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Abstract: In this paper we obtain information theoretical conditidos tracking in linear time-invariant control
systems. We consider the particular case where the clospcctintains a channel in the feedback loop. The mutual infor-
mation rate between the feedback signal and the referepaésignal is used to quantify information about the refeeen
signal that is available for feedback. This mutual inforimatrate must be maximized in order to improve the tracking
performance. The mutual information is shown to be uppented by a quantity that depends on the unstable eigenval-
ues of the plant and on the channel capacity. If the chanmpeloiy reaches a lower limit, the feedback signal becomes
completely uncorrelated with the reference signal, renddeedback useless. We also find a lower bound on the expecte
squared tracking error in terms of the entropy of a randomreefce signal. We show a misleading case where the mutual
information rate does not predict the expected effect ofmimimum phase zeros. However, mutual information ratpsel
to generalize the concept that there is a tradeoff when itigcind disturbance rejection are simultaneous goals and a
constraint communication channel is present in the feddlmap. Examples and simulations are provided to demormstrat
some of the results.
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1 Introduction pens to be zero, then we reach a fundamental limitation
The goal of this article is to find fundamental limitawhere no information of the reference signal is availabie fo
tions on feedback tracking systems in terms of informatidfedback. This means that the two signals are independent,

theoretical quantities. This is important since the emertterefore, uncorrelated, and this is exactly the conditiai
ing control applications involve the presence of a constraiMmplies that tracking is impossible. In other words, thedfee
communication channel in the feedback loop. Typicallyack signal does not provide any useful information for the
control systems have been understood as signal proceségfgrence to be tracked.
blocks or systems interchanging energy. However, these apWe note that the condition for a non-zero mutual infor-
proaches are not appropriate for the new scenarios. Thatigtion between the reference and the feedback signal is a
why we suggest that an interpretation in terms of inform&ecessary condition for tracking, but not a sufficient one. A
tion flow may be more suitable for the future design of coarge mutual information between the reference signal and
trol algorithms. the feedback signal does not necessarily imply that track-
Previous related work in [1], [2], [3], [4], [5], [6] and [7] INg is possible (it only implies that the signals are highly
detailed some aspects of performance and limitations @¥related). This is expected because even in the case of a
control systems in terms of information theoretic quaasiti Perfect infinite capacity channel, the tracking issue nesi
Specifically, the work in [5] dealt with the tracking issuegdditional conditions to be satisfied.
without a channel in the feedback link, while [1] dealt with The results in this work do not intent to be applied in the
disturbance rejection. A result in [5], shows that a neagssalesign of a new control algorithm. These results are fun-
condition for efficient tracking is that the information flondamental limitations in terms of information quantitieatth
from the reference signal to the output should be greagty control system designer must be aware of before try-
than the information flow between the disturbance and tig to design a new control system. We note that the results
output. We know that in the absence of noise, and withoushown in this article are an extension to those in [8].
communication channel in the feedback loop, the mutual in-
formation rate (or information rate) between reference sig Notation
nal and the output is infinite. From [3] we know, however, \ye present next the notation used in the rest of this arti-
that if the feedback signal is transmitted by means of a fite.
nite capacity channel, the mutual information rate is upper, | ot yk — {x(1),x(2),...,x(K)} and yk =

bounded byCt — 5;_; max{0,log, (|Ai(A)[)}. {y(1),y(2),...,y(k)} be sets of observations of
Following the same approach of [12], we expect that the stochastic processes andy. We follow the nota-

parameters of the plant and feedback channel cap@gity tion in [10] where bold letters represent stochastic

will be related, and that there will be a trade-off between  processes.

these parameters. If by some reason this upper bound hape Letx(k) be a time sample of the stochastic process

First author is partially supported by Conacyt; second @uit partially supported by NSF award under the FIND initi@atCNS
0626380.



e Letx; be the “j-th” state component. For example, if (e) h(z/w)

x has dimensiom = 3, thenx; will denote any of the () I(z;w) =I(w;z) > 0.
state components;, X Or X3. @) Hz;w) > 1(g(z); f(w)).
e Let x; denote the set of state componengs,such (h) I(z;w|u) = I((u,z);w) — I(u;w) = h(zju) —
that j € J. For example, if & {1,3}, thenx; is the h(z|w,u) = h(w|u) — h(w|z,u).
set{xy,Xs}. (i) For any random variable and estimate: E{(z —
e Let|.| denote the absolute value adelt(.) denotes the 2)%} > ZLZZh(Z), with equality if and only ifzis Gaus-
absolute value of the determinant of a matrix. sian an(%eis the mean of.
x(0) (i) The variance of the error in the estimafeof z
given the infinite past is lower bounded a$(z) =
iMoo E{(z — 2)2(K)|(z — 2)(k — 1)} > ,220(2)
r e u y with equality if z is Gaussian.
C P (k) If zis an asymptotically stationary process, then
1 7
b k! channek| E ho(d) < 5 / l0g, (211e%(0) ) doo
y v w m
where®, is the asymptotic power spectral density of
c zand equality holds if, in additiorz,is Gaussian auto-

