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Abstract—In this paper, we propose detectors (both parametric
and robust) for wideband spectrum sensing in cognitive radios
(CR’s). The proposed detectors are able to detect spectral activity
over a wide frequency range, while assuming little knowledge
about the signals of interest. The parametric detector is based
on a locally optimal (LO) Neyman-Pearson (NP) test and assumes
a known non-Gaussian noise distribution. The corresponding
decision statistic of the LO NP detector is expressed in frequency
domain, allowing to identify the active channels within the wide
frequency band of interest. On the other hand, for situations
in which the noise distribution is only approximately known, we
propose a robust signal detector that is immune to deviations
of the noise model from a certain nominal distribution. The
proposed wideband robust detector is based on a robust spectral
estimator and is formulated as a non-linear regression. This
regression problem can be solved using a fixed-point iteration
algorithm at a quadratic computational complexity, in contrast
with the Newton’s method which would have cubic complexity
order. The simulation results show that the proposed detectors
can achieve better detection performance in the presence of non-
Gaussian noise, compared to existing detectors under the same
conditions.

Index Terms—Cognitive radio, Huber cost function, locally
most powerful test, ridge regression, robust detection, spectral
estimation, wideband spectrum sensing.

I. INTRODUCTION

Accurate spectrum sensing is crucial to the successful
operation of cognitive radios (CR’s) [1]–[5]. In the context of
dynamic spectrum sharing CR’s, various sensing techniques
have been proposed for detecting primary signals [4]–[6]. In
these mostly narrowband applications, a CR senses a particular
channel to identify the existence of a particular signal. In
this case, the decision-making reduces to a binary hypothesis
testing to determine whether a particular channel is idle or
busy [7]–[9]. In the context of wideband CR’s (W-CR’s),
however, a CR not only has to determine the existence of active
signals, but it has to identify the location of those detected
signals within a wide frequency range [10]–[12]. As noted in
[6], a CR sensing a wide frequency band should be able to
1) estimate the number of signals in the sensed wideband, 2)
determine the operating frequency band of each signal and 3)
estimate the power level of each signal.

As long as noise is Gaussian distributed, the energy detec-
tion is optimal if there is no further knowledge on the signals
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in the RF environment [13]–[15]. Thus, commonly the power
spectral density (PSD) of the received signal is computed
using the fast Fourier transform (FFT), and a Neyman-Pearson
(NP) test is applied to detect the active signals within the
sensed spectrum from the estimated PSD [11], [12], [16].
However, the assumption of W-CR’s requires a rethinking
of this spectrum sensing architecture. Indeed, a wideband
spectrum sensing detector may be subjected to wide range
of heterogeneous spectral activities, giving rise to outliers and
interferers. Such electromagnetic interference that results from
a variety of sources has been shown to be non-Gaussian [17].
Thus, the commonly assumed Gaussian noise model may not
be justifiable, requiring detector designs that take into account
possible deviations of the noise model from a certain nominal
distribution [17], [18]. In particular, signal detectors have been
proposed for cases in which the noise model has a known non-
Gaussian distribution such as the Gaussian-Laplace mixture
distribution [19], [20], and the Middleton Class A and Class
B models [21]. On the other hand, for situations in which
the nominal noise model is subject to an unknown contam-
inating distribution, robust detectors are proposed to combat
such noise uncertainty [15], [22]. In this case, noise can be
modeled using an ϵ-contaminated distribution F denoted as
F = (1− ϵ)P + ϵM , where 0 ≤ ϵ < 1 is a known parameter,
P is a known nominal distribution (e.g. Gaussian), and M is an
unknown contaminating distribution [15], [22]. Usually, these
detectors are formulated in time domain assuming narrowband
signals, whereas in W-CR applications one needs to consider
signals scattered over a range of frequencies [6], [10]–[12].

Although literature on signal detection and spectral es-
timation is quite mature [15], [18], [23], [24], it has not
attacked a problem as challenging as attempting to estimate
a very wide power spectrum containing multiple signals of
different characteristics in near real-time, as may be the case
in W-CR’s. There are wideband spectral estimation approaches
that are mostly aimed at non-real-time operation [25]. In CR
communications, however, the wideband spectral estimation
must be performed in real-time. Compressive sensing has been
considered as a promising solution for wideband spectrum
sensing in the past [26], [27]. However, most of the com-
pressive sensing formulations are not aimed at non-Gaussian
and contaminated noise models. For example, the wideband
spectral estimation based on compressive sensing proposed
in [27], [28] are based on a least-squares spectral estimation
which is not suitable under non-Gaussian noise models [13],
[29]. In addition, compressive sensing methods assume sparse
signals, which may not always be a justifiable assumption in
practice [26].
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In this paper, in order to account for non-Gaussian noise, we
first propose a signal detector by assuming that the signals of
interest are subject to a noise process having a known arbitrary
distribution [15]. This is a parametric non-Gaussian detector
since it assumes a known noise distribution that is completely
specified by a finite number of parameters. The corresponding
detection criterion is based on a locally optimal (LO) NP test,
which does not require explicit knowledge of the signals of
interest, making it appropriate for wideband CR applications
[10]–[12]. Another advantage of the derived LO detector is
that it reduces to a decision statistic that is a second order
statistic of the data, which can easily be estimated from the
signal periodogram.

In contrast with [18], [30], the derived decision statistic
of our proposed LO NP detector is next transformed into
frequency domain by expressing it as a correlation between
a spectral estimation function and the PSD of the assumed
signal. Hence, by exploiting the spectral characteristics of the
decision statistic, it becomes possible to identify the operating
frequencies of the detected signals, as required in wideband
spectrum sensing [6]. We also show that the spectral estimation
is to be performed following a non-linear transformation of the
signal samples, which depends on the assumed known non-
Gaussian noise distribution. However, in many scenarios the
exact noise distribution may not be known a priori, requiring
a robust approach to address the noise uncertainty.

Hence, for situations in which the noise distribution is
only approximately known [15], [22], we propose a robust
wideband signal detection method based on robust spectral
estimation. This spectral estimation is formulated using a
modified ridge regressor, in which we replace the quadratic
loss function by the Huber cost function [22]. The Huber
cost function can lead to the most robust estimator when
the contaminating noise distribution belongs to the set of
all symmetric distributions [22]. We formulate the modified
ridge regressor as a non-linear convex optimization which
can be solved numerically using Newton’s method at a cubic
complexity order (due to the inverse operation of the Hessian
matrix) [31]. We propose a fixed-point iteration algorithm
which reduces the computational complexity to quadratic
order. Using the Banach fixed-point theorem, we show that the
proposed algorithm indeed converges to the optimal solution
[32]. We also compute the receiver operating characteristics
(ROC’s) of both parametric and robust signal detectors and
show their superior performance in the presence of non-
Gaussian noise, compared to similar existing detection meth-
ods.

