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Abstract: In this paper we obtain information theoretical conditionsfor tracking in linear time-invariant control
systems. We consider the particular case where the closed loop contains a channel in the feedback loop. The mutual infor-
mation rate between the feedback signal and the reference input signal is used to quantify information about the reference
signal that is available for feedback. This mutual information rate must be maximized in order to improve the tracking
performance. The mutual information is shown to be upper bounded by a quantity that depends on the unstable eigenval-
ues of the plant and on the channel capacity. If the channel capacity reaches a lower limit, the feedback signal becomes
completely uncorrelated with the reference signal, rendering feedback useless. We also find a lower bound on the expected
squared tracking error in terms of the entropy of a random reference signal. We show a misleading case where the mutual
information rate does not predict the expected effect of non-minimum phase zeros. However, mutual information rate helps
to generalize the concept that there is a tradeoff when tracking and disturbance rejection are simultaneous goals and a
constraint communication channel is present in the feedback loop. Examples and simulations are provided to demonstrate
some of the results.
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1 Introduction
The goal of this article is to find fundamental limita-

tions on feedback tracking systems in terms of information
theoretical quantities. This is important since the emerg-
ing control applications involve the presence of a constraint
communication channel in the feedback loop. Typically,
control systems have been understood as signal processing
blocks or systems interchanging energy. However, these ap-
proaches are not appropriate for the new scenarios. That is
why we suggest that an interpretation in terms of informa-
tion flow may be more suitable for the future design of con-
trol algorithms.

Previous related work in [1], [2], [3], [4], [5], [6] and [7]
detailed some aspects of performance and limitations of
control systems in terms of information theoretic quantities.
Specifically, the work in [5] dealt with the tracking issues
without a channel in the feedback link, while [1] dealt with
disturbance rejection. A result in [5], shows that a necessary
condition for efficient tracking is that the information flow
from the reference signal to the output should be greater
than the information flow between the disturbance and the
output. We know that in the absence of noise, and without a
communication channel in the feedback loop, the mutual in-
formation rate (or information rate) between reference sig-
nal and the output is infinite. From [3] we know, however,
that if the feedback signal is transmitted by means of a fi-
nite capacity channel, the mutual information rate is upper
bounded byC f −∑i=1max{0, log2 (|λi(A)|)}.

Following the same approach of [12], we expect that the
parameters of the plant and feedback channel capacityC f
will be related, and that there will be a trade-off between
these parameters. If by some reason this upper bound hap-

pens to be zero, then we reach a fundamental limitation
where no information of the reference signal is available for
feedback. This means that the two signals are independent,
therefore, uncorrelated, and this is exactly the conditionthat
implies that tracking is impossible. In other words, the feed-
back signal does not provide any useful information for the
reference to be tracked.

We note that the condition for a non-zero mutual infor-
mation between the reference and the feedback signal is a
necessary condition for tracking, but not a sufficient one. A
large mutual information between the reference signal and
the feedback signal does not necessarily imply that track-
ing is possible (it only implies that the signals are highly
correlated). This is expected because even in the case of a
perfect infinite capacity channel, the tracking issue requires
additional conditions to be satisfied.

The results in this work do not intent to be applied in the
design of a new control algorithm. These results are fun-
damental limitations in terms of information quantities that
any control system designer must be aware of before try-
ing to design a new control system. We note that the results
shown in this article are an extension to those in [8].

2 Notation
We present next the notation used in the rest of this arti-

cle.
• Let xk = {x(1),x(2), . . . ,x(k)} and yk =
{y(1),y(2), . . . ,y(k)} be sets of observations of
stochastic processesx and y. We follow the nota-
tion in [10] where bold letters represent stochastic
processes.

• Let x(k) be a time sample of the stochastic processx.
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• Let xj be the “j-th” state component. For example, if
x has dimensionn = 3, thenxj will denote any of the
state componentsx1, x2 or x3.

• Let xJ denote the set of state components,xj , such
that j∈ J. For example, if J= {1,3}, thenxJ is the
set{x1,x3}.

• Let |.| denote the absolute value anddet(.)denotes the
absolute value of the determinant of a matrix.
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Fig. 1 Closed-loop system with communication channel in feedback Link.

We also define the blocks in Figure 1:
• C is the controller, which does not have any constraints

(it could be time-invariant, nonlinear, etc.).
• P is the plant to be controlled and is assumed to be

discrete, linear, time-invariant, with state-space real-
ization

x(k +1) = Ax(k)+ Bu(k); (1)
y(k) = Cx(k). (2)

• E is the encoder assumed to be a causal operator well
defined in the input alphabet of the channel.

• D is the decoder assumed to be well defined and con-
serving equimemory with the encoder.

