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Abstract— Starting from local observations, iterative consensus
algorithms attempt to drive a sensor network to a common esti-
mate in a decentralized, incremental manner. When additive noise
perturbs the sensor exchanges, a decreasing stepsize guarantees
convergence under certain conditions, although the design of
such stepsize sequence for fastest convergence is an unsettled
issue. We present a greedy approach to stepsize sequence design,
which minimizes the mean squared error at each iteration. This
design requires knowledge of the network topology; in order to
overcome this drawback, a modified design based only on average
descriptors of the network is also developed.

Index Terms— Consensus algorithms, distributed estimation,
parameter estimation, sensor networks.

I. INTRODUCTION

We address the distributed estimation of a scalar para-
meter by a sensor network. Each node updates its estimate
by exchanging values with its neighbors, driving the whole
network to a common estimate or consensus through an
iterative process; see e.g. [1] for a review of consensus
algorithms. The imperfect nature of the exchanges and, in
particular, unavoidable additive noise, makes it necessary to
adopt some cautions, as already noted in [2]. For example, [3]-
[4] adopt a PLL-like approach, updating the state (phase)
and using the incremental differences (frequency) as estimate.
With this approach, the required noise resilience comes at the
price of unbounded growth of the state variable. In addition,
consensus is not strictly achieved unless the stepsize is allowed
to be time-varying and asymptotically vanishing. In fact, a
decreasing stepsize sequence was used in [5], [6] and [7],
which proposed sequences of the type a/k b, where a, b are
constants and k is the iteration number. Although by proper
choice of b convergence can be guaranteed, good performance
in terms of final mean squared error (MSE) and speed is
not guaranteed. In this letter we propose a greedy approach
by which the stepsize is dynamically chosen to minimize
the MSE at each iteration. The resulting stepsize sequence
yields fast convergence, although it requires knowledge of
the complete network topology. In practice, however, a priori

University of Vigo’s contribution was supported by the Spanish Gov-
ernment under projects SPROACTIVE (ref. TEC2007-68094-C02-01/TCM)
and COMONSENS (CONSOLIDER-INGENIO 2010 CSD2008-00010). S. K.
Jayaweera was supported in part by the National Science foundation (NSF)
under grant CCF-0830545. Parts of this work were previously presented at the
9th IEEE International Workshop on Signal Processing Advances for Wireless
Communications, Recife, Brasil, July 2008.

knowledge about the network beyond general descriptors, such
as, e.g., sensor density, may not be available. Hence, in order to
sidestep this problem, we develop a modified design in which
only the average number of neighbors is needed, together with
the observation and communication noise powers.

In Section II we introduce the framework. The distributed
estimation method and the greedy stepsize sequence design are
presented in Section III. Section IV presents the modified de-
sign, and numerical simulations and conclusions are provided
in Sections V and VI respectively.

II. SENSOR NETWORK MODEL

Let G = (V, E) be a graph with M nodes (sensors) vm ∈
V and edges eij ∈ E if there is a path from vi to vj . The
adjacency matrix A is defined by [A]ij = 1 if eji ∈ E and
zero otherwise. We consider graphs that are undirected (A =
AT ) and connected (there exists a sequence of edges from
any vi to any vj). The degree matrix D is a diagonal matrix
such that [D]ii is equal to the number of connections entering
node i. The Laplacian matrix L is defined as L = D − A;
for undirected graphs, L = LT . Note that L1 = 0, where 1
is the all-ones vector. The number of total connections of G
is ∆(G) .= 1T D1.

The eigenvalues of L, λ1 ≤ λ2 ≤ · · · ≤ λM , contain
significant information about the topology of G: in particular,
λ1 = 0, whereas for a connected graph, λ2 > 0. The so-called
algebraic connectivity λ2 plays a major role in the speed at
which information can diffuse through the network [1].

The additive noise nij(k) in the signal received at sensor j
from sensor i in the k-th information exchange (as described
below) is assumed zero-mean, independent among different
sensor links, and temporally white. These noise samples are
collected in the matrix N(k) = [nij(k)], where nii(k) = 0
for all i, k. We assume the same noise variance σ2

n in all links,
although this assumption can be relaxed as we will conclude
later.