Before delving into the discussion of robust spectral esti-
mation and signal detection, we first outline a framework for
wideband spectrum sensing [10], [11], [33]. The RF front-
end of the CR is assumed to be capable of sensing several
sub-bands within the wide spectrum band of interest. The
sub-bands can be specified based on a spectrum segmentation
method which determines, for example, the bandwidth of each
sub-band as a function of hardware constraints such as the
maximum rate of the analog-to-digital converters (ADC’s).

The remainder of this paper is organized as follows: In
Section II, we present an RF front-end design for wideband

spectrum scanning in W-CR’s. A wideband signal detector for
non-Gaussian noise models is proposed in Section III. Next, in
Section IV, we propose a robust spectral estimator to perform
signal detection in the presence of uncertainty about the noise
distribution. Simulations results are presented in Section V and
we conclude the paper in Section VI.

II. A WIDEBAND SPECTRUM SENSING FRONT-END

Spectrum sensing in W-CR’s are aimed at monitoring a wide
frequency band spanning several possibly non-contiguous
spectrum portions. Thus, the assumed CR architecture consists
of an RF front-end with wideband capabilities and a signal
processing module. Both RF front-end and signal processing
module are controlled by a cognitive engine (CE) that is
equipped with learning and decision-making capabilities, as
proposed in the Radiobot architecture in [10].

In order to scan a large spectrum range, we may use recon-
figurable antennas that can cover different frequency bands
W1, · · · ,WR ⊂ R [34], [35]. When reconfigured to sense
frequency band Wl (l ∈ {1, · · · , R}), we denote the bandwidth
of the scanned signal as |Wl| > 0. Since the bandwidths |Wl|
are considered to be wideband, the direct processing of the
corresponding signals might not be practical. This requires us
to segment those frequency bands into smaller sub-bands prior
to processing. The sensing reconfigurable antenna is connected
to a bank of band-pass filters allowing proper segmentation
of each of the frequency bands W1, · · · ,WR in to sets of
sub-bands. Each sub-band is still wide enough to contain
many communication channels belonging to possibly different
systems. At each time instant, the W-CR is assumed to be able
to sense and process a single sub-band. The problem of how to
select which sub-band to be sensed is beyond the scope of this
paper and is addressed in [33], [36]. The focus of this paper is
on how to process a scanned sub-band signal to detect any, and
all, spectral activities located at different frequency locations
within the sub-band when noise characteristics over such a
wide range are uncertain and, specifically, non-Gaussian.

There are several issues that need to be taken into account
in determining the optimal number of sub-bands in each
frequency band. These include the maximum sampling rate of
the ADC, the required quantization accuracy and the available
a priori knowledge of traffic characteristics on the spectrum
bands of interest. This problem, however, is out of the scope
of this paper and will be addressed in future research work.

III. WIDEBAND SIGNAL DETECTION IN NON-GAUSSIAN
NOISE

Signal detection is one of the most challenging problems in
CR’s since it requires accurate estimation of the ongoing RF
activity in real-time. In many such problems, it is assumed
that both signal and noise are Gaussian, a condition which
may not be justified in general. For example, when sensing a
wide frequency band, the detector might be subject to different
types of interference, jamming and other impulsive noise [15],
[18]. Any misrepresentation of such RF activities may lead
to degradation in the detection performance [5]. In order to
address this issue, we resort to non-Gaussian distributions
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that can better model outliers and interferes in the sensed
wide frequency band of interest. We are particularly interested
in noise models whose distributions decay at a lower rate,
compared to that of the Gaussian, such as the Laplace, Cauchy
and Gaussian-Laplace mixture noise distributions [19], [20].

In order to address these issues, we consider a sensed
sub-band signal Y = [Y1, · · · , YN ]T that is subject to non-
Gaussian noise, such that:

Y = θS+W,

where W = [W1, · · · ,WN ]T ∼ fW(w) is the noise vector
and S = [S1, · · · , SN ]T ∼ fS(s) is the signal vector.
The signal detection problem can thus be formulated as the
following composite hypothesis testing:

θ ∈ Θ0 = {θ0} under H0

θ ∈ Θ1 = (θ0,∞) under H1
, (1)

where we set θ0 = 0 such that H0 and H1 correspond,
respectively, to the signal absent and present hypotheses [15].
We denote the mean and covariance matrix of the signal S
by s̄ and ΣS, respectively. It is important to emphasize that
beyond these second order moments we do not make any other
assumptions on the signal, and the noise distribution fW is
completely arbitrary, but must be known. Note that, θ is used to
account for the fluctuations in the received signal magnitude,
and it is assumed to be an unknown parameter. We define
L (y, θ) , f(y|θ∈Θ1)

f(y|θ∈Θ0)
as the likelihood ratio (LR) between

the simple hypothesis H0 and the composite hypothesis H1.
In this case, since Θ0 is a singleton, a simple solution for
the composite hypothesis testing problem can be obtained, as
shown below.

We use the NP criterion to find a decision rule δ that
maximizes the detection probability PD(δ, θ) such that the
false alarm probability PF (δ, θ) is less than a certain threshold
α ∈ [0, 1]:

max
δ

PD(δ, θ) subject to PF (δ, θ) ≤ α . (2)

Since detection probability PD(δ, θ) is called the power of
δ, the goal of the NP criterion is to find the most powerful
α-level test of H0 versus H1 [15]. However, it may not be
always possible to find a uniformly most powerful (UMP) test
for all values of θ, since, in general, the critical region Γθ ,
{y ∈ RN |L(y, θ) > τ} may not be independent of θ (where
τ is chosen to give a false alarm rate of α) [15].