• The channel block is any type of communication chan-
nel with finite capacity.

• c is the channel noise.

3 Information theory preliminaries
Before proceeding, we enumerate some well-known

information-theoretical properties that will be very useful
later on.

Proposition 3.1 Assume thatz, w, u ∈ R are random
variables andf (z), g(z) are real functions. All of the fol-
lowing may be found in several references as [11], [12]
and [13].
(a) h(z|w) ≤ h(z) with equality if z andw are indepen-

dent.
(b) Letz have meanµ and covariance Cov{zn}. Then

h(zn) ≤
1
2

log2

(
(2πe)ndet(Cov{zn})

)

with equality if z has a multivariate normal distribu-
tion.

(c) h(az) = h(z)+ log2

(
|a|

)
for nonzero constanta.

(d) h(Az) = h(z) + log2

(
det(A)

)
for nonsingularA ma-

trix.

(e) h(z|w) = h(z−g(w)|w).
(f) I(z;w) = I(w;z) ≥ 0.
(g) I(z;w) ≥ I(g(z); f (w)).
(h) I(z;w|u) = I((u,z);w) − I(u;w) = h(z|u) −

h(z|w,u) = h(w|u)−h(w|z,u).
(i) For any random variablez and estimatêz: E{(z−

ẑ)2}≥ 1
2πe 22h(z), with equality if and only ifz is Gaus-

sian and̂z is the mean ofz.
(j) The variance of the error in the estimateẑ of z

given the infinite past is lower bounded asσ2
∞(z) =

limk→∞ E{(z − ẑ)2(k)|(z − ẑ)(k − 1)} ≥ 1
2πe 22h∞(z)

with equality ifz is Gaussian.
(k) If z is an asymptotically stationary process, then

h∞(z) ≤
1

4π

π∫

π

log2

(
2πeΦ̂z(ω)

)
dω

whereΦ̂z is the asymptotic power spectral density of
z and equality holds if, in addition,z is Gaussian auto-
regressive.

4 Signal analysis
The functional dependencies among the signals involved

in the closed-loop shown in Figure 1 are the following:

y(k) = f1(r k−1,ck−1,x(0));

e(k) = f2(r k, ŷk) = r(k)− ŷ(k);

u(k) = f3(ek);

ŷ(k) = f4(y
k,ck).

5 Assumptions
The matrixA in block P in Figure 1 is assumed to be

diagonal with only unstable eigenvalues (|λi(A)| > 1) and
therefore,Ak is invertible∀k. We assume thatA has un-
stable eigenvalues since it is the worst case. The general
case in whichA have stable eigenvalues is discussed in [8]
and the non-diagonal case is discussed in [9]. Since we are
considering the tracking problem, the control law is a func-
tion of the errorek = r k − ŷk, u(k) = f3(ek). We note for
now that the output is ann-dimensional vector, but this
will be relaxed later on. In our setupf3 is not limited to
be a linear or time-invariant control law. We note that the
solution of the difference equation (1) may be written as

x(k) = Akx(0)+
k−1
∑

i=0
Ak−i−1B f3(ei). If C = I, then from the

tracking error, defined byεεε(k) = r(k)−y(k), we have

r(k)− εεε(k) = y(k) = x(k) = Akx(0)+
k−1

∑
i=0

Ak−i−1B f3(ei).

(3)
We rearrange the terms as

x(0)+ A−k
k−1

∑
i=0

Ak−i−1B f3(e
i) = −A−k(εεε(k)− r(k)). (4)

In a tracking problem, we do not necessarily assume that
the state is bounded, since for unbounded reference signals,



the state may grow unbounded. Instead, we assume that the
closed-loop is such that the error is bounded, i.e.,

E{εεεT εεε} < ∞.

Since this implies thatεεε is a second-order process, the mean
E{εεε} and the covariance Cov{εεε} = E{(εεε + E{εεε})(εεε +
E{εεε})T} must be finite. For bounded reference signals, the
conditionE{εεεT εεε} < ∞ guarantees stability since by the tri-
angle inequality [10] we know that√

E{x2(k)} ≤
√

E{r2(k)}+
√

E{εεε2(k)}. (5)

Since the two terms on the right side of equation (5) are fi-
nite, then we also get that

√
E{x2(k)} < ∞ and, therefore,

the system remains stable.

6 Auxiliary results
The next three results were proven in [8] and will be used

later on.
Lemma 6.1 Consider the closed-loop system in Figure

1, where the plant is a DTLI system described by equations
(1) and (2), withC = I, andA diagonal in equation (2). If
E{xP j

(k)xT
P j

(k)} < ∞, then

lim
k→∞

I(xP j (0);ek|r k,x j(0))

k
≥ ∑

i6= j

log2

(
|λi(A)|

)
.