III. DISTRIBUTED ESTIMATION

Let x(0) .= [ x1 x2 · · · xM ]T collect the initial
observations of an unkown value x at the M sensors. These
estimates are assumed unbiased (E{xi} = x for all i), uncor-
related, and with the same variance (E{(xi−x)(xj−x)} = σ2

if i = j and zero otherwise). All sensors update their estimates
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in a process driven by exchanges with their neighbors, in order
to reduce the estimation error and to eventually agree on a final
value. At step k the vector of estimates is x(k), whereas the
error vector is

e(k) .= x(k) − x1. (1)

The error covariance matrix R(k) .= E{e(k)eT (k)} satisfies
R(0) = σ2I. At iteration k, the signal from node i received
at sensor j is corrupted by communication noise, and is given
by xi(k)+nij(k). For some weight matrix W (k), the update
is given by

x(k + 1) = W (k)x(k) + diag{W (k)N(k)} (2)

where diag{C} denotes a vector with the diagonal elements
of C. In the absence of noise, x(k + 1) = W (k)x(k),
and asymptotic alignment of all the elements of x(k) can
be guaranteed with a constant Perron matrix W = I − γL
if 0 < γ < 1/ max{[D]ii} [1]. In such a case W has an
eigenvalue equal to 1 with corresponding eigenvector 1, and
limk→∞ W k = 11T /M . Then the sequence of estimates
converges to limk→∞ x(k) = [1T x(0)] · 1, meaning that
all nodes asymptotically agree on the same value, which is
the Best Linear Unbiased Estimate (BLUE) for this problem
and has variance σ2/M . However, in the presence of noisy
exchanges this scheme blows up [2]. To sidestep this problem,
the weight matrix can be made time-varying, i.e., W (k) =
I−γ(k)L, with γ(k) a stepsize sequence to be designed. It is
well known from the stochastic approximation literature [8],
[9] that, in order to ensure asymptotic convergence of x(k) to
a constant vector, the positive sequence γ(k) must satisfy

∞∑
k=0

γ(k) = ∞,

∞∑
k=0

γ2(k) < ∞. (3)

The sequence γ(k) will influence the final error: with noisy
exchanges and a time-varying stepsize, and provided that
convergence is achieved, the consensus value will not in
general be equal to the BLUE, and will depend on the noise
power and stepsize sequence. In terms of estimation variance,
communication noise results in a gap with respect to the
performance of the BLUE as detailed next.

It follows from (2) that the error updates as

e(k+1) = W (k)e(k)+(W (k)−I)x1+diag{W (k)N(k)}.
(4)

Taking expectations in (4), it is seen that the estimates remain
unbiased along the iterations provided that (W (k)−I)1 = 0,
which indeed holds for W (k) = I − γ(k)L. Then

e(k + 1) = (I − γ(k)L)e(k) + γ(k)diag{AN(k)}. (5)

Since N(k) and e(k) are uncorrelated, R(k) obeys the
recursion

R(k+1) = (I−γ(k)L)R(k)(I−γ(k)LT )+γ2(k)σ2
nD, (6)

from which

R(k + 1) = R(k) − γ(k)R(k)LT − γ(k)LR(k)

+ γ2(k)LR(k)LT + γ2(k)σ2
nD. (7)

If consensus is achieved, R(k) must asymptotically approach
σ2
∞11T , where σ2

∞ denotes the asymptotic estimation error
variance. Thus, in that case, σ2∞ = limk→∞(1T R(k)1)/M2.
This value can be readily obtained from (7) when R(0) =
σ2I, and is given by

σ2
∞ =

σ2

M
+

∆(G)
M2

σ2
n

∞∑
j=0

γ2(j). (8)

This equation can be extended to time-variant cases for which
the Laplacian matrix L changes with time [9]: in essence,
the noise contribution must be modulated at each step k as a
function of its average power on the active links. It follows
that, when choosing the stepsize sequence, there is a tradeoff
between convergence speed and excess MSE. For a given
convergence rate,

