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Abstract—We investigate the impact of mobile node density
on several detection performance measures for stationary target
detection by a hybrid sensor network consisting of both static
and mobile nodes. Such hybrid sensor networks are becoming
attractive with the recent advances in sensor nodes equipped with
mobile platforms. However, adding a large number of mobile
nodes to a sensor network for continuous coverage improve-
ment might be expensive due to mobile node’s higher energy
consumptions compared to that with static nodes. Motivated by
these, we investigate the trade-off between the density of mobile
nodes and the network performance in a hybrid sensor network
with respect to several performance measures of interest, when
mobile nodes perform random mobility. We derive analytical
(exact and/or approximate) formulae for detection probability,
detection latency and mean first contact distance, by applying the
theory of coverage processes and use them to evaluate the trade-
off between the fraction of mobile nodes and these performance
measures. Analytical results presented in this paper give insights
on how to select optimal network parameters in designing hybrid
sensor networks to achieve desired performance requirements.
Validity of the derived analytical results is verified via Monte-
Carlo simulations.

I. INTRODUCTION

Target detection is one of the most common applications
of wireless sensor networks. In this paper, we address the
problem of detecting a stationary target using a hybrid sensor
network consisting of both mobile and static nodes. Since
deploying mobile nodes is not as cost effective as deploying
static nodes, it is desired to investigate the optimal portion
of the total nodes to be mobile to meet desired performance
levels. We investigate the trade-off between the mobile node
density (with respect to static nodes) and several perfor-
mance measures that are important in designing hybrid sensor
networks. In particular, we derive the detection probability,
detection latency and the mean first contact distance at a given
time of the hybrid sensor network, and investigate the impact
of the mobile node density on these measures.

We assume that the static nodes and the initial locations of
mobile nodes are both independently and uniformly distributed
in a two dimensional plane such that node locations follow a
2-D Poisson point process (PPP). Such a deployment model
for nodes is justifiable in situations where the network does
not have any prior information regarding the sensing field and
the target locations, or when it is more cost effective and
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practical to deploy nodes randomly in contrast to systematic
deployment. We further assume that mobile nodes move
randomly and independently in the sensing region searching
for targets.

For target detection, in particular, we consider two detection
models: single-sensing and k-sensing [1]. In single-sensing
detection, the target is assumed to be detected if at least one
sensor detects it providing the minimum guarantee on target
detection [1]. In k-sensing detection, on the other hand, the
target is assumed to be detected if at least k-sensors detects
it where k is a design parameter. In this model, the target
is detected with lower false alarm probability compared to
that with single-sensing detection [1]. Under these detection
and node mobility models, the detection performance of the
hybrid sensor network is analyzed for detecting a stationary
target. Specifically, we derive (i). detection probability which
accounts for the quality of the detection, (ii). detection la-
tency, which represents the average time that a target remains
undetected after appearing in the sensing region and, (iii). the
mean first contact distance at a given time, which accounts
for the fact that how fast the mobile nodes approach the target
at a given time. We characterize the minimum mobile node
density required in order to achieve a desired performance
criteria subject to given constraints.

The paper is organized as follows: In Section II, we present
related work. Section III explains the sensor network, target
and detection models. Section IV derives the detection per-
formance measures (detection probability, detection latency,
mean first contact distance at a given time) of stationary target
detection with single-sensing and k-sensing detection models
and discusses their dependence on mobile node density. The
performance results are shown in Section VI. The concluding
remarks are given in Section VII.

II. RELATED WORK

Distributed detection in wireless sensor networks with sta-
tionary sensor nodes has been extensively studied by many
authors in the literature. For example, in [2]–[6], decision
fusion for distributed detection was considered in different
contexts when the sensor network is deterministically de-
ployed. However, in practice, random sensor deployment for
sensor networks is desirable in many situations. For example,
if a priori knowledge of the sensing field is not available at
the deployment stage, it is more desirable to position sensors



