths W1, · · · ,WR

are considered to be still wide, which may require further
segmenting those frequency bands into smaller sub-bands prior
to processing. Therefore, the sensing reconfigurable antenna
will be connected to a reconfigurable band-pass filter or a
filter bank of reconfigurable band-pass filters allowing proper
segmentation of each of the frequency bands. We also assume
that spectrum sensing can only be performed on a single sub-
band at a time due to software and hardware limitations. There
are several characteristics that need to be specified in order to
determine the optimal number of sub-bands in each frequency
band, such as the sampling rate of the ADC, the required
quantization accuracy, and the power consumptions to name
a few. However, we omit the problem of finding the optimal
number of sub-bands in each frequency band due to the focus
of this work. Without loss of generality, we may assume
that there are Nl number of sub-bands in the l-th frequency
band Wl and denote by Nl the set of sub-bands contained
in the l-th RF configuration mode, with |Nl| = Nl. An
illustration of the frequency bands and the further segmented
sub-bands is shown in Fig. 2. Note that the collection of
the operable wide frequency bands may not perfectly cover
the whole spectrum range due to antenna imperfections. The
operable wide frequency bands may also overlap and/or be
non-contiguous. Such reconfigurable antenna designs can be
found in [27]–[30].

A spectrum sensing scheduling policy can be designed to
dynamically change the RF front-end configurations to aim at
suitable sub-bands to perform spectrum sensing. This sensing
scheduling policy chooses a sub-band according to the real-
time variations of the RF environment in order to maximize
potential communication opportunities. We propose such a

Fig. 2. An illustration of wide frequency bands and further segmented sub-
bands in each wide frequency band.

sensing selection policy for the CR to perform spectrum sens-
ing. We assume that the total bandwidth of interest is divided
into Nb =

∑R
l=1Nl sub-bands and there are M1, · · · ,MNb

number of identified communication channels in each of the
Nb sub-bands respectively. In order to develop the proposed
sub-band selection policies in Section III, we introduce the
channel and sub-band Markov models in the rest of this
section.

B. Channel Markov Model

We assume a semi-infinite slotted time horizon with each
time slot having an equal time length of T sec. We denote
by k = {0, 1, 2, · · · } the time indices of the time slots.
For simplicity, we assume that the state of a communication
channel does not change within a single time slot, so that the
CR may spend a short period of time at the beginning of each
time slot to determine the corresponding state. We denote by
Si,j(k) ∈ {0, 1} the true state of the (i, j)-th channel (the j-th
channel in the i-th sub-band) at time k, for j ∈ {1, · · · , Di}
and i ∈ {1, · · · , Nb}. As shown in Fig. 3, for a single channel,
we may assume that the state busy (state 0) indicates the
channel is occupied by other radio activities, and the state
idle (state 1) indicates no radio activities over that channel
and it is available for a CR to access. As a result, the state
dynamics of each communication channel may be modeled as
a two-state Markov chain. This Markov model, also known
as the Gilbert-Elliot model [38], has been commonly used
to abstract physical primary channels with memory (see, for
example [13], [39]). Note that it is worth mentioning that the
choice of the value T may play a critical role in terms of
the validity of the channel Markov models. In particular, the
channel Markov property may not hold for some choices of T ,
or the channel dynamics may be better represented by higher-
order Markov models as opposed to the first order Markov
model considered in this paper. However, due to the focus of
this work, the problem of finding the appropriate value of T
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Fig. 1. System architecture for the proposed wide-band CR.

is not investigated. Detailed discussions on this topic can be
found in [40] and the references therein.

Fig. 3. The Markov chain model for a single communication channel
(Gilbert-Elliot model).

Since different channels may exhibit non-identical statistical
behaviors [17], the assigned Markov chain models are, in
general, non-identical, i.e. the state transition probabilities and
the stationary distributions are different. The time-invariant
transition probability of the (i, j)-th channel Markov model
from state x to state y is defined as pi,jx,y = Pr{Si,j(k +
1) = y | Si,j(k) = x}, ∀x, y ∈ {0, 1}. The transition
probability matrix of the (i, j)-th channel Markov model is

denoted by Pi,j =

(
pi,j0,0 pi,j0,1
pi,j1,0 pi,j1,1

)
. We denote by vector

πi,j =
[
πi,j0 , πi,j1

]
the stationary distribution vector, such

that πi,j = πi,jPi,j , with πi,j0 and πi,j1 being the stationary
probabilities of busy and idle, respectively.

C. Sub-band Markov Models

We may further define the random variable N idle
i (k) as

the number of idle channels in the i-th sub-band at time k.
Note that, due to the Markov property of the communication
channels, the dynamic of N idle

i (k) also forms a Markov chain
as shown in Fig. 4. Since there are Di number of channels in

Fig. 4. The Markov model of the i-th sub-band. The state of the Markov
model is defined as the number of idle channels in the i-th sub-band.

the i-th sub-band, we obtain a (Di + 1)-state Markov chain
for the i-th sub-band, with a state space of {0, 1, · · · , Di}. As
shown in Fig. 4, the time-invariant transition probability of the
Markov model from state m to state n is defined as

pim,n = Pr{N idle
i (k + 1) = n | N idle

i (k) = m},
∀m,n ∈ {0, 1, · · · , Di}. (1)

The (Di + 1) × (Di + 1) transition probability ma-
trix of the i-th sub-band is then denoted by Pi =
pi0,0 pi0,1 · · · pi0,Di

pi1,0 pi1,1 · · · pi1,Di

...
...

. . .
...

piDi,0
piDi,1

· · · piDi,Di

 . We denote by vector πi =

[
πi0, · · · , πiDi

]
the stationary distribution vector, such that

πi = πiPi with πi0, · · · , πiDi
being the stationary probabilities

of the states 0, 1, · · · , Di, respectively.