Lemma 6.2 Consider the closed-loop system in Figure
1, where the plant is a DLTI system described by equations
(1) and (2),C = I. If E{εεε(k)εεεT (k)} < ∞, then

lim
k→∞

I(x(0);ek|r k)

k
≥ ∑

i
log2

(
|λi(A)|

)
.

Lemma 6.3 Consider closed-loop system given in Fig-
ure 1, where the plant is a DLTI system described by equa-
tion (1) andy = qx j for some j ∈ {1, . . . ,n}, q a non-zero
constant. If E{εεε(k)εεεT (k)} < ∞ and E{xȲ (k)xT

Ȳ (k)} < ∞,
then

lim
k→∞

I(x(0);ek|r k)

k
≥ ∑

i
log2

(
|λi(A)|

)
.

7 Results
Using the results in Section 6, we find limitations on

tracking systems that are imposed by the presence of a fi-
nite capacity channel. We consider the expressionI(r k; ŷk)
instead ofI(r k;yk). Although I(r k;yk) provides the actual
information between the output and the reference signals,
the former is easier to calculate than the later. The mutual
informationI(r k; ŷk) represents the information between the
transmitted feedback, i.e.,ŷk, and the reference signal. If
this mutual information happens to be zero, all information
contained in the feedback signal about the reference signal
was lost and the erroreused to generate the control signal is
useless. In fact,I(r ; ŷ) measures the usefulness of feedback.

By the properties of mutual information, we have

I((r k,x(0)); ŷk) = I(r k; ŷk)+ I(x(0); ŷk|r k). (6)

From the definition of mutual information, Property 3.1.(e),
and from the fact thatek = r k − ŷk, we have

I(x(0); ŷk|r k) = h(ŷk|r k)−h(ŷk|x(0), r k);

= h(ek|r k)−h(ek|x(0), r k);

= I(x(0);ek|r k). (7)
From equation (6) and (7) we have

I((r k,x(0)); ŷk) = I(r k; ŷk)+ I(x(0);ek|r k). (8)

From equation (8) and knowing thatkC f ≥ I((r k,x(0)); ŷk)
we obtain

I(r k; ŷk) ≤ kC f − I(x(0);ek|r k). (9)

By Lemma 6.2, and dividing equation (9) byk and taking
the limit ask → ∞, we finally have

I∞(r ; ŷ) ≤C f −∑
i

log2

(
|λi(A)|

)
.

We summarize this result in the following lemma:
Lemma 7.1 Consider the closed-loop system given in

Figure 1, where the plant is a DLTI system described by
equations (1) and (2), a feedback capacityC f in the chan-
nel. If E{εεε(k)εεε(k)T } < ∞, then

I∞(r ; ŷ) ≤C f −∑
i

log2

(
|λi(A)|

)
.

We note from Lemma 7.1 that if the channel does not
have a minimum capacity of∑i log2(|λi(A)|), the feedback
signal does not provide any information of the reference
signal. Lemma 6.2 is one of the main contributions of this
work. We note that Lemma 6.3 is needed when the output is
only one of the state components and not the whole state.

7.1 Limitations on reference signals
The results of the previous sections deal with the idea

of bounding the error signal,εεε(k) = r(k)− y(k). However,
it is well known that given a plant and a particular con-
troller, there will be limitations on the type of signals that
may be tracked. We show next that a tracking system may
be thought of as a channel where the reference signal is the
input message, the closed-loop is a feedback channel (with
the encoder-decoder embedded) and the system output is
the received message. Under this scenario good message
estimation is synonymous with good tracking. We consider
εεε = r − y as the error estimate of the message. Note from
Property 3.1.(i), that

E{(r −y)2} ≥
1

2πe
22h(r ).

This inequality captures the idea that the greater is the en-
tropy of the reference signal, the larger is the error signal,



εεε . Moreover, sinceE{(r − y)2} is a nonnegative number,
we note that the error between the output and the reference
cannot reach zero unless the reference signal is determin-
istic (h(r) = −∞). In other words, perfect tracking is not
possible and tracking gets worse for high entropy reference
signals regardless of the type or quality of the channel and
the controller. Moreover, the following result holds regard-
less of the plant. Let us consider that the expected value of
(εεεk)2 given the entire pastεεεk−1

0 ask tends to infinity given
by

σ2
∞(r) = lim

k→∞
E{εεε2(k)|εεε(k−1)}.

From information theory, the entropy rate lower-bounds the
varianceσ2

∞(r): σ2
∞(r)≥ 1

2πe 22h∞(r ). We then obtain the fol-
lowing lemma.