randomly. Moreover, random sensor deployment is justifiable
when it is more cost effective and practical to deploy nodes
randomly in contrast to systematic deployment. Stationary and
mobile target detection in random stationary sensor networks
has been studied by [1], [7]–[10]. Since the performance
of such a stationary sensor network is limited by its initial
configuration, recently mobile sensor nodes are deployed in
wireless sensor network applications to enhance the network
performance. For example, to achieve a k-coverage in a
random sensor network, with a network size of L, it needs
to increase the sensor density as O(log L + k log log L) at
initial deployment stage [11]. On the other hand, the coverage
of a static sensor network will remain the same (or reduced
due to node failures) after the initial deployment stage. This
leads the sensor network to have coverage holes over time.
In order to cope with the unreliability, and provide dynamic
on demand coverage, static nodes can be integrated with
mobile nodes. Use of node mobility at deployment stage for
node relocation was considered in [12], [13]. However, these
studies do not provide a performance improvement on-demand
after deployment stage. Liu et. al. in [14] showed that the
coverage can be improved by allowing nodes to be mobile
continuously in a mobile sensor network over time compared
to that with a static network. In [15], detection of targets using
mobile sensor networks is addressed where they analyzed the
detection latency of detecting a target. Distributed tracking
by mobile sensor networks is addressed in recent research,
for example in [16], [17]. However, deploying mobile sensors
is not as cost effective as deploying static nodes in a sensor
network due to energy constraints. Thus it is desirable to allow
only a fraction of total nodes to be mobile to improve the
network performance depending on application requirements.
Distributed detection and tracking by hybrid sensor networks
is also addressed by recent work [18]–[20] when the sensor
positions are deterministic.

In this paper we address the problem of detecting an arbi-
trary target located independently and randomly in a hybrid
sensor network consisting of both static and mobile nodes. In
particular, the main results presented in this paper can be listed
as: (i). Derive the detection probability in stationary target
detection by the hybrid sensor network for two specific random
mobility models (as presented in subsection III-B) for mobile
nodes. We consider two detection models; single-sensing and
k-sensing detection. (ii). Derive the detection latency for both
single-sensing and k-sensing schemes. (iii). Analyze the trade-
off between the mobile node density and desired the detection
performance with given constraints. (iv). Derive the mean first
contact distance between the target and the closest (to the
target) point covered by the sensor network with at least one
sensor at a given time.

III. SENSOR NETWORK MODEL

We consider a hybrid sensor network made of a large
number of sensor nodes, N , deployed in a large region R.
When a large region is to be monitored by a sensor network,
it is desirable to deploy a large number of inexpensive, low
power sensor nodes to achieve the expected performance. It

was shown in [21]–[23], that large scale sensor networks
consisting of a large number of mobile and static nodes are
considered to be candidates for many applications including
environmental monitoring and event detection in the near
future. We assume that there are Ns number of static nodes
and Nm number of mobile nodes. Denote (xsk, ysk) to be
the location of the k-th static node where xsk and ysk are
assumed to be independently and uniformly distributed in
[−b/2, b/2] where b×b is the assumed dimension of the sensor
network. Denote λ = N

b2 to be spatial density of the nodes
and λm = Nm

N and λs = Ns

N to be the fractions of mobile
and static nodes, respectively. Note that we assume that the
total number of sensor nodes, N and network dimension, b×b
are large enough so that assumptions made in the rest of the
paper are valid. Let V be the set containing all node indices
in the network and Vm and Vs be the sets containing mobile
and static node indices, respectively.

A. Target model

We consider stationary target detection by the hybrid sensor
network, where the target location is assumed to be an
independently and uniformly distributed arbitrary point R0 in
the region R.

B. Node mobility models

In this paper, we consider two random mobility models:
In the first model (model 1), a mobile node moves inde-
pendently in a direction θ selected randomly and uniformly
where θ ∼ U [0, 2π), with an average speed of v̄ which is
assumed to be the same for all mobile nodes. Note that we
use X ∼ U [a1, a2] to denote that X is uniformly distributed
in the interval [a1, a2]. Then at any time t = nTs, a mobile
node has moved a distance of nv̄Ts on a straight line where Ts

is the length of each time step [14]. Second, in model 2, we
consider that the k-th mobile node follows a 2-dimensional
random walk [24] of n steps at time nTs where each step
has a length µ = v̄Ts. Random and independent mobility
models, together with random initial node deployments in
large scale, are justifiable in scenarios where nodes do not have
any prior knowledge of sensing field or target existence, for
example in remote environment monitoring and remote target
detection applications. Also random node mobility models
are desirable when minimum node coordination is required.
Model 1 assumed in the paper is the simplest mobility model
which requires minimum control and coordination. Random
walk mobility model can be justifiable when mobile nodes
are characterized by uncontrolled dynamics, such as random
ON-OFF transitions at each time step [25]. These two random
models for a mobile node are illustrated in Fig. 1.