) ) o ) ) regressive.
Fig. 1 Closed-loop system with communication channel idfieek Link.

We also define the blocks in Figure 1: 4
e Cisthe controller, which does not have any constraints

(it could be time-invariant, nonlinear, etc.).
e P is the plant to be controlled and is assumed to

Signal analysis

The functional dependencies among the signals involved
Héthe closed-loop shown in Figure 1 are the following:

discrete, linear, time-invariant, with state-space real- y(k) = f1(rk 1,1 x(0));
Ization e(k) = fa(r,§%) = r () = 9(k);
x(k+1) = Ax(k) + Bu(k); (1) u(k) = f3(ek),
y(k) = (CX(k) (2 9(k) _ f4(yk Ck)
e E is the encoder assumed to be a causal operator well ’
defined in the input alphabet of the channel. ;
e D is the decoder assumed to be well defined and c05n- Assumpthns - )
serving equimemory with the encoder. The matrixA in block P in Figure 1 is assumed to be
o The channel block is any type of communication chaiagonal with only unstable eigenvalugai(A)| > 1) and
nel with finite capacity. therefore,AX is invertible k. We assume thaA has un-
e cis the channel noise. stable eigenvalues since it is the worst case. The general
case in whichA have stable eigenvalues is discussed in [8]
3 Information theory preliminaries and the non-diagonal case is discussed in [9]. Since we are

) considering the tracking problem, the control law is a func-

Before proceeding, we enumerate some well—knovm)n of the errorek — rk— g% u(k) = fa(ek). We note for

information-theoretical properties that will be very udef AR A AN :
now that the output is am-dimensional vector, but this

later on. . . T
will be relaxed later on. In our setufy is not limited to

Proposition 3.1 Assume thag, w, u € R are random be a linear or time-invariant control law. We note that the

variables andf (z), g(z) are real functions. All of the fol- : ; : :
lowing may be found in several references as [11], [1E]olut|on of the difference equation (1) may be written as

k=1 , :
and [13]. x(k) = Ax(0) + 3 AKI=1Bfy(€). If C =1, then from the
< i ity i i . i<0
(@) g(leL\':\./) < h(z) with equality if z andw are indepen tracking error, defined bg(k) = r (K) — y(K), we have

(b) Letz have meanu and covariance Cdz"}. Then

k=1 .
r(k) — &(k) = y(k) = x(k) = A(0) + Z}Ak*'*leg(e').
h(z") < %Iog2 ((Zne)”det(COV{z”})) = 3)
We rearrange the terms as
with equality if z has a multivariate normal distribu- 1
tion. ko pk—i-1 i —k
X(0)+A A Bfs(e)=—-A"(e(k)—r (k). (4
(c) h(az) :h(z)+logz(|a|) for nonzero constara © i; 3(€) (&0 =rk). @)

(d) h(Az) = h(z) +log, (det(A)) for nonsingularA ma- | 3 tracking problem, we do not necessarily assume that
trix. the state is bounded, since for unbounded reference sjgnals



the state may grow unbounded. Instead, we assume thatBlyehe properties of mutual information, we have
closed-loop is such that the error is bounded, i.e.,

L((r%,x(0));9%) = L(rk; §%) +1(x(0);95|r%).  (8)

From the definition of mutual information, Property 3.1,(e)
Since this implies thet is a second-order process, the mezand from the fact thag" = rk — 9%, we have

E{eT€} < o.