Lemma 7.2 Consider the closed-loop system given in
Figure 1, where the plant is a DLTI system described by
equations (1) and (2). Then the best estimatory for r is
bounded as

E{(r −y)2} ≥
1

2πe
22h(r ). (10)

Moreover, the variance of the best reference estimator,
σ2

∞(r), is bounded from below as follows

σ2
∞(r) ≥

1
2πe

22h∞(r ). (11)

8 Examples
The results derived in so far are necessary conditions but

not sufficient. Since the quantityI∞(r ; ŷ) implies correla-
tion of signals and not necessarily thaty is trackingr . The
following examples capture how conservative the results of
this work are.

8.1 Example 1: erasure channel
We consider the tracking problem shown in Figure 1

for the reference signal,r(k). The reference signal is as-
sumed to be a white Gaussian sequence, with zero-mean
and withσ2

r = 1. We consider a memoryless erasure chan-
nel as shown in Figure 2 in the feedback link with limited
rate and a probability of receiving the state measurement
of pγ = 0.70479. The probability of dropping a packet is
therefore 1− pγ . We consider a two-part encoder-decoder
scheme: First, the encoder converts the real state-vector
measured,x(k), to its binary form, truncates the binary rep-
resentation to its R most significant bits, then encapsulates
the bits in a packet and send the packet through the channel.
If the packet is not dropped, the decoder on the receiver site
receives the packet, extracts the bits and converts them to
its real number representation. If the receiver does not re-
ceive a packet, the decoder will assume that a zero was sent
and the controller does not apply any control signal. In [14]
it is shown that for the scalar case, this scheme guarantees
that the error between the actual measurement signal and
the decoded signal,εεε(k) = x(k)− x̄(k), is bounded and that
the feedback channel capacityC f = log2(a)/pγ is achieved.
The scheme also assumes that the decoder knows exactly
the operation of the encoder and that both have access to
the control signal. Consider the following plant:

x(k +1) = 4.33x(k)+u(k);

y(k) = x(k);
u(k) = 4.33(r(k)− ȳ(k)).
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Fig. 2 Erasure channel scheme.

One limitation of our result is that it is given in terms of
the mutual information rate, which is difficult to compute
for this type of problems. However, we know that it im-
poses a limit to guarantee that E{εεε(k)εεεT (k)} < ∞. In or-
der to explore what happens to E{εεε(k)εεεT (k)}, we plot the
power spectrum ofεεε , Sεεεεεε (ω) whose enclosed area from
[−π ,π ] is equivalent to the squared output average ofεεε, i.e.,
E{εεε2}=

∫ π
−π Sεεεεεε (ω)dω . According to Lemma 7.1, the min-

imum feedback channel capacity for stabilization needed
is 3 bits/time-step. The power spectrum density is shown
in Figure 3, where we notice that the power spectrum is
bounded and, therefore,E{εεε2(k)} is finite. If, instead of us-
ing 3 bits/time-step, we use 2 bits/time-step, we obtain the
new power spectrum of the error in Figure 4.
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Fig. 3 Example with erasure channel and bit rate of 3 bits/time-step.
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Fig. 4 Example with erasure channel and bit rate of 2 bits/time-step.

Note that the power spectrum is becoming unbounded and
so the area below the curve, i.e.,E{εεε2(k)} is no longer fi-
nite.

8.2 Example 2: AWGN channel
We consider the problem of tracking (see Figure 1) a ref-

erence signal,r(k), which is assumed to be a white Gaussian
sequence with zero-mean andσ2

r = 5000. We consider a



memoryless AWGN channel (Figure 5) in the feedback link
with feedback channel capacity,C f = (1/2) log2(1+P/Φ),
whereΦ is the noise variance andP is the power constraint
such thatE{ŷ2} ≤ P. The varianceΦ is varied in the range
[1000;200000], i.e, the SNR from the reference signal to the
noise signal changes between 0.025 and 5. Let the plant be:

x(k +1) = 2x(k)+u(k);
y(k) = x(k);
u(k) = 2(r(k)− ŷ(k)).
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Fig. 5 AWGN channel scheme.