III. SUB-BAND SELECTION IN WIDE-BAND SPECTRUM
SENSING

A. Spectrum Sensing Detector Characteristics

Under the assumption that the CR has no knowledge of
the signaling on the communication channels, we adopt an
energy detection based detector for spectrum sensing [13].
Since the optimality criterion is to maximize the probability of
detection of idle channel under the constraint of the collision
probability (claiming a channel idle when it is actually busy
leads to a collision), we develop an energy-based Neyman-
Pearson (NP) detector [13]. Note that although Matched-filter
based or cyclostationarity-based NP detectors may be adopted
under different assumptions on the knowledge of the channel
signaling, in this paper we adopt the energy-based NP detector
for illustration purpose.

Within the k-th time step, for the i-th sub-band, we consider
a sampled data sequence {y(t, k, i)}Ui−1

t=0 , with data length of
Ui, and Ts as the sampling period. As a result, the sensing
duration for the i-th sub-band is T i0 = UiTs. We denote by
{Y (n, k, i)}Ui−1

n=0 its discrete Fourier transform (DFT):

Y (n, k, i) =

Ui−1∑
t=0

y(t, k, i)e−j2πnt/Ui , for n = 0, · · · , Ui− 1. (2)

In order to detect the state of each and every channel,
we find the average power in a spectral window of odd
length Li,j , centered at f i,jc , which can be approximated by
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T (f i,jc , k, i) =
∑(Li,j−1)/2

l=−(Li,j−1)/2 |Y (ni,j + l, k, i)|2. Note that
ni,j is the discrete frequency point corresponding to f i,jc . The
collection of non-overlapping spectral windows then represent
the channels within the target sub-band. In order to derive
an NP detector, we determine the distribution of T (f i,jc , k, i)
under the two hypotheses:

H0 : yi,j(t, k) = si,j(t, k) + wi,j(t, k), (3)
H1 : yi,j(t, k) = wi,j(t, k), (4)

where we denote by yi,j(t, k), si,j(t, k), and wi,j(t, k) the
assumed receiver samples, the received signal samples, and
the noise samples, corresponding to the (i, j)-th channel,
respectively. Note that {wi,j(t, k)}Ui−1

t=0 are modeled as i.i.d.
Gaussian random variables, s.t. wi,j(t, k) ∼ N(0, Pw). The
signal {si,j(t, k)}Ui−1

t=0 in (3) can be modeled as i.i.d. Gaus-
sian random variables, s.t. si,j(t, k) ∼ N(0, Ps). This is a
reasonable assumption for signals that are perturbed by prop-
agation through turbulent media and multipath fading [41]. In
the following, we drop the time step and sub-band/channel
indices for notational simplicity: we let y(t) = yi,j(t, k),
Y (n) = Y (n, k, i), T (fc) = T (f i,jc , k, i), n = ni,j L = Li,j ,
and U = Ui . We denote by y = [y(0), · · · , y(U − 1)]T ,
Y = [Y (n−L−1

2 ), · · · , Y (n+L−1
2 )], YR = <{Y} and YI =

={Y}, where <{} and ={} denote the real and imaginary
parts, respectively. The DFT operation can be equivalently
expressed as: YC ,

[
YR YI

]T
= Ay, where A is a 2L-by-

U matrix of DFT coefficients. Since the time domain samples
{y(t)}U−1

t=0 are zero-mean i.i.d. Gaussian random variables,
then YC is also a jointly Gaussian random vector. It can be
shown that, under H0, E{YC

(
YC
)T } = L(Ps + Pw)I2L

(where I2L is an 2L-by-2L identity matrix) and under H1,
E{YC

(
YC
)T } = LPwI2L. Therefore, elements of YC are

uncorrelated. Since YC is jointly Gaussian with uncorre-
lated elements, the elements of YC are then independent.
Also, since all the elements have the same variance under
each of the hypotheses, elements of YC are assumed to
be i.i.d. zero-mean Gaussian random variables with variance
L(Pw + Ps) under H0, and LPw under H1. Under the above
assumptions, T ′(fc) , 1

L(Pw+Ps)T (fc) is a sufficient statistic
for the hypothesis testing and follows a χ2

2L distribution.
The threshold η for idle channel detection is defined s.t.
Pr{T ′(fc) < η|H0} ≤ αF , where αF is the acceptable false
alarm probability, or in our case, the collision probability with
the undetected signal activities on the channel. Note that the
signal and noise power can be estimated, for example, by
using the method proposed in [42]. The resulting threshold can
then be found as η = 2γ−1(L;αFΓ(L)) from the cumulative
distribution function (cdf) of the χ2

2L distribution, where
γ−1 is the inverse lower incomplete gamma function (where
γ(k;x) =

∫ x
0
tk−1e−tdt and the inverse is w.r.t. the second

argument) and Γ(k) =
∫∞

0
tk−1e−tdt is the gamma function.

The NP decision rule δ for idle state detection of channel
centered at fc is then defined as:

δ (T ′(fc)) =

{
1 if T ′(fc) < η
0 otherwise , (5)

where the decision 1 stands for claiming a channel as

in idle state (state ‘1’), and the decision 0 stands for
claiming a channel as in busy state (state ‘0’). The
detection probability (detecting idle channel) is PD =
Pr{T ′(fc) < η|H1}, which can also be computed as
PD = Pr {(1 + SNR)T ′(fc) < (1 + SNR)η|H1} , where we
denote by SNR = Ps/Pw the signal-to-noise ratio. Since
(1 + SNR)T ′(fc) = 1

LPw
T (fc) is χ2

2L distributed un-
der H1, the detection probability can be found as PD =

1
Γ(L)γ

(
L; (1+SNR)η

2

)
. Appending back the time step and

sub-band indices, we obtain the probability of detection of
idle channel, at the k-th time step for the i-th sub-band, as
PD(k, i) = 1

Γ(L)γ
(
L; (1+SNR(k,i))η(i)

2

)
, where the threshold

η(i) = 2γ−1(L;αF (i)Γ(L)), with the acceptable false alarm
probability of αF (i) in the i-th sub-band.