E{e} and the covariance Cde} = E{(e +E{e})(e + L(x(0); 9¥|r*) = h(§¥|r¥) — h(§X|x(0),r¥);
E{€})T} must be finite. For bounded reference signals, the — h(eIr¥) — h(ex(0). r%):
conditionE{&T £} < « guarantees stability since by the tri- (€'1r™) —h(e"x(0), r);
angle inequality [10] we know that =1(x(0); |r%). @)
\/E{xz(k)} < \/E{rZ(k)} N \/E{ez(k)}. 5) From equation (6) and (7) we have
Since the two terms on the right side of equation (5) are fi- L((r*,x(0));§%) = 1(r’:9*) -+ 1 (x(0); €¥|r¥). (8)
nite, then we also get thaf E{x?(k)} < « and, therefore,
the system remains stable. From equation (8) and knowing thi; > 1((rk,x(0));9%)
we obtain

6 Auxiliary results

The next three results were proven in [8] and will be used 1(r;9%) < kCr — 1(x(0); €r). 9)

later on.

Lemma 6.1 Consider the closed-loop system in Figur8y Lemma 6.2, and dividing equation (9) liyand taking
1, where the plant is a DTLI system described by equatiol¥ limit ask — e, we finally have
(1) and (2), withC = I, andA diagonal in equation (2). If

E{xp, (K)x, (K)} < 0, then lo(r;9) < Cr — ¥ log, (|/\i(A)|).
I
im | (xp, (0); €|r¥,x;(0)) S0 (|A'(A)|) We summarize this result in the following lemma:
koo k - i; G 1A ' Lemma 7.1 Consider the closed-loop system given in

Figure 1, where the plant is a DLTI system described by
equations (1) and (2), a feedback capa€ltyin the chan-
Lemma 6.2 Consider the closed-loop system in Figur@el. I E{e(k)e(k)T} < o, then
1, where the plantis a DLTITsystem described by equations
l)and 2)C =1L IfE{e(k)e' (k)} < o, then -
(1)and (2) {e(0E™ ()} 19) <1~ 5 Togg (1WA
1

. 1(x(0); € |rk

lim % > Zlog2 (|)\i(A)|).
k—o0 [ We note from Lemma 7.1 that if the channel does not
have a minimum capacity df;log,(|Ai(A)|), the feedback

Lemma 6.3 Consider closed-loop system given in Fi _signal does not prc_)vide any inform_ation Of. th? referen<_:e
b Sy g g gnal. Lemma 6.2 is one of the main contributions of this

;Ji(r)?] :kl\)lvgﬁ(rji E%Ejligtr |:Oe:nlzlj_T€I S{{Sf?mn(}j,ezcgz%igye?gLvﬁ\j/{ork. We note that Lemma 6.3 is needed when the output is

constant. If B(k)eT (K)} < e and E{x;(k)xf;(k)} < o, only one of the state components and not the whole state.

then 7.1 Limitations on reference signals
1(x(0);€|rk) The results of the previous sections deal with the idea
lim K > ) logy (|)‘i(A)|)' of bounding the error signak (k) = r (k) — y(k). However,
|

it is well known that given a plant and a particular con-
troller, there will be limitations on the type of signals tha

7 Results may be tracked. We show next that a tracking system may
be thought of as a channel where the reference signal is the

Us_ing the results in Se_ction 6, we find limitations of Put message, the closed-loop is a feedback channel (with
tracking systems that are imposed by the presence of Al

. : _ K e encoder-decoder embedded) and the system output is
nite capacity channel. We consider the expressioh ) he received message. Under this scenario good message

instead ofl (r¥;y¥). Although| (r*;y¥) provides the actual estimation is synonymous with good tracking. We consider

information between the output and the reference signags— r —y as the error estimate of the message. Note from
the former is easier to calculate than the later. The mutysdoperty 3.1.(i), that

informationl (r%; §) represents the information between the

transmitted feedback, i.e§¥, and the reference signal. If 2 1 _on)

this mutual information happens to be zero, all information E{r-y)7}t = Eez :

contained in the feedback signal about the reference signal

was lost and the err@used to generate the control signal iF his inequality captures the idea that the greater is the en-
useless. Infact,(r;y) measures the usefulness of feedbacikopy of the reference signal, the larger is the error signal



€. Moreover, sinceE{(r —y)?} is a nonnegative number, y(K) = x(k);

we note that the error between the output and the reference u(k) = 4.33(r (k) — y(Kk)).
cannot reach zero unless the reference signal is determin-
istic (h(r) = —). In other words, perfect tracking is not X Py X

possible and tracking gets worse for high entropy reference
signals regardless of the type or quality of the channel and
the controller. Moreover, the following result holds redrar
less of the plant. Let us consider that the expected value of
(€X)2 given the entire paag’l ask tends to infinity given E
by