An alternative solution is to find a locally most powerful
(LMP) test (also referred to as the LO test). An LMP test can
be motivated by expanding PD(δ, θ) in a Taylor series around
θ = θ0:

PD (δ, θ) = PD(δ, θ0) + (θ − θ0)P
′
D(δ, θ0) +

+
1

2
(θ − θ0)

2P
′′

D(δ, θ0) + O
(
(θ − θ0)

3
)

, (3)

where we have denoted

P ′
D (δ, θ0) =

∂

∂θ
[PD (δ, θ)]

∣∣∣∣
θ=θ0

, (4)

and

P ′′
D (δ, θ0) =

∂2

∂θ2
[PD (δ, θ)]

∣∣∣∣
θ=θ0

. (5)

Note that the first term in the Taylor series expansion
PD(δ, θ0) is the false alarm probability and is constant for
all θ. Hence, maximizing PD(δ, θ) near θ = θ0 is equivalent
to maximizing the derivative terms, in particular, P ′

D(δ, θ0). It
can be shown that the LMP decision rule that indeed maxi-
mizes a first-order approximation of the detection probability
in (4) is equivalent to [15]:

δLO(y) =


1 >

γLO if ∂
∂θL (y, θ)

∣∣
θ=θ0

= η

0 <

(6)

The parameters η ≥ 0 and 0 ≤ γLO ≤ 1 are chosen so that
PF (δLO) = α. We can show that the LO decision statistic of
the detector (6) for the problem (1) is given by:

T
(LO)
1 (y) =

∂

∂θ
L (y, θ) |θ=0 = − s̄T f ′W(y)

fW(y)
, (7)

where E {S} = s̄ and f ′W = ∂fW
∂w =(

∂fW
∂w1

, ∂fW
∂w2

, · · · , ∂fW
∂wN

)T
. Note that, if the decision statistic

T
(LO)
1 (Y) has a continuous probability distribution, then

Pr
{
T

(LO)
1 (Y) = η

}
= 0 and the randomization γLO in (6)

can be chosen arbitrarily [15].
On the other hand, the threshold η in (6) can be defined

such that Pr
{
T

(LO)
1 (Y) > η|H0

}
= α. However, if the

probability distribution of T
(LO)
1 (Y) under H0 cannot be

obtained analytically, the threshold η can be computed
numerically, as described in Algorithm 1.

From (7), it follows that if s̄ = 0, the first order LO test
(6) does not work since T

(LO)
1 (y) = 0 for all y. In this case,

however, a similar LO decision statistic can be obtained by
maximizing instead the second order derivative P ′′

D(δ, θ0) in
(3) [18]. It can be shown that the general second order LO
decision statistic is given by:

T
(LO)
2 (y) =

∂2

∂θ2
L (y, θ)

∣∣∣∣
θ=0

=
Tr
(
F′′

W(y)
(
ΣS + s̄s̄T

))
fW(y)

,

where we have denoted F′′
W(w) = ∂

∂w f ′W(w), and we have
used the fact that E

{
SST

}
= ΣS + s̄s̄T . If s̄ = 0, then

E
{
SST

}
= ΣS and the decision statistic T

(LO)
2 (y) depends

only on the probability distribution of the noise samples
Wk and the second order statistics of the signal S, without
requiring the knowledge of the exact distribution of S.

Furthermore, if we assume that the noise samples are
independent (as in [18]–[20], [29], [37]), T

(LO)
2 (y) reduces

to the following [18]:

T
(LO)
2 (y) =

N∑
k=1

h
(LO)
k (yk)ρ

(s)
k,k +

+
N∑

k=1

N∑
j=1,j ̸=k

g
(LO)
j (yj)g

(LO)
k (yk)ρ

(s)
j,k , (8)
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where ρ
(s)
j,k is the (j, k)-th element of the covariance matrix

ΣS and

g
(LO)
k (x) = −

f ′
Wk

(x)

fWk
(x)

, (9)

and

h
(LO)
k (x) =

f ′′
Wk

(x)

fWk
(x)

. (10)

Furthermore, if the noise sequence Wk is i.i.d., then we
may drop the indices k from both g

(LO)
k (x) and h

(LO)
k (x) and

denote:

g(LO)(x) = −f ′
W (x)

fW (x)
, (11)

and

h(LO)(x) =
f ′′
W (x)

fW (x)
. (12)

In this case, T
(LO)
2 (y) in (8) can be also expressed as a

function of g(LO)(x) and h(LO)(x). In Appendix A, we derive
the expressions of g(LO)(x) and h(LO)(x) for both Gaussian-
Laplace and Gaussian mixture noise models.

An efficient implementation of the non-Gaussian detector
based on decision statistic T

(LO)
2 (y) can be facilitated by

expressing it in frequency domain. For this, we assume that
the signal S is wide-sense stationary (WSS) with a mean
s̄ = 0 and the covariance matrix ΣS is Toeplitz so that
ρ
(s)
k,l = ρ

(s)
k−l,0 , ρ

(s)
k−l. This is usually a valid assumption

for communication signals for which a PSD exists [15], [38].
With these assumptions, we can express the second order LO
decision statistic T

(LO)
2 (y) of (8) as:

T
(LO)
2 (y) = T2,0(y) +

N∑
k=1

N∑
l=1

ỹlỹkρ
(s)
l−k , (13)

where T2,0(y) , ρ
(s)
0

[∑N
k=1

(
ŷk − ỹ2k

)]
, ỹj , g

(LO)
j (yj) and

ŷj , h
(LO)
j (yj).

Let us denote by ϕs(F ) the Fourier transform of the
sequence {ρ(s)k }N−1

k=0 , so that ρ
(s)
k =

∫ 1/2

−1/2
ϕs(F )ej2πFkdF ,

for k = 0, · · · , N − 1. Substituting this in (13) we obtain:

T
(LO)
2 (y) = T2,0(y) +

N∑
k=1

N∑
l=1

ỹlỹk

∫ 1/2

−1/2

ϕs(F )ej2πF (l−k)dF ,

= T2,0(y) +

+

∫ 1/2

−1/2

[(
N∑

k=1

ỹke
−j2πFk

)(
N∑
l=1

ỹle
−j2πFl

)∗]
ϕs(F )dF ,

= T2,0(y) +

∫ 1/2

−1/2

|Ỹ (F )|2ϕs(F )dF , (14)

where (14) follows by assuming that ỹk ∈ R and denoting
Ỹ (F ) ,

∑N−1
k=0 ỹk+1e

−j2πFk for −1/2 ≤ F ≤ 1/2. Hence,
the decision statistic of the LO detector can be expressed as:

T
(LO)
2 (y) = T2,0(y) +

∫ 1/2

−1/2

ϕ̂(F )ϕs(F )dF , (15)

where ϕ̂(F ) = |Ỹ (F )|2 is the periodogram of the transformed
observation sequence {ỹk}Nk=1. From (15) we see that the non-
Gaussian detector can be implemented by applying a certain
non-linearity to the signal sequence {yk}Nk=1 and then com-
puting the corresponding periodogram |Ỹ (F )|2. The detector
essentially correlates this periodogram of the transformed
observations with the known signal spectrum.