Note that since different frequency bands may have different
spectrum sensing requirements. For instance, in some licensed
frequency bands, there can be a more stringent regulation of
collisions with licensed users such that the upper bound on
the probability of collision is low. This requires a CR to spend
more time on spectrum sensing in order to achieve the required
level of probability of detecting idle channels. On the other
hand, in an unlicensed frequency band, such as the Industrial,
Scientific and Medical (ISM) band, the collision is not often
strictly controlled. Hence, a CR may spend less time to
detect a transmission opportunity at the expense of a possible
higher collision probability. This can be easily understood
by examining the expression of PD(k, i). In particular, since
PD(k, i) = 1

Γ(L)γ
(
L; (1 + SNR(k, i))γ−1(L;αF (i)Γ(L))

)
,

it is straightforward to confirm that PD(k, i) decreases as
αF (i) decreases, and PD(k, i) increases as L increases. As
a result, for a lower value of αF (i), PD(k, i) is decreased.
However, one may increase PD(k, i) back to the desired level
by increasing L. One effective way to increase L is to increase
the sensing duration (or increasing the number of samples Di

under the same sampling rate) in order to obtain a higher
resolution of the DFT in the frequency domain, since it would
need a larger L to cover the bandwidth of a channel with
higher frequency resolution.

B. Channel State Belief Update

We may denote by Ŝi,j(k) the outcome of the NP de-
tector at time k, as the estimate of the state of the (i, j)-
th channel. In particular, we have Ŝi,j(k) , δ

(
T ′(f i,jc )

)
.

We may then define the channel state belief bi,js (k) for the
(i, j)-th channel as the probability of the channel in state
s ∈ {0, 1} at time k, given the observation history on
that particular channel. In particular, we define bi,js (k) ,
Pr{Si,j(k) = s | Ŝ0:k−1

i,j )}, for s ∈ {0, 1}, where we denote
by Ŝ0:k−1

i,j = [Ŝi,j(0), · · · , Ŝi,j(k − 1)]T the channel state
detection history from time step 0 to time step k − 1. When
the channel state detection result Ŝi,j(k − 1) is obtained, the
channel state belief bi,js (k) can the be found iteratively as
in (6), where we have the following from the NP detector
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bi,js (k) = Pr{Si,j(k) = s | Ŝ0:k−1
i,j } =

∑
s′∈{0,1} p

i,j
s′,sPr{Ŝi,j(k − 1)|Si,j(k − 1) = s′}Pr{Si,j(k − 1) = s′|Ŝ0:k−2

i,j }∑
s′∈{0,1} Pr{Ŝi,j(k − 1)|Si,j(k − 1) = s′}Pr{Si,j(k − 1) = s′|Ŝ0:k−2

i,j }

=

∑
s′∈{0,1} p

i,j
s′,sPr{Ŝi,j(k − 1)|Si,j(k − 1) = s′}bi,j

s′ (k − 1)}∑
s′∈{0,1} Pr{Ŝi,j(k − 1)|Si,j(k − 1) = s′}bi,j

s′ (k − 1)
, for s ∈ {0, 1}. (6)

characteristics:
Pr{Ŝi,j(k − 1) = 1|Si,j(k − 1) = 1} = PD(k − 1, i)

Pr{Ŝi,j(k − 1) = 0|Si,j(k − 1) = 1} = 1− PD(k − 1, i)

Pr{Ŝi,j(k − 1) = 1|Si,j(k − 1) = 0} = αF (i)

Pr{Ŝi,j(k − 1) = 0|Si,j(k − 1) = 0} = 1− αF (i)

. (7)

Note that, however, to obtain bi,js (k), for k ∈ {1, 2, · · · }
using (6), it requires that the (i, j)-th channel is sensed at
time k − 1. When this is not the case, we use the Markovian
property to update the channel belief. In particular, we have
[bi,j0 (k) bi,j1 (k)] = [bi,j0 (k − 1) bi,j1 (k − 1)]Pi,j , where Pi,j

is the transition probability matrix of the (i, j)-th channel.
We denote by Ti,j(k) ∈ {0, T, 2T, · · · } the discrete-valued

random variable of the idle sojourn time of the (i, j)-th channel
starting from time k. The idle sojourn time refers to the time
duration of the channel being consecutively idle. Since we
assumed that the state of any communication channel does not
change within a single time slot, the sojourn time of a channel
is discrete-valued. The probability mass function (pmf) of
Ti,j(k) can be found as in (8) by using the Markov properties
and the channel belief, where we denote by (pi,j1,1)n−1 the
(n − 1)-th power of pi,j1,1. The expected value of Ti,j(k) can
then be found as

E{Ti,j(k)} =

∞∑
n=0

fTi,j ,k(nT ) · nT . (9)

C. Sub-band Selection Policy Based On The Channel Markov
Models

In order to derive the sensing sub-band selection policy,
let us first denote by BWi,j the identified channel band-
width of the j-th channel in the i-th sub-band, for i ∈
{1, · · · , Nb} and j ∈ {1, · · · , Di}. Note that the instantaneous
transmission rate of a channel with a bandwidth of B is
r = B log2

(
1 + h2P

BN0

)
bits/sec, where we denote by h, P ,

and N0 the channel coefficient between the receiver and
the transmitter, the transmission power, and the single-sided
noise power spectrum density (PSD) level, respectively. We
assume that the distributions of the channel coefficients are
either known or can be obtained through pilot signal learning
within the CR devices. We denote by fHi,j

the corresponding
distribution function of the channel coefficient of the (i, j)-th
channel.