YT 2 _ Fig. 2 Erasure channel scheme.
0x(r) = M;E{e (Klek—1)}. One limitation of our result is that it is given in terms of
From information theory, the entropy rate lower-bounds tibe mutual information rate, which is difficult to compute

varianceo?(r): o2(r) > 2L22hw(f)_ We then obtain the fol- for this type of problems. However, we know that it im-
lowing lemma. e poses a limit to guarantee tha{&Kk)&' (k)} < c. In or-

Lemma 7.2 Consider the closed-loop system given ifl€r to explore what happens tq&Kk)eT (k)}, we plot the
Figure 1, where the plant is a DLTI system described HBPWer spectrum o€, Se(w) whose enclosed area from

equations (1) and (2). Then the best estimatdor r is [ —7T 71 is equivalentto the squared output average, dfe.,
bounded as E{€2} = |™ See(w)dw. According to Lemma 7.1, the min-

E{(r —y)2} > ith(U_ (10) @mum_fee_dback channel capacity for stabiliza_tior_\ needed
21e is 3 bits/time-step. The power spectrum density is shown
Moreover, the variance of the best reference estimator,Figure 3, where we notice that the power spectrum is
02(r), is bounded from below as follows bounded and, thereforg{ £?(k)} is finite. If, instead of us-
ing 3 bits/time-step, we use 2 bits/time-step, we obtain the
new power spectrum of the error in Figure 4.

PSD of the Error e(k) with Rate 3 bits/time—sample
(Erasure Channel)
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8 Examples

The results derived in so far are necessary conditions but
not sufficient. Since the quantity(r;§) implies correla-
tion of signals and not necessarily thais trackingr. The
following examples capture how conservative the results of
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this work are. 2000}
8.1 Example 1: erasure channel 1000f
We consider the tracking problem shown in Figure 1 % s 2 a4 o 1 2 3 a4

Frequency

for the reference signat,(k). The reference signal is as-
sumed to be a white Gaussian sequence, with zero-meag. 3 Example with erasure channel and bit rate of 3 bitg/ttep.
and witha? = 1. We consider a memoryless erasure chan- ,1g® PSP ol the Eror e wih Rate =2 Bikime-step

nel as shown in Figure 2 in the feedback link with limited 2 I
rate and a probability of receiving the state measurement
of py = 0.70479. The probability of dropping a packet is 2r
therefore - p,. We consider a two-part encoder-decoder
scheme: First, the encoder converts the real state-vector
measuredx(k), to its binary form, truncates the binary rep-
resentation to its R most significant bits, then encapssilate
the bits in a packet and send the packet through the channel.
If the packet is not dropped, the decoder on the receiver site
receives the packet, extracts the bits and converts them to
its real number representation. If the receiver does not re- o ‘
ceive a packet, the decoder will assume that a zero was sent i Frequency

and the controller does not apply any control signal. In [14
pply any 9 [ ] Fé'g. 4 Example with erasure channel and bit rate of 2 bitg4step.

it is shown that for the scalar case, this scheme guarantge hat th s b ) bounded and
that the error between the actual measurement signal e that the power spectrum Is becoming unbounded an

the decoded signag(k) = x(k) — x(K), is bounded and that SO the area below the curve, i.E{€?(k)} is no longer fi-

the feedback channel capadly = log,(a)/ py is achieved. nite

The scheme also assumes that the decoder knows exa@thy Example 2: AWGN channel

the operation of the encoder and that both have access t9Ve consider the problem of tracking (see Figure 1) a ref-

the control signal. Consider the following plant: erence signat,(k), which is assumed to be a white Gaussian
x(k+ 1) = 4.33x(k) + u(k); sequence with zero-mean aogd = 5000. We consider a

=
@
T

Power Spectrum Density
e
T

o
@




memoryless AWGN channel (Figure 5) in the feedback lifR A misleading case: non-minimum phase ze-
with feedback channel capaci; = (1/2)10g,(1+ P/®), ros

where® is the noise variance arflis the power constraint  The mutual information raté.(r,§) between the refer-
such thaE{§°} < P. The variancep is varied in the range ence signat (k) and the feedback signgi(k) has been our
[1000;20000D.e, the SNR from the reference signal to thgerformance measure in the previous sections of this erticl
noise signal changes betwee06 and 5. Let the plant be: Although it may be adequate to determine the relationship

X(k+1) = 2x(k) + u(k); between channel capacity, unstable poles, and the passibil
y(k) = x(K); ity of _achieving trackin_g,lm(r,y) is limited in predicting
U(k) — 2(r (k) _ 9('()) other |mp0rtant propertles.

