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Wideband Spectrum Sensing for Cognitive Radios
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Abstract—Wideband signals can be subjected to various
types of non-Gaussian and impulsive noise. Such non-Gaussian
noise may cause degradation in the detection performance of
conventional wideband signal detection methods, such as the
periodogram-based approach. In addition, the signal detection
probability can be further reduced due to possible correla-
tion among the noise samples. Under such non-Gaussian noise
conditions, we formulate a wideband signal detection method
for cognitive radios (CR’s) based on a locally-optimal (LO)
Neyman-Pearson (NP) detector by assuming a weakly correlated
noise model with known parameters. The corresponding decision
statistic is expressed in the frequency-domain, allowing to detect
the spectral activities within the sensed band of interest. The
proposed detector is shown to reduce the impact of correlated
non-Gaussian noise on the detection performance. We compute
the receiver operating characteristic (ROC) of the proposed
wideband LO-NP detector and show its superior performance,
compared to existing wideband detectors under correlated noise
conditions.

Index Terms—Cognitive radio, correlated noise, locally optimal
detector, signal detection, wideband spectrum sensing.

I. INTRODUCTION

Cognitive radios (CR’s) are considered as intelligent radio
devices that are able to achieve efficient utilization of the RF
spectrum [1], [2]. In the context of dynamic spectrum access
(DSA), CR’s are assumed to operate as secondary wireless
users that detect the spectral holes and communicate over the
unused portions of the spectrum [2]. To this end, a CR must be
equipped with wideband spectrum sensing abilities, allowing
it to exploit more spectral opportunities in order to achieve
high transmission rates [3]. A CR sensing a wide frequency
band not only has to detect the active signals, but it should also
identify their center frequencies within the sensed frequency
band [4]. Thus, spectral estimation is considered as a major
component in wideband signal detection [5].

In contrast with narrowband signal detection, wideband
signal detectors can be subjected to multiple electromagnetic
interference sources that may be operating in the sensed
wideband of interest [5]. Such heterogeneous electromagnetic
activity was shown to be non-Gaussian, making the common
Gaussian noise assumption not valid for wideband spectrum
sensing [5], [6]. In particular, the conventional periodogram-
based signal detection approach was shown to be unsuitable
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for the non-Gaussian noise case [5], [7]–[9]. Under such non-
Gaussian noise conditions, non-linear detectors can be used
to reduce the impact of non-Gaussian and impulsive noise
on the detection performance [9], [10]. Non-linear detectors
are commonly obtained using locally-optimal (LO) detection
methods [5], [9]–[12].

In addition to the non-Gaussian nature of noise in wide-
band systems, it was shown that noise may exhibit temporal
correlation in many practical applications [13], [14]. Thus,
the common independent noise assumption may not be valid
in practice, which requires detection approaches that take
into account possible correlation among noise samples. Such
dependent noise environments have been considered in [15]
where an LO detector was proposed to detect wireless signals
in the presence of weakly correlated noise. The proposed
detector of [15], however, is not suitable for wideband signal
detection since it was formulated based on a time-domain
detection rule, which does not reflect the ongoing spectral ac-
tivities of the various signals within the sensed wideband. On
the other hand, a wideband signal detector was proposed in [5]
by assuming non-Gaussian noise environments. However, the
proposed detector of [5] was only limited to the independent
noise case.

In this paper, however, we propose a novel approach for
wideband signal detection by assuming a non-Gaussian weakly
correlated moving-average (MA) noise model, similar to [15]–
[17]. The assumed noise model has been introduced by Port-
noy [18], [19] in the context of robust parameter estimation
[15], [16] and provides a simple, yet useful, representation
for random sequences that exhibit weak dependence among
samples [16]. This MA representation can model the situation
in which terms depending on second or higher order of
the averaging weights can be negligible, with the degree of
dependence being parameterized by the averaging weights
[16], [17]. We formulate our signal detection problem as
a composite hypothesis testing based on the LO Neyman-
Pearson (NP) criterion, similar to [5]. The LO-NP approach
is convenient for blind signal detection since it does not
require complete knowledge of the signal distribution [5].
Furthermore, LO detectors are suitable for low signal-to-noise
ratio (SNR) regime [9].