In order to take into account the practical RF front-end
reconfigurable energy consumptions in the sub-band selection
decision-making, we may denote by cs(i

′, i) the switching
energy cost from the i′-th sub-band to the i-th sub-band, such
that

cs(i
′, i) =

c1 + c(T i0), if i′ ∈ Nl′ , i ∈ Nl, and l′ 6= l

c2 + c(T i0), if i′ ∈ Nl′ , i ∈ Nl′ , and i′ 6= i

c(T i0), if i′ = i

, (10)

where c1 denotes the energy cost when switching between
different RF configuration modes, and c2 denotes the energy
cost when switching between different sub-bands within the
same RF configuration mode. The quantity c(T i0) denotes the
energy cost required for spectrum sensing in the i-th sub-band,
as a function of the required sensing time T i0. Since hardware
reconfiguration may require more energy consumption, we
assume that c1 > c2. Note that in practice c1 and c2 may
not necessarily be constant. In such cases, we may easily re-
adjust them depending on the specific adopted RF front-end.

We may also define ts(i
′, i) the switching time delay

incurred when the CR switches from the i-th sub-band to the
i′-th sub-band, such that

ts(i
′, i) =

t1, if i′ ∈ Nl′ , i ∈ Nl, and l′ 6= l

t2, if i′ ∈ Nl′ , i ∈ Nl′ , and i′ 6= i

t3, if i′ = i

, (11)

where t1, t2 and t3 include the computation time of decision-
making at each time step, the circuit switching time, software
reconfiguration time, and settling time for the RF front-end
(especially the settling time for the phase-locked loop (PLL)
in the frequency synthesizer [43]).

In order to consider the bandwidth aggregation, we may
assume that the CR is capable of utilizing up to a maximum
of G idle channels simultaneously, all from a single sub-band.
When the CR has the knowledge of channel Markov models
but not the Markov models of the sub-bands, we may define
the total expected communication throughput by switching
from the i′-th sub-band to the i-th sub-band in time slot k
as

Ri′(i, k) =
∑
j∈M∗i,G

EHi,j
{ri,j} ×

×min
{[

E{Ti,j(k)}
(

1− T i
0

T

)
− ts(i′, i)

]
, Tmax

}
, (12)

where function min{x, y} = x, if x ≤ y and min(x, y) = y
otherwise. Note that the expectation of transmission rate
EHi,j

{ri,j} on the (i, j)-th channel in (12) is with respect
to the channel coefficient and is defined as EHi,j

{ri,j} =∫
BWi,j log2

(
1 + h2P

BWi,jN0

)
× fHi,j (h)dh. The expression[

E{Ti,j(k)}
(

1− T i
0

T

)
− ts(i′, i)

]
in (12) gives the expected

transmission time on the (i, j)-th channel. We denote by
Tmax the maximum considered staying time for any sub-band.
The Tmax is introduced to prevent the CR from selecting
a sub-band when the achievable transmission rate in a sub-
band is extremely low, but the expected channel idle sojourn
time is extremely large. In this case, although the expected
throughput may be large, the extremely low transmission rate
may not be desirable. We denote by M∗i,G in (12) the set of G
channels in the i-th sub-band that have top G highest expected
transmission throughput.
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fTi,j ,k(nT ) = Pr{Ti,j(k) = nT | Ŝ0:k−1
i,j } =

∑
s∈{0,1} Pr{Ti,j(k) = nT, Ŝ0:k−1

i,j |Si,j(k) = s}Pr{Si,j(k) = s}

Pr{Ŝ0:k−1
i,j }

= =

∑
s∈{0,1} Pr{Ti,j(k) = nT |Si,j(k) = s}Pr{Ŝ0:k−1

i,j , Si,j(k) = s}

Pr{Ŝ0:k−1
i,j }

=
∑

s∈{0,1}
Pr{Ti,j(k) = nT |Si,j(k) = s}Pr{Si,j(k) = s|Ŝ0:k−1

i,j } =
{
bi,j0 (k), if n = 0

bi,j1 (k) · (pi,j1,1)n−1 · pi,j1,0, if n ∈ {1, 2, 3, · · · }
, (8)

When the CR has only the knowledge of channel Markov
models, by taking the switching energy and time delays into
account, we may then define the quality of the i-th sub-band
(switching from the i′-th sub-band) at time k as

Qi′(i, k) = Ri′(i, k)− βcs(i′, i), (13)

where the coefficient β (bits/Joule) is used to convert the units
and to help weighting the energy consumption priority. The
sub-band selection policy a(i′, k) (in the i′-th sub-band and
time slot k) may then be defined as

a(i′, k) = arg max
i∈{1,··· ,Nb}

Qi′(i, k). (14)

D. Sub-band Selection Policy based on the Sub-band Markov
Models

In the case when the knowledge of both the sub-band
Markov models and the channel Models are available, we
may define the total expected communication throughput by
switching from the i′-th sub-band to the i-th sub-band in time
slot k as in (15) where we denote by N̂ idle

i (k) the estimate
of the number of idle channels in the i-th sub-band at time k.
The term min

{
N̂ idle
i (k), G

}
in (15) is the estimated number

of accessible and usable channels at time k. The estimate of
N̂ idle
i (k) may be obtained, for example, using the following

two criteria:
1) The maximum a posteriori (MAP) criterion: N̂ idle

i (k) =
arg max

n∈{0,··· ,Di}
Pr{N idle

i (k) = n | bi0(k)}, where we denote

by bi0(k) = [bi,10 (k), · · · , bi,Di

0 (k)]T the belief vector.
The probability Pr{N idle

i (k) = n | bi0(k)} is found as

Pr{N idle
i (k) = n | bi0(k)}

= Pr


Di∑
j=1

Si,j(k) = n | bi0(k)


=

∑
Ai,n

 ∏
j∈Ai,n

bi,j0 (k)

 ∏
j∈A′i,n

(1− bi,j0 (k))

 ,

where we denote by Ai,n a subset of channels in the i-th
sub-band, with cardinality n and we denote by A′i,n the
relative complement of Ai,n, with respect to the set of all
channels in the i-th sub-band. Note that the summation
is over all possible Ai,n’s.