In order to illustrate the limitations ¢&(r;¥), we choose
n~ N(0,d?) an AWGW channel. Let us consider the same LTI plant

P(z) as before and let us restrict the controller to be a lin-
ear time-invariant controlle€(z). We assume that the open
loop transfer function is given by

y y " (z-3
ClaP() =yl Z=2),
iz1(Z—pi)
Fig. 5 AWGN channel scheme. Since we consider an AWGN channel and if we assutke

In this example, we can actually measure the mutual ito be a Gaussian signalk) andy(k) are jointly Gaussian
formation rate between the reference and the feedback sigd we can then evaluate the mutual information rate ex-
nal for different SNR values, and monitor the upperbourattly using equation (12). We start with the following rela-
Ct —log,(a) given in Lemma 7.1. We use previous resultion § = T(€“)r + S(€¥)n; whereT (¢¢) is the Comple-
from [13] to measure the mutual information raltg(r;y), mentary Sensitivity function an8(€®) is the Sensitivity
and results from [15] to design a controller. Since the sys- . r

tem is linear and all inputs are white Gaussian process&¥)ction. Letw = [9} » thendy, = @ g — Bry®dy; so that
the outpuf is also a Gaussian process. From [13], we know ) )

thatifr andy are two jointly-Gaussian stationary processes, Py = TP + |S°Py;

with spectral densitie®, (w) and®y(w), and if we define Dy, = B, D[S

Substituting these relations in equation (12) we obtain

w= H , with spectral densitypy(w), the mutual informa- _ .
TP + IS(éW)IZGJn) d

s
tion rate ofr andy is given by loo(r;y) = %T/ Iogz(
-1

Pn|S(EW)[2 '
s
1 [ det{® (w))detlPy(w)) n
(r:9) 4n/ delPy(w)) w  (12) = / |ng(—rIC(éW)P(éW)IZH)dw; (13)
“n 4. (O
L
Figure 6 illustrates that we obtain the expected result. TH&1ere N
mutual information rate tends to zero for low SNR and, C2)P@)2 = ‘ iz1(Z— Zpi) ‘2
for this particular case reaches its upper bound,Gse- =Y i”:Pl(z_ Ppi) '

log,(a), for high SNR. We see that this upper bound never , ) ,
reaches a value of zero (actually, for a SNR of 0, its val(¥ow, from equation (13) and using the properties of loga-
is 0.61 bits/time). We conclude, however, that the bound fHFIMS, we have:

good tracking, as measured hy(r;y), is higher that the R 1 7 o) _ .
one for stabilization. lo(r;y) = e /I092 (—rIC(e'W)P(e'W)IZJr 1)dw;
T (O
-1

Comparison between Information Rate and Upperbound:(}' - IogZ(a)
Cf-log(a)
| _{\infty}(r;\nat{y})

1b

14

1.2

m

1 i iw jwy 12 .

> 1= [ 1082 (Gric(e"PE) P de,
-1

= %_['/ITIog2 (%:)dw
-

+%T/n log, (IC(e")P(e")?) e

bits/time
o
©

o
2

o
IS

0.2

0 1 4 5

s
B 1 (G
=0 (Iy1) + 57, [ Tog; (- de
—TT

2 3
SNR (Reference Signal to Channel Noise)

Fig. 6 Example with AWGN channel for different SNR levels.



1,07 )
+— /Iogz|z—z| dw
471(217T

np T
- 21/ log, [z— pilzdw)- . ¢ P
= _

D Channel E

From complex variable Calculus we have the following re- y % w
sult:
c
T
.| 2000 — 0 if |p| <1; Fig. 7 Closed-loop system with additive disturbance.
/ 00 |2 pl"da = 2mlog,(p?) if |p| > 1. We try next to find conditions for tracking. We first rede-
—TT

fine the feedback capacity in this new setup. Recall that the
feedback capacity is the quantiy that satisfies