∑∞
j=0 γ2(j) should be as low as possible;

at the same time,
∑∞

k=0 γ(k) = ∞ must hold: this fact was
also raised in [9]. Unfortunately, it seems difficult to translate
all these considerations into an optimization problem for the
selection of the stepsize sequence. Instead, we propose a
greedy approach in which γ(k) is selected in order to minimize
tr{R(k + 1)}. From (7), this value is given by

γ(k) =
tr{R(k)L}

tr{LR(k)L + σ2
nD} , k = 0, 1, . . . (9)

Together, the coupled recursions (7) and (9) allow the com-
putation of the covariance and stepsize sequences. Since this
method just tries to minimize the MSE from one iteration to
the next, we will refer to it as Myopic BLUE (M-BLUE). The
stepsize sequence can be precomputed, provided that the graph
topology is known and does not change with time. The case of
different communication noise powers in different links can be
easily accommodated by replacing σ2

nD by a diagonal matrix
such that its i-th diagonal entry is given by the total noise
contribution entering the i-th node.

Fig. 1 shows the evolution of the MSE of M-BLUE, given
by tr{R(k)}/M , for a network of M = 100 nodes with a
uniform spatial distribution, such that ∆(G) = 602, σ2 = 1,
and ideal noise-free connections (σ2

n = 0). Also shown is the
MSE for a constant stepsize approach using γ = 2/(λ2+λM ),
which yields fastest convergence for this class of methods [10].
It is seen that allowing for a time-varing stepsize results in an
improved convergence rate. Note that in this example γ(k)
does not settle down to a constant value, but rather it sustains
a period-2 oscillation around the optimal constant stepsize.

IV. SEQUENCE DESIGN

In order for the different nodes to compute the M-BLUE
stepsize sequence, knowledge of the network topology (i.e.
the Laplacian matrix L) is required. In practice, however,
this a priori information may not be available, and in fact
the network topology could change over time. Thus, it is
of interest to develop stepsize sequence designs that do not
require this knowledge.

Regarding M-BLUE, note that the cost function tr{R(k)}
gives equal weight to errors in all sensors (which eventually
will agree on the same estimated value), and therefore it
implicitly assumes that all nodes play exactly the same role for
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Fig. 1. MSE and stepsize evolution of the consensus iterative processes.
Random network of 100 nodes, noiseless case.

recursion guidance purposes. Carrying this argument one step
further, one could assume as a first approximation, and lacking
any other a priori information, that the network topology is
location invariant, i.e., all nodes have the same number of
neighbors, say dc, and thus the corresponding Laplacian matrix
Lc (but not necessarily the true Laplacian L) is circulant under
proper node numbering. Then L c = FΛcF

H , with F the
orthonormal M -DFT matrix and Λc a diagonal matrix with
the M -point DFT of the first row of Lc on its diagonal. Note
that for this circular topology, the corresponding covariance
update is obtained by substituting L and D in (7) by L c and
dcI respectively. From this, and the fact that R(0) = σ2I,
it is readily seen that this update preserves circularity of the
covariance matrices: only the eigenvalues of R(k) change with
time, while the eigenvectors are given by the columns of F .
This results in the following compact form of the M-BLUE
recursions for circular topologies:

γcirc(k) =
�T r(k)

(� · �)T r(k) + dcσ2
nM

, (10)

rn(k + 1) = (1 − γcirc(k)�n)2rn(k) + dcσ
2
nγ2

circ(k),(11)

for n = 1, . . . , M , k = 0, 1, . . . , where �
.= [�1 · · · �M ]T

and r(k) = [r1(k) · · · rM (k)]T denote the M -point DFT
of the first row of Lc and R(k), respectively, with r(0) =
(σ2/

√
M)1, and · denotes the entrywise (Hadamard) product.