In this example, we can actually measure the mutual in-
formation rate between the reference and the feedback sig-
nal for different SNR values, and monitor the upperbound
C f − log2(a) given in Lemma 7.1. We use previous results
from [13] to measure the mutual information rate,I∞(r ; ŷ),
and results from [15] to design a controller. Since the sys-
tem is linear and all inputs are white Gaussian processes,
the output̂y is also a Gaussian process. From [13], we know
that if r andŷ are two jointly-Gaussian stationary processes,
with spectral densitiesΦr(ω) andΦŷ(ω), and if we define

w =

[
r
ŷ

]
, with spectral densityΦw(ω), the mutual informa-

tion rate ofr andŷ is given by

I∞(r ; ŷ) =
1

4π

π∫

−π

det(Φr(ω))det(Φŷ(ω))

det(Φw(ω))
dω . (12)

Figure 6 illustrates that we obtain the expected result. The
mutual information rate tends to zero for low SNR and,
for this particular case reaches its upper bound, i.e.C f −
log2(a), for high SNR. We see that this upper bound never
reaches a value of zero (actually, for a SNR of 0, its value
is 0.61 bits/time). We conclude, however, that the bound for
good tracking, as measured byI∞(r ; ŷ), is higher that the
one for stabilization.
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Fig. 6 Example with AWGN channel for different SNR levels.

9 A misleading case: non-minimum phase ze-
ros

The mutual information rateI∞(r , ŷ) between the refer-
ence signalr(k) and the feedback signalŷ(k) has been our
performance measure in the previous sections of this article.
Although it may be adequate to determine the relationship
between channel capacity, unstable poles, and the possibil-
ity of achieving tracking,I∞(r , ŷ) is limited in predicting
other important properties.

In order to illustrate the limitations ofI∞(r ; ŷ), we choose
an AWGW channel. Let us consider the same LTI plant
P(z) as before and let us restrict the controller to be a lin-
ear time-invariant controllerC(z). We assume that the open
loop transfer function is given by

C(z)P(z) = γ ∏nz
i=1(z− zi)

∏np
i=1(z− pi)

.

Since we consider an AWGN channel and if we assumer(k)
to be a Gaussian signal,r(k) andŷ(k) are jointly Gaussian
and we can then evaluate the mutual information rate ex-
actly using equation (12). We start with the following rela-
tion ŷ = T (eiω )r + S(eiω)n; whereT (eiω ) is the Comple-
mentary Sensitivity function andS(eiω) is the Sensitivity

function. Letw =

[
r
ŷ

]
, thenΦw = ΦrΦŷ −ΦrŷΦŷr so that

Φŷ = |T |2Φr + |S|2Φn;

Φw = ΦrΦn|S|
2.

Substituting these relations in equation (12) we obtain

I∞(r ; ŷ) =
1

4π

π∫

−π

log2

( |T (eiw|2Φr + |S(eiw)|2Φn

Φn|S(eiw)|2

)
dω ;

=
1

4π

π∫

−π

log2

( Φr

Φn
|C(eiw)P(eiw)|2 +1

)
dω ; (13)

where

|C(z))P(z)|2 =
∣∣∣γ

∏nz
i=1(z− zpi)

∏np
i=1(z− ppi)

∣∣∣
2
.

Now, from equation (13) and using the properties of loga-
rithms, we have:

I∞(r ; ŷ) =
1

4π

π∫

−π

log2

( Φr

Φn
|C(eiw)P(eiw)|2 +1

)
dω ;

≥
1

4π

π∫

−π

log2

( Φr

Φn
|C(eiw)P(eiw)|2

)
dω ;

=
1

4π

π∫

−π

log2

( Φr

Φn

)
dω

+
1

4π

π∫

−π

log2

(
|C(eiw)P(eiw)|2

)
dω ;

= log2(|γ|)+
1

4π

π∫

−π

log2

( Φr

Φn

)
dω



+
1

4π

( nz

∑
i=1

π∫

−π

log2 |z− zi|
2dω

−
np

∑
i=1

π∫

−π

log2 |z− pi|
2dω

)
.

From complex variable Calculus we have the following re-
sult:

π∫

−π

log2 |z− p|2dω =

{
0 if |p| ≤ 1;
2π log2(p2) if |p| > 1.

Finally, we obtain the following lower bound for the mutual
information rate:

I∞(r ; ŷ) > log2(|γ|)+
1

4π

π∫

−π

log2

( Φr

Φn

)
dω

+
nz

∑
i=1

log2

(
|zi|

)
−

np

∑
i=1

log2

(
|pi|

)
.

We note that the right hand side contains a signal-to-noise
ratio term, a gain term, a term that corresponds to the un-
stable open loop poles, and one that corresponds to the
open-loop unstable zeros. We note first as expected, that the
greater the signal-to-noise ratio is, the greater the mutual in-
formation rate between the reference and the output signal.
Second, we note that the unstable open-loop poles decrease
the mutual information rate. Finally, we note that the non-
minimum phase zeros term increases the mutual informa-
tion rate. This is unexpected since we know from control
theory that the presence of non-minimum phase zeros de-
creases the performance of a tracking systems, therefore, it
seems that we reach a contradiction.