Finally, we obtain the following lower bound for the mutual 1((rk dK X(O)).yk)
information rate: sup ’ 7k 7 2 < Cs.
k€N+
LT o If we expand the quantity((r*,d¥,x(0));§*), by Property
1o(139) > 10g5(IY)) + - [ 10> (- )doo 3L(mweobtain i i
pES (q’“) L(r*,d,x(0)); ) = 1(r'; 9) +1(x(0); §¥Ir¥)
n: o +1(AGT%(0), 1. (14)
+i;|092 (|2‘|) B i;k)gz ('pi |)' Let us focus ori (d¥;9%|x(0),rK) to obtain
1(d*;9%(x(0),r) = h(d“[x(0),r*) — h(d“|x(0),r,§*);
= h(d¥) — h(d¥|x(0),r,9%); (15)
We note that the right hand side contains a signal-to-noise Ky _ h(dKIoKY -
ratio term, a gain term, a term that corresponds to the un- = h(dk )Ak h(d"1y"); (16)
stable open loop poles, and one that corresponds to the =1(d%¥%); 17)

open-loop unstable zeros. We note first as expected, thatwieere equations (15) and (16) are due to Property 3.1.(a)
greater the signal-to-noise ratio is, the greater the nhiritia and equation (17) results form the mutual information def-
formation rate between the reference and the output sigrialtion. We showed in equation (7) thafx(0);$¥|rk) =
Second, we note that the unstable open-loop poles decrqqﬁg));ek“k)_ If we revisit Lemma 6.2’s proof, we see
the mutual information rate. Finally, we note that the noRhat the lemma holds even with disturbances. Therefore,

minimum phase zeros term increases the mutual inform %(0); eX|rk) > kyilog,(|Ai(A)]). Moreover, from the defi-
tion rate. This is unexpected since we know from contr@ition of feedback capacity we know that

theory that the presence of non-minimum phase zeros de-
creases the performance of a tracking systems, therefore, i kCp > |((rk dX x(O))'yk)
seems that we reach a contradiction. - T ’
We have another interpretation to this issue. Since the YRen, from equation (14) we obtain
stable poles decreases the information flow, the presence of
the unstable zeros can help to cancel this effect (with perfe . .
zero-pole cancelation). Fr%m control theory, vv(e novF\’/ that KCt—k} log, (Mi(A)D > 1(r 9 + 1(d§9).
this is not an option if we want to preserved internal stabil- !

ity. But this issue was not consider in the analysis, i.&, th e givide byk and take the limit ak — o we finally have:
only analysis of the mutual information rate is not enough

when designing a tracking feedback system and we see%wdfiw +lo(dy) <Ct —3ilog, (|’\i (A)|)- This result may
it could be misleading. be summarized in the following theorem:
Theorem 10.1 Consider the closed-loop system given
10 Tracking under the presence of distur- by Figure 1, where the plantis a DLTI system described by
bances equations (1) and (2), a feedback capaCityn the channel.
10.1 Upper bound of the information flow in the pres- fE{&(K)&(K)T} < «, then
ence of disturbance
Let us suppose that a disturbance is present at the sensor e (r;¥) 4+l (d;§) < Ct — z log, (|Ai(A)|).
and that the disturbanc is independent af(0) and ofr. '
The new diagram is shown in Figure 7.



From this result we can see that lif(d;y) is large rem 10.1 we obtain
enough, compared witle; — ¥;10g,(|Ai(A)]); no useful
informatio_n abou'g the reference appears in the fAeedback, 1 7 &
since the inequality may also be interpretedas;y) < lo(d;§) < Ct — z|og(,\)+ il / log, (A—e)dw. (22)
Cr —3il0g; (A (A)]) ~1(d;9). Similarly, n(d;) < Cr — MY

2106, ('f\'(A)D ~la(r:). Tl (r;9) Is large er?ough, “O™ | Figure 8, we group together the blocks enclosed within

pared with Ct — 3;log,(|Ai(A)[), no useful information the dashed line (block namé&g. By doing so, we obtain the

about the disturbance appears in the feedback. same block diagram that was exposed in [12]. We notice that

10.2 Disturbance rejection and tracking tradeoff some of the internal signals are labeled differently: inifeg
The previous subsection is concluded with Theorem 108 the signalsi andd correspond to signalsande in [12],

The goal in this section is to interpret Theorem 10.1 in tH&spectively. According to [12], we know thia(d; 0) is re-

frequency domain. For this purpose, we assume that the fited to a disturbance rejection measure as follows:

lowing conditions hold:

e The signals andd are Gaussian. 1 7
e The signalg ande are jointly asymptotically station- E‘[/ min{0,100,(Sid(w)) }dw > —lx(d;u);
ary. =
e The signalsl ande are jointly asymptotically station- "
ary. _
These conditions are needed to replace the stochastic pthere,S; q(w) = 1/ 2. We note that the smaller the term
cesses by their corresponding asymptotic power spectra. R d ) ) )
d x(0) %T_L"nmln{o,IogZ(SG,d(w))}dw is, the better is the dis-

turbance rejection. From Property 3.1.(g) we know that
lo(d;u) < l(d;¥). Substituting this expression in equation