Note that, if we assume an i.i.d. Gaussian noise Wk with a
pdf fW (x) = N(0, σ2)(x), we can express:

g(LO)(x) =
x

σ2
, (16)

and

h(LO)(x) =

(
x2

σ4
− 1

σ2

)
. (17)

Under this noise assumption, we obtain Ỹ (F ) = 1
σ2Y (f) and

T2,0(y) = −Nρ
(s)
0

σ2 . In this case, the decision statistic in (15)
reduces to:

T
(LO)
2 (y) = −Nρ

(s)
0

σ2
+

1

σ4

∫ 1/2

−1/2

|Y (F )|2ϕs(F )dF . (18)

Hence, in the case of Gaussian noise, the decision statistic
will be based on the conventional periodogram |Y (F )|2 of the
original data sequence {yk}Nk=1. This is expected since energy
detection (or the periodogram-based detection) is known to be
optimal when noise is Gaussian and no information beyond
second order statistics are available about the signal [14], [15].

However, when the noise model deviates from the Gaus-
sian assumption, the energy-based detection becomes non-
optimal. Thus, more sophisticated detectors, such as the
one characterized in the non-linear decision statistic in (15),
are then required. As a particular example, let us con-
sider the Laplace noise model with ϵ = 1 in (33). We
obtain Ỹ (F ) = λ

∑N
k=1 sgn(yk)e

−j2πFk and T2,0(y) =

−2λρ
(s)
0

∑N
k=1 δ

(D)(yk). The observations yk’s are continuous
random variables with Pr{yk = 0} = 0 under the Laplace
noise assumption, making Pr{T2,0(y) = 0} = 1. The decision
statistic is then based on the discrete Fourier transform (DFT)
of the sequence of signs of yk’s. Hence, clearly the conven-
tional periodogram |Y (F )|2 is not suitable for signal detection
under Laplace noise assumption.

Similarly, it can be seen from (36) and (37) that, under the
Gaussian mixture noise distribution, the LO detector requires
us to modify the conventional periodogram. Note that the
above formulation assumed that the second order statistics of
the signal are all known. This also implies that we know the
signal power spectra ϕs(F ). Thus, the optimal spectral activity
detection of (15) can be done by correlating the estimated
periodogram (or spectral estimation function) ϕ̂(F ) with each
signals known power spectrum ϕs(F ) and comparing to a
threshold. The threshold design is to be according to the NP
criterion subject to a maximum false alarm rate (as discussed
in Section V).

However, in the context of wideband spectrum sensing, it
is more likely that the signal covariance structure, and cor-
respondingly the power spectrum ϕs(F ), may not be known.
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In this case, we can systematically develop approximations to
the PSD ϕs(F ) by making certain reasonable assumptions on
signals. Note that, this is perhaps the justification for many
existing approaches that essentially search for the peaks in
the estimated periodogram. It is clear that one may arrive at
that method by making the assumption that ϕs(F ) is a set of
impulses characterizing a set of sinusoids.

Another case is the assumption of piecewise constant ϕs(F ).
For example, we may not know the covariance structure
exactly (i.e. we do not know the location or the shape of
the spectrum), but we may know that the signal bandwidth
is less than B. Then a reasonable detector can be motivated
as a sliding window PSD integrator of width B followed
by thresholding, similar to [11], [12]. In Section V, we will
consider both impulse and rectangular shapes for ϕs(F ) and
analyze the detection performance under each assumption.

Note that, the sliding-window technique can improve the
detection rate if the sliding window size is smaller than
the signal bandwidth. In particular, if we consider a signal
with average power Ps and a normalized bandwidth B∆f
(where ∆f = 1/N is the frequency increment and B is an
even integer), the detection probability of the corresponding
periodogram-based detector can be obtained as in (47) of
Appendix B:

PD = QL

(√
N min {L,B + 1}Ps

(B + 1)σ2
,
√
η

)
, (19)

where L (odd integer) is the sliding window length and σ2

is the average Gaussian noise power. Thus, if L ≤ B + 1,
the sliding-window technique can improve the detection prob-
ability since it enhances the signal power by a factor L. On
the other hand, if the window length is larger than the signal
bandwidth (i.e. L > B+1), then the detection probability will
decrease with L due to the increase in the threshold level η
in (19). These results are illustrated in Fig. 4.

An important implementation issue is the computation of
the robust spectral estimation function ϕ̂(F ). As we have
shown above, this function is equal to |Ỹ (F )|2 and can be
computed as the periodogram of the transformed sequence
{ỹk}Nk=1. In practice, however, Ỹ (F ) can be evaluated at
discrete frequencies using the DFT:

Ỹi =
N−1∑
k=0

ỹk+1e
−j2πi k

N , for i = 0, · · · , N − 1, (20)

where we assume a known parametric distribution for the noise
model to compute ỹk’s. Such parametric assumptions may not,
however, be valid, in general, since the noise model may be
completely unknown or subject to an unknown contamination
[15], [22]. In this case, we may not be able to evaluate the
transformed sequence ỹk = g(LO)(yk) in (20). Hence, in
the next section, we consider a robust approach to obtain a
spectral estimation for ϕ̂(F ) by assuming an ϵ-contaminated
noise distribution [22].

IV. ROBUST WIDEBAND SPECTRUM SENSING

As we have seen from the development in the previous
section, closed-form expressions for ϕ̂(F ) can be obtained

only for known parametric noise models (e.g. the Gaussian-
Laplace noise mixture for which an expression for g

(LO)
k (x)

can be obtained as in (34)). Even then, such spectral estimation
might be distorted if the actual noise distribution deviates from
the assumed nominal model [15]. To address such uncertainty,
one may resort to robust spectral estimation approaches. For
instance, the periodogram provides a powerful non-parametric
tool in spectral analysis [39]. However, its lack of robustness
against outliers and heavy-tailed noise is well-known [39].
In particular, the periodogram of a given observation vector
y ∈ CN can be obtained using the following least-squares
regression [39]:

v∗ = arg min
v∈CN

∥y −XHv∥2, (21)

where v∗ , [v∗1 , · · · , v∗N ]T and X = [x1, · · · ,xN ] with xk =
1
N [1, e−j2π

(k−1)
N , · · · , e−j2π

(N−1)(k−1)
N ]T for k = 1, · · · , N .