2) The minimum mean square error (MMSE) crite-
rion: N̂ idle

i (k) = E{N idle
i (k) | bi0(k)} =∑Di

n=1 nPr{N idle
i (k) = n | bi0(k)}.

Note that although the MMSE estimator may give a non-
integer result for N̂ idle

i (k), it would still make sense when
we use N̂ idle

i (k) to obtain the expected sub-band communi-
cation throughput. We verify in simulations that both methods
achieve close results and thus we choose to use the MAP
criterion since its computation is straightforward.

Note that, the average expected channel throughput per
channel within the i-th sub-band in (15) requires the knowl-
edge of the individual channel Markov models in order to
obtain E{Ti,j(k)}. This, of course, is not possible when the
channel Markov parameters are unavailable. However, when
only the sub-band Markov model is assumed to be known,
we may replace the average expected channel throughput
term by r̄i min

{[
T̄i

(
1− T i

0

T

)
− ts(i′, i)

]
, Tmax

}
, where we

denote by r̄i and T̄i the average achievable individual channel
throughput and the average idle sojourn time of the channels
in the i-th sub-band. Note that the average individual channel
throughput and the average channel idle sojourn time may be
easily summarized from past channel access history. However,
due to the space limitation, we do not go into details of
estimation methods for r̄i and T̄i. Note that the function
min{x, y} = x, if x ≤ y, and min{x, y} = y otherwise.

The quality of the i-th sub-band may then be defined as:

Qi′(i, k, N̂
idle
i (k)) = Ri′(i, k, N̂

idle
i (k))− βcs(i′, i). (16)

The sub-band selection policy a(i′, k) (in i′-th sub-band and
time slot k) is defined as

a(i′, k) = arg max
i∈{1,··· ,Nb}

Qi′(i, k, N̂
idle
i (k)). (17)

When the knowledge of the sub-band Markov models is not
directly available, but the knowledge of the channel Markov
models is available, one may obtain the knowledge of the
sub-band Markov models from the knowledge of the channel
Markov models, at least in theory (However, note that this
is extremely unlikely when channels are non-i.i.d.). Note that
the time-invariant transition probability pim,n of the i-th sub-
band may be expressed as in (18), for all m ∈ {0, · · · , Di}
and n ∈ {0, · · · , Di}, where we denote by Ai,m a subset
of channels in the i-th sub-band, with cardinality m and we
denote by A′i,m the relative complement of Ai,m with respect
to the set of all channels in the i-th sub-band. The summation
in (18) is taken over all possible Ai,m’s and all possible
combination of states si,1, · · · , si,Di

, where si,j ∈ {0, 1} for
all j ∈ {1, · · · , Di}, such that

∑Di

j=1 si,j = n.
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Ri′ (i, k, N̂
idle
i (k)) =

1

Di

Di∑
j=1

EHi,j
{ri,j}min

{[
E{Ti,j(k)}(1−

T i0
T

)− ts(i′, i)
]
, Tmax

}min
{
N̂ idle
i (k), G

}
, (15)

pim,n = Pr


Di∑
j=1

Si,j(k + 1) = n |
Di∑
j=1

Si,j(k) = m

 =
∑
Ai,m

∑
{si,j} s.t.

∑Di
j=1 si,j=n


 ∏
j∈Ai,m

pi,j1,si,j


 ∏
j∈A′i,m

pi,j0,si,j


 . (18)

On the other hand, the stationary probability πim, for m ∈
{0, · · · , Di} can be expressed as

πim = Pr


Di∑
j=1

Si,j(k) = m

 . (19)

In case the channels are independent, the stationary distribu-
tion can be further expressed as

πim =
∑
Ai,m

 ∏
j∈Ai,m

πi,j1

 ∏
j∈A′i,m

πi,j0

 . (20)

The summation in (20) is taken over all possible Ai,m’s.
The closed-form expression of (20) requires a computational
complexity of

[(
Di

m

)
×Di

]
− 1 [17] when channels are as-

sumed non-identical, but independent. In case the channels
in a sub-band are non-identical, but statistically independent,
we may also approximate the stationary distributions using
the Poisson-Normal approximation method that is proposed in
[17]. In this paper, however, since we assume that channels
may be correlated (i.e. non-independent) in general, to obtain
the closed-form expression of πim requires the knowledge of
the joint distribution of Si,j(k)’s, which is even harder to be
obtained. We can see that the computational complexity to ob-
tain the transition probabilities is at least

[(
Di

m

)(
Di

n

)
×Di

]
−1,

which is even higher than that of obtaining the stationary
distributions. This observation suggests that to obtain the
knowledge of the sub-band Markov models from the channel
Markov models may not be advisable.

As an alternative, we may adopt the hidden Markov model
(HMM)-based parameter estimation algorithm proposed in
[13] to perform on-line estimation of the transition proba-
bilities of the Markov chain model, without the computation
of (18). The estimation algorithm has been shown to have
a computation complexity linear in the number of the states
of the Markov chain, or in this case, Di, the number of
channels in the i-th sub-band. However, when the number
of sub-bands and the number of channels in each sub-band
are both large, the overall computational complexity is still
high. Moreover, to obtain accurate estimates of the transition
probability matrices, it may require a long period of time. As
a result, in the case when the sub-band transition probabilities
are unknown but the channel Markov models are known, we
suggest to use the channel Markov models based sub-band
selection policy defined in (14). When both the knowledge
of the channel Markov models and the sub-band Markov
models are available, one may choose either (12) or (15)

to express the expected sub-band throughput. We compare
the resulting performances between these two strategies in
simulations later in Section V. In the case when both channel
and sub-band Markov models are unknown, we propose a Q-
learning based Machine learning technique in Section IV to
bypass the computation complexity.