r e u’ y (22) we obtain
C(2) »» P(2) 1 7
+ o / min{0,log,(Sy4(w)) }dw > log,(A) —C¢
. TT.
n XA
D Channek— E 17 D
g v W _ET/ log, (a)dw.
-1
K We summarize this result in the following theorem:
C Theorem 10.2 Consider the closed-loop system given
_ _ by Figure 1, where the plant is a linear system described by
Fig. 8 Tracking closed-loop. _ _ equations (1) and (2), a feedback capaCityn the channel.
Next, we start with the definition of the mutual informatiory E{e(k)e(K)T} < o, r andd are Gaussian signals,and
betweerr andy: e are jointly asymptotically stationarg, ande are jointly
L(r%9%) = h(r*) — h(rk9%); asymptotically stationary, then
= h(r*) — h(e9"); 8 1 7
> h(r¥) - h(e); (19 zr mNOI0G(Sa(@)de> 2, 0 =
where equation (18) is due to the fact theatr — § and - - N
Property 3.1.(e), equation (19) is due to Property 3.1l{a). 1 | (ON q
we divide byk and letk — « we obtain: “an / 09, (afr) w.
leo (139) 2 ho (1) — oo (©); o
1 m (23)
> ET/|092 (27Te¢r)dw where S 4(w) = ,/%j is a sensitivity-like function®g,
—TT ~ ~ ~
L Dy, De andC_Dr are the asymptotical power spectrum densi-
4 / log, (ZHeaJe)dw; (20) ties of the signal$, d, eandr, respectively. .
47T7.7T We therefore observe that for good tracking, formally de-
bis ~ fined as beingTJe near zero, implies Iog(ﬂ’re) to be nega-
1 @, ] . . o Pr / "
=— [ log, (A—)dw, (21) tive and the whole integral term in inequality (23) positive
4"771 e Therefore, the lower bound will be larger than the one where

where equation (20) is due to Property 3.1.(k). Chan
; O AL ! L(r9) < info _
ing the sign- i inequality (21), we getlx(r;y) < turbanced and the feedback signgl and the disturbance

%.[fzrn.logz (%)dw Then, Using the inequality of TheO'Can no |Onger be rejected_

ﬁ{o tracking is required. In other words, if we improve track-
g performance, we loose the information between the dis-
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This work has provided information theoretic conditions ~ (52):7. 1604-1615.
for tracking control systems. Our results are in terms of tiiEs] M.S. Pinsker. Information and Information Stability of Random
mutual information rate between the feedback signal and Veriables and ProcessesM]. Holden Day, 1964, San Francisco,
the reference signal, the channel capacity, and the uestabl California.
eigenvalues of the DLTI system. We also obtained a lowgs] L. Shi, R. Murray. Towards a Packet-based Control TH&J//.
bound for the maximum achievable accuracy for a tracking Proceedings of the IEEE American Control Conference, 2006, 3482
system, even in the absence of a channel. This bound is in 3487
terms of the entropy of the reference signal. These resylis] J.H. Braslavsky, R.H. Middleton, J.S. Freundenber.edback
were verified with several examples and simulations. Stabilization over Signal-to_-Noise Ratio Constrained @tes[J].

We also reported some limitations of the mutual informa- |EEE Transactions of Automatic Control, 2007, (52):8,1391-1403.
tion rate approach. In particular, we analyzed the caseavh
non-minimum phase zeros, counterintuitively, increage t
mutual information rate instead of decreasing it as exjpec
from control theory.

Finally, we analyzed the case where both good tra
ing and good disturbance rejection are required at the s
time. We noted that the finite-capacity channel impose
tradeoff between the two objectives. This limitation was i

Ivan Lopez Hurtado received the B.S. degree in In-
dustrial Physics Engineering with Summa Cum Laude
Honors and M.S. in Automation with Summa Cum
Laude Honors from Monterrey Institute of Technology
(Mexico) in 1995 and 1998, respectively. He received a
PhD degree in Electrical Engineering from the Univer-
sity of New Mexico in 2008. He is currently an assistant
Professor at the Department of Engineering at North-
ern New Mexico College, Espanola, NM. Dr. Lopez is

terpreted in the frequency-domain. a member of |IEEE, Sigma Xi and Phi Kappa Phi. Dr. Lopez haseserv
as guess editor of the International Journal of Robust anditar and
References Adaptive Control. His current research interests includerimation theory

[1] N.C. Martins. Information Theoretic Aspects of the Control and of networked-control systems, control under communicationstraints
Mode Estimation of Sochastic Systems[D]. Massuchusetts Institute 2nd genetic programming applications. Email: ilopez@nenhie
of Technology,2004.