The resulting periodogram |v∗i |2 (for i = 1, · · · , N ) is sensitive
to outliers due to the quadratic loss function in (21) [39].
This quadratic loss function can be modified, for example, by
including a regularization term to improve the smoothness and
generalization ability of the optimal solution, as in the support
vector machine (SVM) and ridge regression formulations [40].
This can help to reduce the statistical variability of the spectral
estimation [39]. In particular, the ridge regressor computes the
optimal vector v∗ that minimizes the weighted sum of ∥Λv∥2
(where Λ is a regularization matrix or Tikhonov matrix) and
the squared residual error ∥y −XHv∥2, such that:

v∗ = arg min
v∈CN

∥Λv∥2 + ∥y −XHv∥2 . (22)

However, still the ridge regressor-based spectral estimation
(22) is suitable only for Gaussian noise models since it
minimizes the L2-norm of the residuals. Robustness in non-
Gaussian environments may be achieved by replacing the
L2-norm with more suitable cost functions. In particular, by
replacing the L2-norm in (21) by L1-norm, we may obtain the
so-called Laplace periodogram which can be robust against
heavy-tailed noise distributions such as Laplace and Cauchy
noise [39], [41]. One may obviously generalize this to Lp-
norm regression models [39]. However, all these approaches
assume arbitrary cost functions which can only be robust
against the noise model corresponding to the assumed cost
function.

On the other hand, under the assumption of noise uncer-
tainty, we have to account for deviations of the noise model
from a nominal distribution. Hence, we may consider an ϵ-
contaminated noise model in which the probability distribution
of the noise process is denoted by F = (1 − ϵ)P + ϵM ,
where 0 ≤ ϵ < 1 is a known parameter, P is a known
Gaussian distribution and M is an unknown contaminating
noise distribution that is only assumed to be symmetric and
otherwise arbitrary [22]1. In this case, we may require certain

1In this section, we only consider ϵ-contaminated noise models with
Gaussian nominal distributions. Generalizing this assumption to non-Gaussian
nominal distributions requires further investigation, which will be considered
in future. Note that, the nominal Gaussian assumption is a common model
assumed in modeling non-Gaussianity using mixture models such as the
Gaussian-Laplace mixture and Gaussian mixture models [17], [19], [20].
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cost functions that can minimize the impact of contaminating
noise on the spectral estimation. In particular, we will consider
a regressor with a Huber cost function, which can guarantee
robustness against ϵ-contaminated Gaussian noise models [22].
The Huber cost (or loss) function can be defined as:

ℓ(x) =

{
x2/2 if |x| ≤ δH

δH(|x| − δH/2) if |x| > δH
, (23)

for a given threshold δH > 0. This function assigns a
quadratic cost to small residuals while imposing a linear cost
to larger ones [22], [31]. Furthermore, it is considered to be
the most robust estimator for ϵ-contaminated noise models,
which makes it a good candidate under the assumption of
noise uncertainty [22].

Hence, in order to ensure both smoothness and robustness
of the periodogram, we will consider a regression model with
a multi-objective cost function including both a regularization
term and the Huber cost function. The proposed robust spectral
estimator can thus be defined as a modified ridge regressor,
in which we replace the quadratic cost function by the Huber
cost function:

v∗ = arg min
v∈CN

∥Λv∥2 + c
(
y −XHv

)
, (24)

where c : CN → R is defined as c(v) = γ
∑N

i=1 ℓ (ℜ{vi}) +
ℓ (ℑ{vi}), for all v = [v1, · · · , vN ]T ∈ CN and for some
γ > 0. Note that, by modifying the regularization matrix Λ in
(24), we can balance between robustness and smoothness of
the obtained solution. Obviously, the Huber-optimal solution
would be obtained for Λ = 0, which is a special case of (24).

A. A Fixed-Point Iteration Algorithm for Robust Spectral
Estimation

The model in (24) is a nonlinear optimization problem and
does not have a closed-form solution, in general. In addition,
it involves an optimization over a complex domain (since
v ∈ CN ). Hence, we may decompose (24) into its real and
imaginary components in order to obtain efficient spectral
estimation for a complex discrete-time signals y ∈ CN . The
problem can thus be stated as:

min
v,e1,R,··· ,eN,R,e1,I ,··· ,eN,I

1

2
∥Λv∥2 + γ

2

N∑
k=1

ℓ(ek,R) + ℓ(ek,I),

(25)
subject to:

ek,R = yk,R −
(
xT
k,RvR + xT

k,IvI

)
, ∀k = 1, · · · , N ,

ek,I = yk,I −
(
−xT

k,IvR + xT
k,RvI

)
, ∀k = 1, · · · , N ,

where yk , yk,R + jyk,I , xk , xk,R + jxk,I , v , vR + jvI ,
ek = yk − xH

k v , ek,R + jek,I . It can be shown that (25)
is a convex function of v since it is a nonnegative weighted
sum of convex functions. The problem in (25) can be solved
numerically using the Newton’s method, which requires a
cubic complexity order due to the inversion of a 2N × 2N
Hessian matrix at each iteration. However, below we propose
a fixed-point iteration algorithm that can solve the Lagrange
equations of (25) by avoiding the inverse operation, thus

helping to reduce the computational complexity to a quadratic
order.

Note that, the norm ∥Λv∥2 can be decomposed as:

∥Λv∥2 = vHΛHΛv

= (vR + jvI)
HQ(vR + jvI)

= vT
RQvR + vT

I QvI + j(−vT
I QvR + vT

RQvI)

= vT
RQvR + vT

I QvI + j(−vT
RQvI + vT

RQvI)

= ∥ΛvR∥2 + ∥ΛvI∥2,

where we define Q , ΛHΛ ∈ RN×N to be a non-singular
matrix. The Lagrangian of (25) can thus be written as:

L =
1

2
∥ΛvR∥2 +

1

2
∥ΛvI∥2 +

γ

2

N∑
k=1

ℓ(ek,R) + ℓ(ek,I) +

+
N∑

k=1

αk

[
yk,R −

(
xT
k,RvR + xT

k,IvI

)
− ek,R

]
+

+

N∑
k=1

βk

[
yk,I −

(
−xT

k,IvR + xT
k,RvI

)
− ek,I

]
,

where αk’s and βk’s are the Lagrange multipliers.
By setting ∇L = 0, we obtain:

∂L

∂αk
= 0 ⇒ ek,R = yk,R −

(
xT
k,RvR + xT

k,IvI

)
,∀k = 1, · · · , N

∂L

∂βk
= 0 ⇒ ek,I = yk,I −

(
−xT

k,IvR + xT
k,RvI

)
,∀k = 1, · · · , N

∂L

∂ek,R
= 0 ⇒ αk =

γ

2
ℓ′(ek,R),∀k = 1, · · · , N

∂L

∂ek,I
= 0 ⇒ βk =

γ

2
ℓ′(ek,I),∀k = 1, · · · , N

∇vRL = 0 ⇒ vR = Q−1
N∑

k=1

αkxk,R − βkxk,I (26)

∇vI
L = 0 ⇒ vI = Q−1

N∑
k=1

αkxk,I + βkxk,R (27)

The solution of this problem can be obtained by solving the
following set of nonlinear equations:

αk =
γ

2
ℓ′

yk,R −
N∑
j=1

pj,kαj

 ,k = 1, · · · , N , (28)

and

βk =
γ

2
ℓ′

yk,I −
N∑
j=1

pj,kβj

 ,k = 1, · · · , N , (29)

where pj,k = qRj,k + qIj,k, qRj,k = xT
j,RQ

−1xk,R and qIj,k =

xT
j,IQ

−1xk,I . Hence, the weight vector v can be obtained by
replacing αk’s and βk’s in (26) and (27).