The resulting LO decision statistic is expressed in
frequency-domain, leading to a novel signal detection ap-
proach that extends the signal detector of [5] to the dependent
noise case. This allows to analyze the impact of noise cor-
relation in such wideband non-Gaussian environments. This
generalization could be achieved thanks to the assumed weakly
correlated noise model of [18] whose probability density
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function (pdf) can be expressed in a product form, similar
to independent noise distributions. The proposed wideband
signal detection method was shown to outperform the detection
probability of existing wideband detectors in the presence
of weakly correlated non-Gaussian noise. In addition, high
detection rates could be achieved in the low signal-to-ratio
(SNR) regime, as expected in LO detection methods.

The remainder of this paper is organized as follows: In
Section II, we formulate the LO-NP detection problem. We
derive the LO-NP detection rule in Section III based on a
weakly correlated noise model. Simulation results are shown
in Section IV and we conclude the paper in Section V.

II. SYSTEM MODEL

We consider a wideband CR that is sensing a certain wide
frequency band of interest. The detected signal is denoted as
Y = [Y1, · · · , YN ]T such that:

Y = θS+W, (1)

where W = [W1, · · · ,WN ]T ∼ fW(w) is the noise vector,
S = [S1, · · · , SN ]T ∼ fS(s) is the signal vector and θ ≥ 0
[5]. The signal detection problem can thus be formulated as
the following composite hypothesis testing:

θ ∈ Θ0 = {0} under H0

θ ∈ Θ1 = (0,∞) under H1
,

where H0 and H1 correspond, respectively, to the signal
absent and present hypotheses [9]. We denote the mean and
covariance matrix of the signal S by s̄ and ΣS, respectively.

The likelihood function of the above hypothesis testing
problem can be expressed as:

L(y, θ) =
E{fW(y − θS)}

fW(y)
, (2)

where S is a random vector with unknown distribution fS(s).
Thus, the decision statistic in (2) cannot be evaluated analyti-
cally due to the unknown distribution fS. However, similar
to [5], we can obtain a second-order LO-NP test that is
independent of fS. The second-order LO-NP decision statistic
can thus be computed as [5], [20]:

T
(LO)
2 (y) =

∂2

∂θ2
L (y, θ)

∣∣∣∣
θ=0

=
Tr

(
F′′

W(y)
(
ΣS + s̄s̄T

))
fW(y)

, (3)

where E {S} = s̄, F′′
W(w) = ∂

∂w f ′W(w) being the Hessian
matrix of fW(w), f ′W(w) = ∂fW(w)

∂w the gradient vector
of fW(w), and assuming that E

{
SST

}
= ΣS + s̄s̄T [5],

[20]. If s̄ = 0, then E
{
SST

}
= ΣS, and the decision

statistic T
(LO)
2 (y) depends on the second order statistics of

the signal S, without requiring complete knowledge of the
signal distribution fS.

Therefore, the second-order LO-NP detector can be formu-
lated using the randomized decision rule δ̃LO which represents
the probability of choosing hypothesis H1, such that [5], [9]:

δ̃LO(y) =


1 if T (LO)

2 (y) > η

γLO if T (LO)
2 (y) = η

0 if T (LO)
2 (y) < η

, (4)

where η ≥ 0 and 0 ≤ γLO ≤ 1. In [5], a closed-form
expression for T

(LO)
2 (y) was obtained in frequency-domain

in function of the power spectral density (PSD) of the signal
of interest. The resulting frequency-domain expression of
T

(LO)
2 (y) in [5] was based on the fact that the joint distribution

of independent noise samples can be written in product form,
which restricted the formulation of [5] to the independent noise
case. In this paper, however, the independent noise assumption
is relaxed by considering a weakly correlated noise model
whose pdf can still be expressed in product form.

III. SIGNAL DETECTION UNDER WEAKLY CORRELATED
MOVING AVERAGE (MA) NOISE MODEL

In this section, we assume that the noise process in (1)
follows a unilateral MA weakly correlated noise model, as
in [15], where the correlated noise sequence {Wk}Nk=1 is
represented using the following recursive model [15]:

W1 = e1

Wk = ek + τek−1, k = 2, · · · , N, (5)

where {ek}Nk=1 is an independent identically distributed (i.i.d.)
noise sequence with a pdf fe(e) and |τ | < 1 being the
correlation parameter [15].