IV. MACHINE LEARNING AIDED SUB-BAND SELECTION

In the case when neither the channels’ nor the sub-bands’
Markov models are known, we may rely on Reinforcement
Learning (RL) techniques [32]. A Q-table Q(s, a) is main-
tained that is used to summarize the value (benefit) of each
action a in each and every state s. In our case, the action a
refers to the selection of a sub-band, with a ∈ N1∪N2 · · ·∪NR.
Each time an action is chosen in a certain state, the Q-table
may be updated using the following rule:

Q(sk−1, ak−1)← (1− α)Q(sk−1, ak−1)

+α
[
rk (sk−1, ak−1) + γmax

a
Q(sk, a)

]
, (21)

where we denote by sk−1 and ak−1 the observed state and the
action in time interval k − 1, respectively. Note that the state
sk does not refer to the state of the whole RF environment.
This is explained in the following. The action ak−1 denotes
the index of the sub-band selected that is to be sensed at time
k. We denote by α ∈ (0, 1) the learning rate. The function
rk(sk−1, ak−1) denotes the reward obtained at time k, as a
result of the action ak−1 in state sk−1, which can be defined as
the actual achieved performance. In the simulation, the reward
is calculated as

rk(sk−1, ak−1) = r̃(sk−1, ak−1)− βcs(ak−2, ak−1) (22)

where we denote by r̃(sk−1, ak−1) the actual achieved com-
munication throughput by taking action ak−1 in state sk−1.
The term cs(ak−2, ak−1) in (22) is the switching energy cost
from the ak−2-th sub-band to ak−1-th sub-band as defined in
(10), and β is the same coefficient as in (13). We denote by
γ the discount factor, with γ ∈ [0, 1). Note that the state at
time k−1 may be defined as sk−1 = [a(k−2), N̂ idle

a(k−2)(k−
1)], where a(k− 2) denotes the index of the sensed sub-band
in time interval k − 1. Also note that, the state sk in (21) is
the result of taking action ak−1 in state sk−1 and the term
γmax

a
Q(sk, a) represents the discounted delayed reward by

taking action ak−1 in state sk−1. The value of max
a
Q(sk, a)

is obtained by finding the maximum value in the row of the
Q-table corresponding to the state sk. The decision-making
rule for choosing an action a∗ in the state s may be defined
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as a∗ = arg max
a

Q(s, a). Since the state of the whole RF

environment is not obtained at each time due to the RF
hardware limitation (sensing can be done only in one sub-
band at a time), the Q-learning application is for the POMDP
case as discussed in the introduction section.

Note that the Q-learning is usually implemented as a balance
between exploration and exploitation. Exploration refers to
the effort of searching new opportunities, whereas exploitation
refers to taking actions for immediate reward. Maintaining a
certain level of exploration may help the agent avoid being
trapped in local maxima. An exploration rate ε ∈ (0, 1) is
often defined, such that the agent each time takes an action
using a∗ with probability 1 − ε and uniformly choose an
action out of all the possible actions with probability ε.
Choosing a high exploration rate may help the agent to quickly
understand the environment. However, it may also reduce
the overall performance due to excessively exploring. On the
other hand, a low exploration rate may increase the required
time for the algorithm to converge to the optimal solution.
In the simulation section, we investigate the performance of
the Q-learning technique using different parameter options.
The variable parameters include the exploration rate ε, the
learning rate α, and the discount factor γ. Since the Q-learning
technique is simple to implement and it does not require
any prior knowledge of the environment, we also compare
its performance to the previously proposed sub-band selection
policies to validate the application of Q-learning techniques in
this type of problems. A temporal illustration of the Q-learning
procedure on the slotted time horizon is shown in Fig. 5.

Fig. 5. An illustration of the Q-learning procedure on the slotted time horizon.

V. SIMULATION RESULTS AND DISCUSSIONS

In order to evaluate the performance of the proposed sub-
band selection policies, we have conducted simulations for
3 test cases. For all the test cases, we assume that the
spectrum sensing is errorless for illustration. In other words,
the channel/sub-band states are revealed exactly each time the
sub-band is sensed. Note that the errorless spectrum sensing is
a special case of the formulation presented in this paper, when
assumed, the whole formulation remains unchanged except
that we have the state belief bi,j0 (k) = 0, bi,j1 (k) = 1 when

the (i, j)-th channel state is revealed as Si,j(k) = 1, and
bi,j0 (k) = 1, bi,j1 (k) = 0 when Si,j(k) = 0. The simulation
settings for the 3 test cases are summarized in Table. I.
Note that the test cases 1, and 2 are based on simulated
RF environments, whereas the test case 3 is based on real
RF measurements for the 20 − 1500MHz band, with center
frequency at 770 MHz inside a modern office building at
Aachen, Germany [44].

For test cases 1 and 3, we assume that all channels have the
same bandwidth, but the channel coefficients are independently
Rayleigh-distributed. On the other hand, in test case 2, the
individual channel throughputs are specifically assigned with
non-random values for comparison purposes: in each configu-
ration mode, one of the sub-bands is assumed to have channels
with the same individual channel throughputs, whereas the
other sub-band is assumed to have 2 channels with very high
channel throughput and the other 8 channels with very low
individual throughputs, such that all the sub-bands have the
same sum of channel throughputs.
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Fig. 6. Comparison of normalized accumulated reward of sub-band selection
policies in 10, 000 time steps for the first test case. The considered random
selection interval length is set from 2 to 100.