By letting P = [pj,k]
2, (28) and (29) can be written as:

α =
γ

2
ℓ′ (ℜ{y} −Pα) , hR (α) , (30)

2Note that, we can write P = XT
RQ−1XR +XT

I Q−1XI , where XR =
ℜ{X} and XI = ℑ{X}.
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and
β =

γ

2
ℓ′ (ℑ{y} −Pβ) , hI (β) , (31)

where α = [α1, · · · , αN ]T , β = [β1, · · · , βN ]T , ℓ′(u) ,
[ℓ′(u1), · · · , ℓ′(uN )]T for all vectors u = [u1, · · · , uN ]T , hR :
RN → RN and hI : RN → RN . Note that, the computational
complexity of both (30) and (31) are dominated by the terms
Pα and Pβ. However, they only require quadratic complexity
order in contrast with the cubic complexity order that would
be required for the Newton’s method.

It can be shown that (30) and (31) admit a unique fixed-
point solution if hR and hI are, respectively, a contraction
mapping [32]. Furthermore, based on the Banach Fixed-Point
theorem, the fixed-point solution of (30) and (31) can be
found using a fixed-point iteration algorithm [32]. Hence, in
the followings we establish the conditions under which (30)
and (31) represent a contraction mapping.

Theorem 1. If f : RN → RN and g : RN → RN are
Lipschitz continuous with respective Lipschitz constants p and
q, and if Kpq < 1 for some positive scalar K > 0, then
h = K(f ◦ g) is a contraction mapping on RN .

Proof. If g is Lipschitz continuous on RN with a Lipschitz
constant q, then ∥g(x) − g(y)∥ ≤ q∥x − y∥, ∀x, y ∈ RN .
Similarly, ∥f(x) − f(y)∥ ≤ p∥x − y∥, ∀x, y ∈ RN . But
since g(x), g(y) ∈ RN , then ∥f ◦ g(x) − f ◦ g(y)∥ ≤
p∥g(x)− g(y)∥ ≤ pq∥x− y∥, ∀x, y ∈ RN .
Therefore, ∥Kf ◦ g(x) − Kf ◦ g(y)∥ ≤ Kpq∥x − y∥,
∀x, y ∈ RN . Furthermore, if Kpq < 1, then h = K(f ◦ g) is
a contraction mapping on RN .

In (30), let g(α) , y−Pα with g : RN → RN . The norm

∥g(α1)− g(α2)∥2 = ∥Pα2 −Pα1∥2 ≤ ∥P∥2∥α1 −α2∥2 ,

∀α1,α2 ∈ RN . Then, g is Lipschitz continuous with a
Lipschitz constant equal to q = ∥P∥2. Furthermore, if ℓ′

is Lipschitz continuous with a Lipschitz constant p and if
γ
2 p∥P∥2 < 1, then, using Theorem 1, hR in (30) is a
contraction mapping on RN . In this case, based on the Banach
Fixed-Point Theorem, the solution of (30) can be obtained
using fixed-point iterations [32].

Note that, since the regularization parameter γ can be
chosen arbitrarily, the condition γ

2 p∥P∥2 < 1 can always be
satisfied, provided that p < ∞ and ∥P∥2 < ∞. This implies
that we can always guarantee convergence of the proposed
fixed-point iteration algorithm using both (30) and (31). In
particular, if ℓ is the Huber cost function, it can be shown
that the Lipschitz constant of ℓ′ is p = 1. Furthermore, if we
assume that Λ = I, then P = XHX = 1

N I, implying that
∥P∥2 = 1

N . In this case, the fixed-point iteration algorithm of
(30) and (31) converges if γ < 2N .

V. SIMULATION RESULTS

In this section, we consider a sinusoidal signal s(t) =√
2Ps cos(2πfct), with transmit power Ps and carrier fre-

quency fc = 20MHz3. In our simulation, we set θ = 1 under

3For illustration purposes, we consider a sinusoidal signal with a frequency
of fc = 20MHz. However, the simulation results can be scaled arbitrarily
to any frequency.
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Robust Spectrum with γ=10 and SNR=−5dB
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SVM−FFT−based Spectrum with Cγ
SVM

=1 and SNR=−5dB

Frequency in MHz

Fig. 1. Magnitude spectra of a sinusoidal signal transmitting at 20MHz and
subject to Gaussian-Laplace noise with ϵ = 0.2 and N = 100.

H1, and assume that the received signal y(t) is subject to a
Gaussian-Laplace mixture noise with a Laplace contamination
rate of ϵ = 0.2. The parameters of the Laplace and Gaussian
noise are λ = 0.2 and σ = 1, respectively. We assume an
SNR of −5dB, where SNR = Ps

(1−ϵ)σ2+2ϵ/λ2 , and show, in
Fig. 1, the magnitude spectra computed using both parametric
and robust spectral estimation methods (i.e. 1

N |Ỹ (F )| and |v∗i |
in (24), respectively), as well as the conventional spectrum
1
N |Y (F )| and the SVM-FFT-based spectrum of [42]. The
robust method, however, is implemented using γ = 10 and
δH = 1. On the other hand, the SVM-FFT method is
computed using C = 10 and γSVM = 1, as defined in [42].
Figure 1 shows the detected peaks at ±20MHz. In order to
compare the performance of the four detection methods, we
will compute the corresponding ROC’s, as follows.

After obtaining the spectral estimations of the sensed wide-
band signals, signal detection can be applied to determine the
center frequencies of active signals within the wideband of
interest. In many CR applications, signal detection is based
on the NP criterion [11]. This leads to a threshold η on the
spectrum (or the periodogram) to determine the active channels
[11], [12]. The performance of such detectors is characterized
by the ROC which shows the detection probability for a certain
false alarm rate [15]. An analytical closed-form expression for
the ROC can be derived if the probability distribution of the
decision statistic is known. In our case, however, it is hard
to obtain a closed-form expression for the decision statistic
T

(LO)
2 (y) in (15) in the case of Gaussian-Laplace noise model

assumed in the example of Fig. 1. Similarly, it is difficult
to derive the probability distribution of the robust spectral
estimator since it is obtained using an iterative process. Hence,
in the following we resort to numerical simulations to compute
the desired probability distributions and the corresponding
ROC’s.