We have another interpretation to this issue. Since the un-
stable poles decreases the information flow, the presence of
the unstable zeros can help to cancel this effect (with perfect
zero-pole cancelation). From control theory, we now that
this is not an option if we want to preserved internal stabil-
ity. But this issue was not consider in the analysis, i.e., the
only analysis of the mutual information rate is not enough
when designing a tracking feedback system and we see that
it could be misleading.

10 Tracking under the presence of distur-
bances

10.1 Upper bound of the information flow in the pres-
ence of disturbance

Let us suppose that a disturbance is present at the sensor
and that the disturbancedk is independent ofx(0) and ofr k.
The new diagram is shown in Figure 7.
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Fig. 7 Closed-loop system with additive disturbance.

We try next to find conditions for tracking. We first rede-
fine the feedback capacity in this new setup. Recall that the
feedback capacity is the quantityC f that satisfies

sup
k∈N+

I((r k,dk,x(0)); ŷk)

k
≤C f .

If we expand the quantityI((r k,dk,x(0)); ŷk), by Property
3.1.(h) we obtain

I((r k,dk,x(0)); ŷk) = I(r k; ŷk)+ I(x(0); ŷk|r k)

+ I(dk; ŷk|x(0), r k). (14)

Let us focus onI(dk; ŷk|x(0), r k) to obtain

I(dk; ŷk|x(0), r k) = h(dk|x(0), r k)−h(dk|x(0), r k, ŷk);

= h(dk)−h(dk|x(0), r k, ŷk); (15)

≥ h(dk)−h(dk|ŷk); (16)

= I(dk; ŷk); (17)
where equations (15) and (16) are due to Property 3.1.(a)
and equation (17) results form the mutual information def-
inition. We showed in equation (7) thatI(x(0); ŷk|r k) =
I(x(0);ek|r k). If we revisit Lemma 6.2’s proof, we see
that the lemma holds even with disturbances. Therefore,
I(x(0);ek|r k) ≥ k ∑i log2(|λi(A)|). Moreover, from the defi-
nition of feedback capacity we know that

kC f ≥ I((r k,dk,x(0)); ŷk)

then, from equation (14) we obtain

kC f − k∑
i

log2

(
|λi(A)|

)
≥ I(r k; ŷk)+ I(dk; ŷk).

If we divide byk and take the limit ask→∞ we finally have:

I∞(r ; ŷ)+ I∞(d; ŷ)≤C f −∑i log2

(
|λi(A)|

)
. This result may

be summarized in the following theorem:
Theorem 10.1 Consider the closed-loop system given

by Figure 1, where the plant is a DLTI system described by
equations (1) and (2), a feedback capacityC f in the channel.
If E{εεε(k)εεε(k)T } < ∞, then

I∞(r ; ŷ)+ I∞(d; ŷ) ≤C f −∑
i

log2

(
|λi(A)|

)
.



From this result we can see that ifI∞(d; ŷ) is large
enough, compared withC f − ∑i log2(|λi(A)|); no useful
information about the reference appears in the feedback,
since the inequality may also be interpreted asI∞(r ; ŷ) ≤

C f −∑i log2

(
|λi(A)|

)
− I∞(d; ŷ). Similarly, I∞(d; ŷ)≤C f −

∑i log2

(
|λi(A)|

)
−I∞(r ; ŷ). If I∞(r ; ŷ) is large enough, com-

pared with C f − ∑i log2(|λi(A)|), no useful information
about the disturbance appears in the feedback.

10.2 Disturbance rejection and tracking tradeoff
The previous subsection is concluded with Theorem 10.1.

The goal in this section is to interpret Theorem 10.1 in the
frequency domain. For this purpose, we assume that the fol-
lowing conditions hold:

• The signalsr andd are Gaussian.
• The signalsr ande are jointly asymptotically station-

ary.
• The signalsd ande are jointly asymptotically station-

ary.
These conditions are needed to replace the stochastic pro-
cesses by their corresponding asymptotic power spectra.
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Fig. 8 Tracking closed-loop.

Next, we start with the definition of the mutual information
betweenr andŷ:

I(r k; ŷk) = h(r k)−h(r k|ŷk);

= h(r k)−h(ek|ŷk); (18)

≥ h(r k)−h(ek); (19)

where equation (18) is due to the fact thate = r − ŷ and
Property 3.1.(e), equation (19) is due to Property 3.1.(a).If
we divide byk and letk → ∞ we obtain:

I∞(r ; ŷ)≥ h∞(r)−h∞(e);

≥
1

4π

π∫

−π

log2

(
2πeΦ̂r

)
dω

−
1

4π

π∫

−π

log2

(
2πeΦ̂e

)
dω ; (20)