Given the above weakly correlated noise model, the joint
pdf of W can be obtained in product form as [15]:

fW(w) = fW(w1, · · · , wN ) =
N∏

k=1

fe(zk(w)), (6)

where zk(w) ,
∑k−1

i=0 (−τ)iwk−i, for k = 1, · · · , N . The
product form expression of the noise pdf in (6) allows to
simplify the expression of the LO decision statistic in (3),
leading to a frequency-domain formulation. By using the
expression of fW(w) in (6), we can obtain a closed-form
expression of the elements of the gradient f ′W(w) as:

∂

∂wk
fW(w) =

∂

∂wk

N∏
i=1

fe(zi(w))

=
N∑
i=1

∂fe(zi(w))

∂wk

N∏
p=1,p̸=i

fe(zp(w))

=
N∑
i=k

∂fe(zi(w))

∂wk

N∏
p=1,p̸=i

fe(zp(w)) (7)

where the lower index terms (i < k) in (7) are eliminated
since

∂zi(w)

∂wk
=

{
0 if i < k

(−τ)i−k if i ≥ k
,

with zi(w) being independent of wk for i < k. Hence,

∂fe (zi(w))

∂wk
=

∂zi(w)

∂wk
f ′
e (zi(w)) ,
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where f ′
e(x) =

dfe(x)
dx . Replacing the expression of ∂fe(zi(w))

∂wk

in (7), we obtain the gradient vector components as:

∂

∂wk
fW(w) =

N∑
i=k

(−τ)i−kf ′
e(zi(w))

N∏
p=1,p ̸=i

fe(zp(w))

=
N∑
i=k

(−τ)i−k f
′
e(zi(w))

fe(zi(w))

N∏
p=1

fe(zp(w))

= fW(w)
N∑
i=k

(−τ)i−kg(zi(w))

= fW(w)g̃k(w),

where g̃k(w) ,
∑N

i=k(−τ)i−kg(zi(w)) and g(x) , f ′
e(x)

fe(x)
.

We can also obtain the elements of the Hessian matrix F′′
W(w)

as:

∂2fW(w)

∂wj∂wk
=

∂

∂wj
[fW(w)g̃k(w)]

= g̃k(w)
∂fW(w)

∂wj
+ fW(w)

∂g̃k(w)

∂wj

= fW(w)
[
g̃k(w)g̃j(w) + h̃j,k(w)

]
, (8)

where we denote h̃j,k(w) , ∂g̃k(w)
∂wj

. It can be shown that
h̃j,k(w) can be expressed as:

h̃j,k(w) =
∂g̃k(w)

∂wj
=

N∑
i=max{k,j}

(−τ)2i−k−jg′(zi(w)),

where g′(x) = dg(x)
dx . Using (8), and assuming s̄ = 0, we

can evaluate the expression of the second order LO decision
statistic in (3) as:

T
(LO)
2 (y) =

N∑
m=1

N∑
n=1

ρ(s)m,n

[
g̃m(y)g̃n(y) + h̃m,n(y)

]
.

By assuming that the signal S is wide-sense stationary (WSS),
we can express the elements of the covariance matrix ΣS as
ρ
(s)
m,n =

∫ 1/2

−1/2
ϕs(F )ej2π(m−n)F dF , where ϕs(F ) is the PSD

of the signal of interest, similar to [5]. Thus, we can express
T

(LO)
2 (y) as:

T
(LO)
2 (y) =

∫ 1/2

−1/2

ϕs(F )

∣∣∣∣∣
N−1∑
n=0

g̃n+1(y)e
−j2πnF

∣∣∣∣∣
2

+

+
N−1∑
m=0

N−1∑
n=0

h̃m+1,n+1(y)e
j2π(m−n)F

]
dF

=

∫ 1/2

−1/2

ϕs(F )
[
|G(F )|2 +H(F )

]
dF , (9)

where we denote:

G(F ) ,
N−1∑
n=0

g̃n+1(y)e
−j2πnF ,

and

H(F ) ,
N−1∑
m=0

N−1∑
n=0

h̃m+1,n+1(y)e
j2π(m−n)F .

Thus, it is clear from (9) that the second order LO decision
statistic of WSS signals with unknown probability distribu-
tions and in the presence of correlated noise (with arbitrary
distribution) can be obtained by correlating the assumed PSD
of the signal of interest (ϕs(F )) with ϕ̂(F ) where:

ϕ̂(F ) , H(F ) + |G(F )|2.