In the case of parametric detection, we can compute the
threshold η for a given false alarm probability α, as described
in Algorithm 1. We also assume that ϕs(F ) is an impulse
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Fig. 2. Comparison between the receiver operating characteristics (ROC’s)
of our proposed detection methods, as well as the SVM-FFT and the
periodogram-based methods with ϵ = 0.2, µ = 5 and σ = 1.

Algorithm 1 Numerical method for computing the decision
threshold η.

Generate M i.i.d. random vectors {yk : k = 1, · · · ,M}
such that yk ∼ fW (under H0).
Compute the corresponding decision statistics T ={
T

(LO)
2 (yk) : k = 1, · · · ,M

}
.

Compute the histogram of T to approximate the probability
distribution of T (LO)

2 (Y).
Using numerical integration, compute the complementary
cumulative density function (ccdf) of T

(LO)
2 (Y) from the

histogram of T.
Using the ccdf, determine η such that
Pr
{
T

(LO)
2 (Y) > η|H0

}
= α.

function centered at a frequency f of interest such that
ϕs(F ) = δ(D)(F−f), leading to T

(LO)
2 (y) = T2,0(y)+ϕ̂(f).

Similarly, we can obtain the decision thresholds of the
robust, the SVM-FFT and the periodogram-based spectral es-
timations by computing the histograms of their corresponding
spectral estimations under H0 hypothesis. After computing the
decision thresholds for each case, we generate random signals
y and compute the corresponding spectral estimations. For
each random vector y (and for each detection method), a signal
is detected if the corresponding spectral estimation exceeds
the threshold at the frequency of interest f . The average
detection probability is thus computed as the proportion of
random signals whose spectral estimations exceed the decision
threshold at frequency f . These results are represented using
the ROC’s for the above four methods, as shown in Fig. 2.
These ROC’s show that both parametric and robust detection
methods achieve significantly better detection performance,
compared to those of the SVM-FFT and periodogram-based
approaches.

Next, we analyze the performance of the proposed para-
metric method using an ideal rectangular PSD ϕs(F ). The
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Periodogram−based Detection: L=5
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Fig. 3. Receiver operating characteristics of the proposed parametric detection
method and the periodogram-based method, assuming a rectangular ϕs(F )
with length L∆f with ϵ = 0.2, µ = 5 and σ = 1.

bandwidth of ϕs(F ) is assumed to be L∆f , where ∆f is the
discrete frequency increment. We assume a binary phase-shift
keying (BPSK) signal with carrier frequency fc = 5MHz and
bandwidth 500kHz. The signal is sampled at fs = 20MHz
and we assume N = 200 samples, resulting in a discrete
frequency increment ∆f = 100kHz (i.e. spectral resolution).
The ROC of the parametric detection method assuming a
rectangular PSD ϕs(F ) is shown in Fig. 3 along with the
smoothed periodogram method that was proposed in [11], [12].
The periodogram is smoothed using a rectangular window
having a bandwidth L∆f . Figure 3 shows that the detection
probability increases by increasing the window length L,
similar to [12]. However, the parametric method still achieves
better performance, compared to the smoothed periodogram-
based method of [12]. Note that, increasing the window length
L reduces the spectral resolution of the spectral estimations
and thus should only be subjected to the required minimum
spectral discrimination.

Finally, we verify the detection performance of the slid-
ing window detection method as obtained in (19). Thus,
we consider a real bandlimited signal sk with bandwidth
B∆f = B/N and centered at a normalized frequency Fc

such that:

sk =

√
2Ps

B + 1

B/2∑
m=−B/2

cos
(
2πk

(
Fc +

m

N

))
, (32)

for k = 0, · · · , N − 1. The signal is subject to Gaussian
noise with average power σ2. By applying the sliding-window
periodogram-based detection, we compute the corresponding
detection probability using both simulated and analytical meth-
ods, as shown in Fig. 4. The results show perfect match
between both simulated and analytical ROC curves. Further-
more, if L ≤ B + 1 = 3, a higher detection probability
can be achieved with a larger window size. However, if
L > B + 1 = 3, then the detection probability decreases
for larger L.
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Fig. 4. Receiver operating characteristics (ROC’s) of the periodogram-based
detection method with a sliding window of length L and subject to Gaussian
noise, with SNR = −10dB and N = 40.

VI. CONCLUSION

In this paper, we have proposed both parametric and robust
signal detection methods for wideband spectrum sensing in
CR’s. The parametric detector assumed a known non-Gaussian
noise distribution, which can account for outliers and inter-
ferers that may occur in the detected signals. The decision
statistic of the parametric detector led to a spectral estimation
function that can be computed as the periodogram of the
transformed signal sequence. On the other hand, if the noise
distribution is approximately known, we followed a robust
approach to obtain a robust signal detector by assuming an ϵ-
contaminated noise model. The robust detector was based on
a robust spectral estimation method that was formulated as a
modified ridge regressor in which the quadratic cost function
was replaced by the Huber function. A fixed-point iteration
algorithm was proposed to solve the Lagrange equations of
the robust spectral estimator, thus reducing the computational
complexity to a quadratic order. We computed the ROC curves
of both parametric and robust detectors and showed that
they can both achieve better detection performance in the
presence of Gaussian-Laplace mixture noise models, compared
to similar existing detectors.
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APPENDIX

A. Non-linearity functions g(LO)(x) and h(LO)(x) for
Gaussian-Laplace mixture and Gaussian mixture noise models

1) Example 1: If we assume an i.i.d. noise with a Gaussian-
Laplace mixture distribution, such that:

fW (x) =
1− ϵ√
2πσ2

e−
x2

2σ2 +
λϵ

2
e−λ|x|, (33)

then, the common non-linearity g(LO)(x) can be expressed as
[19], [20]:

g(LO)(x) =

λ2ϵ
2 sgn(x)e−λ|x| + (1−ϵ)x

σ3
√
2π

e
−x2

2σ2

λϵ
2 e−λ|x| + 1−ϵ√

2πσ2
e−

x2

2σ2

, (34)

where sgn(x) is the signum function, ϵ is the Laplace contam-
ination rate, λ is the parameter of the Laplace noise and σ2 is

the variance of the zero-mean Gaussian mixture component4.
We can also express h(LO)(x) as:

h(LO)(x) =

λ2ϵ
2

(
λ− 2δ(D)(x)

)
e−λ|x| + 1−ϵ

σ3
√
2π

(
x2

σ2 − 1
)
e
− x2

2σ2

λϵ
2
e−λ|x| + 1−ϵ√

2πσ2
e
− x2

2σ2

,

(35)
where δ(D)(x) is the Dirac delta function. As noted in [19],
the Gaussian-Laplace mixture is a convenient representation
of impulsive noise models due to its slower decaying tail,
compared to the Gaussian distribution. More importantly, it
was shown that detectors having a non-linearity with the hard-
limiting behavior characteristic of the Laplace distribution are
robust against errors in noise distribution measurement [19],
[37].