The design parameter dc in this “virtual” circulant network
is taken as the closest integer to the average node degree d

.=
∆(G)/M of the original network, so the eigenvalues sum in
both cases is as close as possible. Then, the circulant Laplacian
Lc is determined by its first row [Lc]1, given by

[Lc]1 = (dc,

dc/2︷ ︸︸ ︷
−1, · · · ,−1, 0, · · · , 0,

dc/2︷ ︸︸ ︷
−1, · · · ,−1), (12)

for dc even and

[Lc]1 = (dc,

(dc−1)/2︷ ︸︸ ︷
−1, · · · ,−1,− 1

2 , 0, · · · , 0,− 1
2 ,

(dc−1)/2︷ ︸︸ ︷
−1, · · · ,−1),

(13)

for dc odd. The − 1
2 terms in (13) make it possible to have a

circulant symmetric matrix by generalizing Laplacian entries:
in a way, they represent connections with weights halved. The
vector � is then obtained as the M -point DFT of [Lc]1. In
addition, for networks with different noise powers in different
links, the product dcσ

2
n can be replaced in (10)-(11) by the

average noise power entering the nodes.
The case of random geometric graphs is of special interest

to describe practical deployments in which sensors are ran-
domly scattered across large spatial extensions. If two nodes
connect when they fall within range of each other, then the
resulting network is described by a random geometric graph,
whose properties are widely studied in the literature [11]. In
such random graphs, the average node degree d = ∆(G)/M ,
representing the average number of neighbors, can be approx-
imated by the expected degree of any given node, determined
by the node spatial distribution and the connectivity radius
R. For example, if a large number of nodes is uniformly
distributed with density α on a square significantly larger than
the connectivity radius, then d ≈ απR2 [11]; see, e.g. [12] for
results regarding Poisson or Gaussian distributions. Random
link failures can also be considered by modifiying accordingly
the average number of neighbours. The asymptotic expressions
corresponding to (10) and (11), if we let M → ∞ given that
sensor networks are usually large, can be readily proved to be

γcirc(k) =

∫ 2π

0
T (ω)R(k)(ω)dω∫ 2π

0
T 2(ω)R(k)(ω)dω + 2πdcσ2

n

, (14)

R(k+1)(ω) = (1 − γcirc(k)T (ω))2R(k)(ω) + dcσ
2
nγ2

circ(k)

where R(k)(ω) denotes the Fourier transform of the first row
of R(k), and T (ω) is the Fourier transform of (12) for d c

even:

T (ω) .= dc − 2 cos(ω((dc + 2)/4)) sin(ωdc/4)/ sin(ω/2),
(15)

and (13) for dc odd:

T (ω) .= dc−2 cos(ω((dc+1)/4)) sin(ω(dc−1)/4)/ sin(ω/2)
− cos(ω(dc + 1)/2). (16)

These asymptotic expressions will be used in the next section
for moderate size networks, requiring only the knowledge of
dc, σ

2 and σ2
n, and using basic numerical integration with

rectangles to compute (14).

V. NUMERICAL ILLUSTRATION

Figs. 2 and 3 depict the MSE evolution for two networks
following uniform and Gaussian spatial distributions, respec-
tively, with the signal-to-noise ratio given by ρ

.= σ2/σ2
n. The

performance gap between M-BLUE and its circular approx-
imation, which is the price to pay for not using the com-
plete topology information in the stepsize sequence design,
is smaller for the uniform case, as could be expected since
the number of neighbors has a lower variation throughout the
network.

As a final remark, in order to reduce memory needs, [5],
[6] and [7] presented some rules which can be generalized and
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Fig. 2. MSE evolution: M = 100 sensors, uniform distribution. The average
number of connections per node is 6.
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Fig. 3. MSE evolution: M = 100 sensors, Gaussian distribution. The average
number of connections per node is 12.

jointly described as γ(k) = a/kb, with 0.5 < b ≤ 1 in order
to satisfy (3). The required memory to store the corresponding
sequence would reduce now to the two parameters a and b,
although there is no design rule to obtain them. However,
for a target number of iterations, one can minimize off-line
||γcirc(k) − a/kb||2 with respect to a and b. Figs. 2 and 3
include also the corresponding performance under the label
of minimum memory for comparison.

VI. CONCLUSIONS

The performance of distributed estimation methods de-
pends on initial estimate accuracy, number of sensors and
inter-sensor link qualities. A noise-resilient greedy stepsize
sequence design for the iterative consensus algorithm has
been presented, together with a modification which uses only
average network descriptors and thus does not require full
network topology knowledge. In this way, robustness against

link failures is also obtained. Future work will address the
potential benefits of using different stepsizes at each node in
terms of MSE and convergence speed. Note that the M-BLUE
design can be readily generalized to this case.
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