In practice, however, the proposed wideband detection
method does not require complete knowledge of the PSD
ϕs(F ). That is, if the PSD is assumed to be an impulse
function ϕs(F ) = δ(F − f) with an unknown parameter
f , the decision statistic in (9) will simplify to T

(LO)
2 (y) =

ϕ̂(f) = T
(LO)
2 (f) [5]. Hence, the wideband detection rule

reduces to finding the active frequencies f̂ =
{
f : ϕ̂(f) > η

}
,

where η is a certain detection threshold. This is equivalent
to applying a threshold test to the function ϕ̂(F ). In our
wideband signal detection framework, we denote 1

N ϕ̂(F ) to be
the correlated noise-based periodogram of the received signal,
given a certain weakly correlated noise distribution.

IV. SIMULATION RESULTS

In our simulations, we consider two binary phase-shift key-
ing (BPSK) signals centered at fc = 20MHz and 30MHz,
with respective bandwidths of 2MHz and 4MHz. The re-
ceived signal is sampled at a sampling rate of fs = 80MHz.
The signal is subject to the additive weakly correlated noise
model of (5) with an underlying Gaussian-Laplace mixture
noise sequence {ek}, where τ = 0.3 and the Laplace mixing
parameter is ϵ = 0.2 [5], [11], [12]. The Laplace noise pdf is
denoted as 1

2µe
−|x|/µ, with µ = 1

λ = 2. The Gaussian noise
component has a zero mean and a variance σ2 = 1.

In Fig. 1, we compute the proposed correlated noise-based
periodogram 1

N ϕ̂(F ) of the detected signal, and compare it
to the independent noise-based periodogram of [5], the SVM-
FFT periodogram of [21] and the conventional periodogram
1
N |Y (F )|2, (where Y (F ) is the discrete Fourier transform
of y, with F ∈ {0, 1

N , · · · , N−1
N }) [22]. These results show

that the proposed spectral estimation function can significantly
reduce the noise fluctuations in the periodogram, leading to a
better detection performance, compared to the other methods.

In order to evaluate the detection performance of our pro-
posed wideband detection method, we compute the probability
of detection Pr{T (LO)

2 (y) > η|H1} = Pr{ϕ̂(f) > η|H1},
where hypothesis H1 denotes the existence of a certain active
frequency component at f , and assuming ϕs(F ) = δ(F − f),
as discussed in Section III. By varying f over the normalized
frequency range f ∈ [−1

2 ,
1
2 ], we can test for the existence of

spectral activities at any frequency f ∈ [− 1
2 ,

1
2 ], as required

in wideband spectrum sensing [4].
In this simulation, we use Monte-Carlo methods to com-

pute the detection probability PD = Pr{ϕ̂(f) > η|H1},
where H1 corresponds to an active frequency component at
f = 20MHz/fs. The resulting detection probability can be
generalized to any active frequency component in f ∈ [− 1

2 ,
1
2 ].

As shown in Fig. 2, the proposed correlated noise-based
detector can achieve a higher detection performance, compared
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Fig. 1. Comparison among the correlated and independent noise-based peri-
odograms, the SVM-FFT and the conventional periodogram in the presence
of weakly correlated noise with SNR=-5dB and N = 160 samples.
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Fig. 2. Receiver operating characteristics of the correlated and independent
noise-based signal detectors, the SVM-FFT and the conventional periodogram-
based detectors in the presence of weakly correlated non-Gaussian noise.

to the independent noise-based detector, the SVM-FFT and the
periodogram-based detector.

Finally, we analyze the robustness of the correlated noise-
based detector by assuming that the actual value of the noise
parameter σ deviates from its assumed value of σ = 1
to a value of σ = 2. As shown in Fig. 2, the detection
performance of the proposed detector is slightly reduced under
these conditions, which shows the robustness of the proposed
detector under such noise uncertainty.

V. CONCLUSION

In this paper, we have proposed a wideband signal detec-
tion method for CR’s in the presence of weakly correlated
noise. The proposed method allows to reduce the impact
of noise correlation in non-Gaussian noise environments.
The proposed detector is based on an LO-NP detection rule
and was expressed in frequency-domain, making it suitable
for wideband spectrum sensing applications. The resulting
frequency-domain detection rule could be obtained easily due
to the factorization property of the weakly dependent noise
distribution. We computed the ROC of the proposed detection
method and showed its superior performance in the presence

of correlated non-Gaussian noise environments, compared to
similar wideband detection methods.
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