Note that, if we assume an i.i.d. Laplacian noise model (i.e.
ϵ = 1) such that fW (w) = λ

2 e
−λ|w|, we obtain g(LO)(x) =

λsgn(x) and h(LO)(x) = λ2 − 2λδ(D)(x).
2) Example 2: Gaussian mixture distribution is another

model that has been previously used as a non-Gaussian noise
model [17]. A Gaussian mixture distribution with m mix-
ture components can be characterized by the pdf fW (x) =∑m

i=1 κiN(µi, σ
2
i )(x), where N(µ, V ) denotes the pdf of a

Gaussian distribution with mean µ and variance V , {κi}mi=1

are the mixing proportions, µi = aiµ and σ2
i = a2iσ

2, for some
parameters ai’s, µ and σ [17]. Similar to the Gaussian-Laplace
mixture above, the non-linear transformations g(LO)(x) and
h(LO)(x) can be obtained in closed-form for the Gaussian
mixture model as:

g(LO)(x) =

∑m
i=1

κi(x−µi)
σ3
i

e
− (x−µi)

2

2σ2
i∑m

i=1
κi

σi
e
− (x−µi)

2

2σ2
i

, (36)

and

h(LO)(x) =

∑m
i=1

κi

σ3
i

[
(x−µi)

2

σ2
i

− 1
]
e
− (x−µi)

2

2σ2
i

∑m
i=1

κi

σi
e
− (x−µi)

2

2σ2
i

. (37)

B. Derivation of the ROC for the Sliding-Window Detection
Method

In order to analyze the performance of the sliding-window-
based detection and its impact on the detection accuracy, we
consider the following observation model:

yk =

{
wk (k = 0, · · · , N − 1) under H0

sk + wk (k = 0, · · · , N − 1) under H1
, (38)

where yk is the detected signal, sk is the transmit signal and
wk is the noise signal. The sliding-window technique applies a
smoothing window to the spectral estimation function. An an-
alytical performance measure of the sliding-window detection
can be obtained under certain regularity conditions. That is, we
will assume that wk ∼ N(0, σ2) and sk is a bandlimited real
signal centered at a normalized frequency Fc = nc∆f with a

4The parameters of the assumed finite-mixture distribution can be estimated
using Expectation-Maximization (EM) algorithms based on the maximum-
likelihood (ML) criterion, as proposed in [43].
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normalized bandwidth B∆f , where ∆f = 1
N is the spectral

resolution (or discrete frequency increment)5. By applying the
DFT to yk under H1, we obtain:

Yn =

{
Sn +Wn if n ∈ B

Wn otherwise , (39)

where B = {nc − B
2 , · · · , nc +

B
2 }
∪
{N − nc − B

2 , · · · , N −
nc+

B
2 }, and Yn, Sn and Wn (n = 0, · · · , N−1) are the DFT’s

of yk, sk and wk, respectively. If we assume that E{s2k} = Ps,
then we can express Yn as:

Yn =

{
N
√

Ps

2(B+1) +WR,n + jWI,n if n ∈ B

WR,n + jWI,n otherwise
, (40)

where WR,n = ℜ{Wn} ∼ N(0, Nσ2

2 ) and WI,n = ℑ{Wn} ∼
N(0, Nσ2

2 ) [12].

We let Tn =
√

2
Nσ2Yn, W̃R,n =

√
2

Nσ2WR,n and W̃I,n =√
2

Nσ2WI,n such that W̃R,n ∼ N(0, 1) and W̃I,n ∼ N(0, 1).
Thus, we obtain:

Tn =

{ √
NPs

(B+1)σ2 + W̃R,n + jW̃I,n if n ∈ B

W̃R,n + jW̃I,n otherwise
. (41)

From (41) we can obtain the distribution of |Tn|2 (under H1)
as follows:

|Tn|2 ∼

{
χ2
(
2, NPs

(B+1)σ2

)
if n ∈ B

χ2(2) otherwise
, (42)

where χ2(k, λ) is the non-central Chi-squared distribution
with k > 0 degrees of freedom and λ > 0 non-centrality
parameter, and χ2(k) is the Chi-squared distribution with
k > 0 degrees of freedom. A sliding window of size L (odd
integer) will be applied to |Tn|2, resulting in the decision
statistic Zn =

∑(L−1)/2
l=−(L−1)/2 |Tn+l|2. We are particularly

interested in the value of Zn for n = nc in order to obtain
a decision statistic for the periodogram-based method. The
distribution of Znc depends on the window length L, relative
to the signal bandwidth.
In particular, if the window size is smaller than the signal
bandwidth (i.e. L ≤ B + 1), then the distribution of Znc will
be given by:

Znc ∼

{
χ2
(
2L, NLPs

(B+1)σ2

)
under H1

χ2(2L) under H0

. (43)

This results in a Neyman-Pearson (NP) detection threshold
η = 2γ−1 (L; (1− α)Γ(L)), where α ∈ [0, 1] is the false-
alarm rate, γ−1 is the inverse lower incomplete Gamma func-
tion, and Γ is the Gamma function [12]. The corresponding
detection probability can be obtained as:

PD = P

{
χ2

(
2L,

NLPs

(B + 1)σ2

)
> η

}
(44)

= QL

(√
NLPs

(B + 1)σ2
,
√
η

)
(45)

where QL(a, b) is the Marcum Q-function.

5B is an even integer and nc is an integer.

On the other hand, if the window length is larger than the
signal bandwidth (i.e. L > B + 1), then the distribution of
Znc will be given by:

Znc ∼
{

χ2
(
2L, NPs

σ2

)
under H1

χ2(2L) under H0
, (46)

resulting in a detection probability PD = QL

(√
NPs

σ2 ,
√
η

)
.

Thus, in general, the detection probability of the sliding-
window periodogram-based detector can be obtained as:

PD = QL

(√
N min {L,B + 1}Ps

(B + 1)σ2
,
√
η

)
. (47)
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