[2] N.C Martins, M.A. Dahleh. Fundamental Limitations
of Disturbance Attenuation in the Presence of Side Infoionfi].
|EEE Transactions on Automatic Control, 2007, 52(1): 56 — 66.

[3] N.C Martins, M.A. Dahleh, N. Elia. Feedback Stabilizati of
Uncertain Systems Using a Stochastic Digital Link[Cfoceedings
of the IEEE Conference on Decision and Control, 2004, 2: 1889 —
1895.

Chaouki T. Abdallah started his college education at
the Ecole Suprieure d’Ingnieurs de Beyrouth - Universit
Saint-Joseph in Beirut, Lebanon, but finished his under-
graduate studies at Youngstown State University, with
a Bachelors of Engineering degree in Electrical Engi-
neering in 1981. He then obtained his MS and Ph.D. in
Electrical Engineering from GA Tech in 1982, and 1988
‘ p respectively. He joined the Electrical and Computer En-
[4] H. Touchette, S. Lloyd, N. Elia. Information-Theoretldmits of i ) gineering department "?‘t the University of New Mexico
Control[J]. Physical Review Letters, 2000, 84(6): 1156 — 1159. where he is currently profess_or and chair. Professor AbUa:Ibn_ducts re-
) ~"  search and teaches courses in the general area of systemswiith focus

[5] H. Zhang, Y. Sun. Bode Integrals and Laws of Variety in éan o, control and communications systems. His research hasfbeded by
Control Systems[C]//Proceedings of the IEEE American Control  pational funding agencies, national laboratories, ancHoipus companies.
Conference, 2003, 66 — 70. He has also been active in designing and implementing \&iicierna-

[6] H. Zhang, Y. Sun. Information Theoretic Limit and Bound o tional graduate programs with Latin American and Europeamtries. He
Disturbance Rejection in LTI Systems: Shannon Entropy amd Hhas published 7 books, and more than 300 peer-reviewed Daperail:
Entropy[C]//. Proceedings of the |IEEE International Conference on  chaouki@ece.unm.edu.

Systems, Man and Cybernetics, 2003, 1378-1383.

[7] H. Zhang, Y. Sun. Directed Information and Mutual Infaation in
Linear Feedback Tracking Systems[CJHroceedings of the IEEE
World Congress on Intelligent Control and Automation, 2006, 723—
727.

[8] I. Lopez, C.T. Abdallah, S.K. Jayaweera, H. Tanner [Gl#nditions
for tracking in networked control systenmRroceedings of the |IEEE an assistant Professor in Electrical Engineering at the
Conference on Decision and Control, 2008, 3626 — 3632. Department of Electrical and Computer Engineering at

[9] S.C. Tatikonda,Control Under Communications ConstraintsD], University of New Mexico, Albuguerque, NM. From
Massachusetts Institute of Technology, 2000. 2003-2006 he was an assistant Professor in Electrical Eagig at the

e . ECE Department of Wichita State University. Dr. Jayawesra isenior

[10] :[.)pﬁgik(;n;':/(\)/' Svgg;d;f;gg :]lgy[MTdPs:?: é)rr]n E':Sgis:ﬁ’ vg(t)hOZ member of IEEE and c_urrently serves as an associate (_ediEJrJBﬁASIP

Upper Saddle River, New Jersey. Journal on Advances in Slgnal Pro_cessmg. Among his hon@sveo
) best paper awards at IEEE international conferences anclty-del-

[11] T. M. Cover, J. A. ThomasElements of Information Theory [M]. John  owship at the AFRL. His current research interests incladeperative
Wiley & Sons, Inc., 2006, Hoboken, New Jersey. and cognitive communications, information theory of neteal-control

[12] N.C Martins, M.A. Dahleh. Feedback Control in the Prese systems, statistical signal processing and wireless seesgorks. Email:
of Noisy Channels: "Bode-Like” Fundamental Limitations ofjayaweera@ece.unm.edu.

Sudharman K. Jayaweera (S'00, M'04, SM’'09) re-

ceived the B.E. degree in Electrical and Electronic En-
gineering with First Class Honors from the University
of Melbourne, Australia, in 1997 and M.A. and PhD
degrees in Electrical Engineering from Princeton Uni-
versity in 2001 and 2003, respectively. He is currently