In Fig. 6, we show the performance of the sub-band se-
lection policies in the first test case. The simulated policies
are: 1) the channel Markov models based policy using (14),
2) the sub-band Markov models based policy using (17),
and 3) the Q-learning policy without any knowledge of the
channel and sub-band Markov models. A trivial random policy
is also included for comparison. The reward for all policies
is defined as the actual obtained throughput less the energy
consumption due to hardware reconfigurations (the energy
consumption is weighted by the coefficient β), similar to
the way the sub-band quality is defined in (13) and (16).
The accumulated reward is then normalized with respect to
a performance upper-bound. The performance upper-bound is
obtained by assuming that each time after a sub-band selection
decision is made, not only the state of the selected sub-band
is revealed, but the states of all other sub-bands are also
revealed. Since each time the sub-band selection maximize the
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TABLE I
SIMULATION SETTINGS FOR THE CONSIDERED 4 TEST CASES.

`````````Settings
Test cases Test case 1 Test case 2 Test case 3 with real measurement data

# of configuration modes 2 2 2
# of sub-bands in each mode [3 3] [2 2] [2 3]

Total # of sub-bands 6 4 5
# of channels in each sub-band 10 each 10 each 10 each

Total # of channels 60 40 50
Max # of channels can be
used for each time step: G 2 2 2

Time slot duration: T (seconds) 1 1 1
# of simulation time steps 10,000 10,000 12,000
Channel Markov models Randomly generated. Estimated from real world measurement data.

Required sensing time duration The required sensing time duration in each sub-band
is chosen uniformly between 0.1 sec and 1.0 sec.

Sub-band Markov models Obtained from channel Markov models.
Reconfiguration coefficients c1 = 1, c2 = 0.8; t1 = 0.1, t2 = 0.05, t3 = 0.01; β = 1.

immediate reward without affecting information update for the
next step, the policy achieves the performance upper-bound for
the POMDP solution. Note that this performance upper-bound
is commonly used for the optimal POMDP solutions [13],
[31]. The normalized accumulated reward is plotted against
the random selection interval length. The random selection
interval length refers to the average number of steps for which
the CR makes a random selection. For instance, when the
random selection interval is 100, the CR makes a random
selection for every 100 steps on average. In all other time
steps, the sub-band selection decisions are made accordingly
to the selected policy. Note that the random selection interval
length is equivalent to the inverse of the exploration rate ε in
Q-learning. The trivial random selection policy selects a sub-
band randomly and stays in that sub-band until the next time
step in which another sub-band is randomly selected.

As shown in Fig. 6, the trivial random selection policy
can only achieve a 20% of the performance whereas the two
direct search methods (using (14) and (17)), achieve almost
100% of performance when the random selection interval is
long (low exploration rate). In this case, the channel Markov
model based policy and the sub-band Markov model based
policy achieve almost the same performance. This may be
explained by the structure of the simulated RF environment:
all channels are statistically identical such that the product of
the expected average individual channel throughput and the
expected number of accessible channels is rather close to the
sum of the expected highest throughputs from the expected
accessible channels. As a result, the two different approaches
of defining the sub-band qualities does not make a difference.

In the case of the Q-learning, the performance achieves the
highest value of 78% when the random selection interval is
roughly between 5 and 10, corresponding to an exploration
rate in the range from 1/10 to 1/5. The highest performance
of the Q-learning technique is achieved when the learning
rate α = 0.25 and the discount factor γ = 0.8. Since
there is a total of 60 channels, without sufficient exploration
(long random selection intervals), the performance of the Q-
learning technique degrades. On the other hand, when the
exploration rate is too high (very short random selection
intervals), the performance degrades as well. Note that this

delicate balance between the exploration and exploitation is
a well-known aspect of all RL algorithms [14], [32], [33].
A detailed performance of the Q-learning based policy for the
first test case is shown in Fig. 7 for various combinations of the
exploration rate ε, the learning rate α and the discount factor
γ. For all the selected parameter combinations, the highest
achieved performance is observed to be 78.03%, which is
achieved when when ε = 1/7, α = 0.05 and γ = 0.2.
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Fig. 7. Comparison of normalized accumulated reward of the Q-learning-
based sub-band selection policy in 10, 000 time steps for the first test case
with different Q-learning parameter settings.

In Fig. 8, we show the performance of the sub-band se-
lection policies in the second test case. The performance is
normalized with respect to the performance upper-bound as
introduced in the first test case. We can see that the trivial
random selection method may achieve roughly 65% of the
performance whereas the sub-band selection policy using the
channel Markov models achieves almost 100% performance at
low exploration rate (long random selection interval). The sub-
band selection policy using the sub-band Markov models can
only achieve roughly 50% with a high exploration rate. The
performance difference between the channel Markov model
based policy and the sub-band Markov model based policy
can be explained as follows. Note that the expected individual



11

channel throughputs are specifically assigned such that in
each configuration mode, one of the sub-bands is assumed to
have channels with the same individual channel throughputs,
whereas the other sub-band is assumed to have 2 channels
with very high channel throughput and the other 8 channels
with very low individual throughputs but the resulting sum
throughputs of all individual sub-bands are the same. Also
note that the sub-band quality defined in the sub-band Markov
model based policy computes the expected sub-band through-
put by finding the product of the expected average individual
channel throughput and the expected number of accessible
channels. On the other hand, the channel Markov model
based policy computes the expected sub-band throughput by
finding the sum of the expected highest individual channel
throughputs of the expected accessible channels. The latter
gives a better estimate of the expected sub-band throughputs
with the setting of G = 2, since the sub-band Markov model
based policy sees all the sub-bands having the same expected
sub-band throughput. However, the channels are distinct and
the actual communication throughput is much lower in those