=
1

4π

π∫

−π

log2

( Φ̂r

Φ̂e

)
dω ; (21)

where equation (20) is due to Property 3.1.(k). Chang-
ing the sign in inequality (21), we get−I∞(r ; ŷ) ≤
1

4π
∫ π
−π log2

(
Φ̂e

Φ̂r

)
dω . Then, using the inequality of Theo-

rem 10.1 we obtain

I∞(d; ŷ) ≤C f −∑ log(λ )+
1

4π

π∫

−π

log2

(Φ̂e

Φ̂r

)
dω . (22)

In Figure 8, we group together the blocks enclosed within
the dashed line (block namedK ). By doing so, we obtain the
same block diagram that was exposed in [12]. We notice that
some of the internal signals are labeled differently: in Figure
8 the signalsu andû correspond to signalsz ande in [12],
respectively. According to [12], we know thatI∞(d; û) is re-
lated to a disturbance rejection measure as follows:

1
2π

π∫

−π

min{0, log2(Sû,d(ω))}dω ≥−I∞(d;u);

where,Sû,d(ω) =

√
Φ̂û

Φ̂d
. We note that the smaller the term

1
2π

∫ π
−π min{0, log2(Sû,d(ω))}dω is, the better is the dis-

turbance rejection. From Property 3.1.(g) we know that
I∞(d;u) ≤ I∞(d; ŷ). Substituting this expression in equation
(22) we obtain

1
2π

π∫

−π

min{0, log2(Sû,d(ω))}dω ≥ ∑
λ (A)

log2(λ )−C f

−
1

4π

π∫

−π

log2

(Φ̂e

Φ̂r

)
dω .

We summarize this result in the following theorem:
Theorem 10.2 Consider the closed-loop system given

by Figure 1, where the plant is a linear system described by
equations (1) and (2), a feedback capacityC f in the channel.
If E{εεε(k)εεε(k)T } < ∞, r andd are Gaussian signals,r and
e are jointly asymptotically stationary,d ande are jointly
asymptotically stationary, then

1
2π

π∫

−π

min{0, log2(Sû,d(ω))}dω ≥ ∑
λ (A)

log2(λ )−C f

−
1

4π

π∫

−π

log2

(Φ̂e

Φ̂r

)
dω .

(23)

whereSû,d(ω) =

√
Φ̂û

Φ̂d
is a sensitivity-like function,̂Φû,

Φ̂d , Φ̂e andΦ̂r are the asymptotical power spectrum densi-
ties of the signalŝu, d, eandr , respectively.

We therefore observe that for good tracking, formally de-

fined as beinĝΦe near zero, implies log2
(

Φ̂e

Φ̂r

)
to be nega-

tive and the whole integral term in inequality (23) positive.
Therefore, the lower bound will be larger than the one where
no tracking is required. In other words, if we improve track-
ing performance, we loose the information between the dis-
turbanced and the feedback signalŷ, and the disturbance
can no longer be rejected.



11 Conclusions
This work has provided information theoretic conditions

for tracking control systems. Our results are in terms of the
mutual information rate between the feedback signal and
the reference signal, the channel capacity, and the unstable
eigenvalues of the DLTI system. We also obtained a lower
bound for the maximum achievable accuracy for a tracking
system, even in the absence of a channel. This bound is in
terms of the entropy of the reference signal. These results
were verified with several examples and simulations.

We also reported some limitations of the mutual informa-
tion rate approach. In particular, we analyzed the case where
non-minimum phase zeros, counterintuitively, increase the
mutual information rate instead of decreasing it as expected
from control theory.

Finally, we analyzed the case where both good track-
ing and good disturbance rejection are required at the same
time. We noted that the finite-capacity channel imposes a
tradeoff between the two objectives. This limitation was in-
terpreted in the frequency-domain.

References
[1] N.C. Martins. Information Theoretic Aspects of the Control and

Mode Estimation of Stochastic Systems[D]. Massuchusetts Institute
of Technology,2004.

[2] N.C Martins, M.A. Dahleh. Fundamental Limitations
of Disturbance Attenuation in the Presence of Side Information[J].
IEEE Transactions on Automatic Control, 2007, 52(1): 56 – 66.

[3] N.C Martins, M.A. Dahleh, N. Elia. Feedback Stabilization of
Uncertain Systems Using a Stochastic Digital Link[C]//.Proceedings
of the IEEE Conference on Decision and Control, 2004, 2: 1889 –
1895.

[4] H. Touchette, S. Lloyd, N. Elia. Information-TheoreticLimits of
Control[J].Physical Review Letters, 2000, 84(6): 1156 – 1159.

[5] H. Zhang, Y. Sun. Bode Integrals and Laws of Variety in Linear
Control Systems[C]//.Proceedings of the IEEE American Control
Conference, 2003, 66 – 70.