sub-bands with channels of the same channel throughput,
compared to those sub-bands with 2 channels with very high
channel throughput. As a result, the channel Markov model
based policy gives much better performance compared to the
sub-band Markov model based policy. Note that although
the channel Markov models based sub-band selection policy
may achieve better results, the unavailability of the required
knowledge in practical scenarios may prohibit the application
of the policy. In this case, using the Q-learning based policy
may be a better choice. As shown in Fig. 8, the Q-learning
based policy is capable of achieving the performance at 90%,
when α = 0.25, γ = 0.2, and the exploration rate ε between
1/8 and 1/6.
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Fig. 8. Comparison of normalized accumulated reward of sub-band selection
policies in 10, 000 time steps for the second test case. The considered random
selection interval length is set from 2 to 70.

A detailed performance of the Q-learning policy in the
second test case is shown in Fig. 9 for various combinations
of the exploration rate ε, the learning rate α and the discount

factor γ. For all the selected parameter combinations, the
highest achieved performance is observed to be 92.24%, which
is achieved when ε = 1/6, α = 0.01 and γ = 0.5.
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Fig. 9. Comparison of normalized accumulated reward of the Q-learning-
based sub-band selection policy in 10, 000 time steps for the second test case
with different Q-learning parameter settings.

In Fig. 10, we show the Q-learning policy for the third test
case with real RF measurement data for the 20 − 1500MHz
band, with center frequency at 770 MHz inside a modern
office building at Aachen, Germany [44]. The data is the
measured values of the power spectrum density (PSD) with
a resolution bandwidth of 200kHz taken each second. For
simplicity, the communication channels are also considered
as spaced at 200kHz and each data point corresponds to a
channel [44]. We randomly selected 50 channels over a time
duration of 12,000 seconds for the simulation. We assume that
the wide-band CR has two reconfiguration modes with the first
mode contains two sub-bands and the other contains three sub-
bands and that each sub-band contains 10 channels as shown
in Table. I. The channel occupancies (idle and busy states) are
then determined by a thresholding test of the measurement data
of each channel, similar to [44]. In this test case, we found
that the channel and sub-band state transitions do not exhibit
stationary Markov properties. This is found out by performing
the built-in Matlab function hmmestimate on the data such that
different portions of the data (with each portion corresponds
to 2,000 seconds of data) give significantly different estimated
state transition probabilities. Note that this is similar to the
observation in [45] that a simple discrete-time Markov chain
model is not able to accurately capture the channel load
variations5. In this case, in order to obtain the performance
upper-bound as used in previous two test cases, we obtained
the Markov model parameters for the entire data. However,
we observed that the Q-learning base policy outperforms
the ‘upper-bound’. This is due to the non-stationarity of the
state dynamics of the measured RF environment and the

5When the channel is sparsely used (low load), the length of idle periods
is significantly higher than that of busy periods. On the other hand, when the
channel is subject to an intensive usage (high load), the length of busy periods
increases, whereas idle periods become notably shorter.
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assumptions of the time-invariant transition probabilities of
the channels and sub-bands do not capture the non-stationary
scenario, so that the obtained performance ‘upper-bound’ is
not a performance upper-bound. As a result, we obtained a
loose performance upper-bound by assuming that before a
sub-band selection decision is about made, all sub-band and
channels states are exactly revealed for the next time step. As
shown in Fig. 10, the obtained Q-learning policy performance
is normalized to the loose upper-bound. A performance of
78.9% is achieved when the exploration rate ε = 1/6, the
learning rate α = 0.01, and the discount factor γ = 0.7. For
comparison, the trivial random selection policy as introduced
in the first test case can only achieve a 52% of performance.
Due to the space limitation, we do not show the performance
of the random selection policy.
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Fig. 10. Comparison of normalized accumulated reward of the Q-learning-
based sub-band selection policy in 12, 000 time steps for the third test case
with different Q-learning parameter settings.

In summary, the two Markov-based sub-band selection
policies may achieve good results. However, the performance
may vary depending on the RF environment. The required
Markov knowledge may not be easy to obtain in some cases.
On the other hand, the Q-learning policy achieves reasonable
results (around 80− 90% performance) in all test cases, with
a much lower computational effort without any knowledge of
the channel/sub-band Markov models. As a result, we validate
the application of the Q-learning technique in the wide-band
spectrum sensing problem. In order to achieve the autonomous
operation of the CR in practical RF environments, the CR
may adopt a certain Machine-learning technique to fine tune
the parameters of the Q-learning method. However, due to the
focus of this paper, the higher level autonomous behavior is
out of the scope of this work.

VI. CONCLUSION

In this paper, we investigate a frequency spectrum sensing
scheduling problem in a realistic wide-band spectrum sensing
setup for a CR equipped with a reconfigurable RF front-end
with several operation modes to cover a wide frequency range

of interest. We assume that within each operation mode, the
frequency range is further divided into several frequency sub-
bands and that the CR can only perform spectrum sensing
in one sub-band at a time. We propose three different sub-
band selection policies for the spectrum sensing scheduling
problem: 1) a myopic sub-band selection policy based on
the channel Markov models; 2) a myopic sub-band selection
policy based on the sub-band Markov models; 3) a Q-learning
policy without the knowledge of the channel and sub-band
Markov models. Realistic RF front-end reconfiguration costs
such as energy consumption and time delays are considered.
We show that the proposed sub-band selection policies achieve
good results comparing to a commonly used performance
upper-bound for the POMDP solution. We also show that
in both simulated and real measured RF environments, the
Q-learning technique may achieve around 80 − 90% of the
performance upper-bound without any knowledge of the RF
environment, which validates the Q-learning application in the
wide-band spectrum sensing problems.
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