[6] H. Zhang, Y. Sun. Information Theoretic Limit and Bound of
Disturbance Rejection in LTI Systems: Shannon Entropy and H∞
Entropy[C]//. Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, 2003, 1378–1383.

[7] H. Zhang, Y. Sun. Directed Information and Mutual Information in
Linear Feedback Tracking Systems[C]//.Proceedings of the IEEE
World Congress on Intelligent Control and Automation, 2006, 723–
727.

[8] I. Lopez, C.T. Abdallah, S.K. Jayaweera, H. Tanner [C]//. Conditions
for tracking in networked control systems.Proceedings of the IEEE
Conference on Decision and Control, 2008, 3626 – 3632.

[9] S.C. Tatikonda,Control Under Communications Constraints[D],
Massachusetts Institute of Technology, 2000.

[10] H. Stark, J.W. Woods.Probability and Random Processes with
Applications to Signal Processing [M]. Pearson Education, 2002,
Upper Saddle River, New Jersey.

[11] T. M. Cover, J. A. Thomas.Elements of Information Theory [M]. John
Wiley & Sons, Inc., 2006, Hoboken, New Jersey.

[12] N.C Martins, M.A. Dahleh. Feedback Control in the Presence
of Noisy Channels: ”Bode-Like” Fundamental Limitations of

Performance[J].IEEE Transactions of Automatic Control, 2008,
(52):7, 1604–1615.

[13] M.S. Pinsker. Information and Information Stability of Random
Variables and Processes[M]. Holden Day, 1964, San Francisco,
California.

[14] L. Shi, R. Murray. Towards a Packet-based Control Theory[C]//.
Proceedings of the IEEE American Control Conference, 2006, 3482–
3487.

[15] J.H. Braslavsky, R.H. Middleton, J.S. Freundenber. Feedback
Stabilization over Signal-to-Noise Ratio Constrained Channels[J].
IEEE Transactions of Automatic Control, 2007, (52):8,1391–1403.

Ivan Lopez Hurtado received the B.S. degree in In-
dustrial Physics Engineering with Summa Cum Laude
Honors and M.S. in Automation with Summa Cum
Laude Honors from Monterrey Institute of Technology
(Mexico) in 1995 and 1998, respectively. He received a
PhD degree in Electrical Engineering from the Univer-
sity of New Mexico in 2008. He is currently an assistant
Professor at the Department of Engineering at North-
ern New Mexico College, Espanola, NM. Dr. Lopez is

a member of IEEE, Sigma Xi and Phi Kappa Phi. Dr. Lopez has served
as guess editor of the International Journal of Robust and Nonlinear and
Adaptive Control. His current research interests include information theory
of networked-control systems, control under communication constraints
and genetic programming applications. Email: ilopez@nnmc.edu.

Chaouki T. Abdallah started his college education at
the Ecole Suprieure d’Ingnieurs de Beyrouth - Universit
Saint-Joseph in Beirut, Lebanon, but finished his under-
graduate studies at Youngstown State University, with
a Bachelors of Engineering degree in Electrical Engi-
neering in 1981. He then obtained his MS and Ph.D. in
Electrical Engineering from GA Tech in 1982, and 1988
respectively. He joined the Electrical and Computer En-
gineering department at the University of New Mexico

where he is currently professor and chair. Professor Abdallah conducts re-
search and teaches courses in the general area of systems theory with focus
on control and communications systems. His research has been funded by
national funding agencies, national laboratories, and by various companies.
He has also been active in designing and implementing various interna-
tional graduate programs with Latin American and European countries. He
has published 7 books, and more than 300 peer-reviewed papers. Email:
chaouki@ece.unm.edu.

Sudharman K. Jayaweera (S’00, M’04, SM’09) re-
ceived the B.E. degree in Electrical and Electronic En-
gineering with First Class Honors from the University
of Melbourne, Australia, in 1997 and M.A. and PhD
degrees in Electrical Engineering from Princeton Uni-
versity in 2001 and 2003, respectively. He is currently
an assistant Professor in Electrical Engineering at the
Department of Electrical and Computer Engineering at
University of New Mexico, Albuquerque, NM. From

2003-2006 he was an assistant Professor in Electrical Engineering at the
ECE Department of Wichita State University. Dr. Jayaweera is a senior
member of IEEE and currently serves as an associate editor ofEURASIP
Journal on Advances in Signal Processing. Among his honors are two
best paper awards at IEEE international conferences and a Faculty Fel-
lowship at the AFRL. His current research interests includecooperative
and cognitive communications, information theory of networked-control
systems, statistical signal processing and wireless sensor networks. Email:
jayaweera@ece.unm.edu.