C. Detection model

We assume that each (mobile or static) node has identical
effective sensing range r with the sensing area of πr2. Al-
though we assume homogeneous sensor nodes for simplicity,
the results can easily be extended for heterogeneous sensor
nodes where mobile and static nodes have different sensing
ranges.
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Fig. 1. Random mobility models of a mobile node

We assume a binary detection model in which the point R0

is considered to be detected with probability 1 by the sensor sk

at time t = nTs if it lies in sensor-coverage area Ck(nTs) [12],
where Ck(nTs) is the coverage area of node sk at time nTs

for n = 0, 1, 2, · · · . Formally, we can express the probability
that the node sk detects the target at time interval [0, nTs) as:

Pdk
(nTs) =

{
1 if R0 ∈ Ck(nTs)
0 if otherwise

Note that for a static node, the coverage area Ck(nTs) is
constant over time. That is, if the target is not detected by
a static node initially, it will never be detected. However, with
a mobile node, since the coverage is varied over time, there
is a possibility to detect the target as the time goes.

D. Preliminaries

1) Boolean model: Let Ω ≡ {αi, i ≥ 1} in Rk is a point
process and {βi, i ≥ 1} be a sequence of independently and
identically distributed random sets, independent of Ω. The
collection of sets C = {αi + βi, i ≥ 1} is called a coverage
process [26]. When C is driven by a stationary Poisson point
process (i.e. Ω is a stationary Poisson point process), the
coverage process C is called a Boolean model [26]. Since
we assume that static node locations and initial mobile node
locations are independently and identically distributed in a vast
two dimensional area, the sensor locations can be modeled as a
two-dimensional Poisson point process with intensity λ, when
the total number of nodes and the sensing region are large.
With the considered random mobility models, since mobile
nodes make independent and identical random movements, at
any time instance t = nTs, sensor locations still form a 2-D
Poisson point process with the same intensity [27] when the
area b2 lim

→
∞.

2) Notation: We use A(S) and P(S) to denote the area
and perimeter of the set S. Denote by R + S the set centered
at R with a shape of S.
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Fig. 2. (a). Hybrid network at times t = 0 and t = nTs (b). Realization of
random shapes at time nTs

IV. STATIONARY TARGET DETECTION PERFORMANCE
WITH MOBILITY MODEL 1

A. Detection probability

In the following, we consider two modes of detection:
Single-sensing detection and k-sensing detection [1]. In
Single-sensing detection, the target is considered as detected
if it is captured by at least one sensor. In this case, target’s
presence is obtained with the minimum guarantee. On the
other hand, detection by multiple sensors ensure lower false
alarms. In k-sensing detection model, the target is considered
as detected if it is detected by at least k sensors where k is a
design parameter [1].

In this section, we analyze the detection performance with
the random node mobility model 1 as shown in Fig. 1, where
each mobile node moves in a straight line after selecting the
direction independently and uniformly from [0, 2π). Figure 2
(a) illustrates the coverage area of the sensor network at time
t = 0 and time t = nTs with mobility model 1. With the
assumption that the initial node locations are independent and
uniform, after mobile nodes have moved a distance v̄t = v̄nTs,
we can model the coverage of the sensor network as a Boolean
model in which the driving point process is the initial Poisson
point process with intensity λ and the shape distribution is
varied with the time. Further, denote T0 to be the average
time a mobile node takes to leave the sensing region R. Since
we assume that the sensing region is large enough and the
speed of a mobile node is small (e.g. for example, Robomote
[28] mobile nodes have speed of 0.5 ∼ 2m/s), T0 is assumed
to be large. Thus the main focus in this paper is to analyze
the detection performance in the region where nTs ≤ T0. The
corresponding coverage area S(nTs) at time t = nTs ≤ T0 is
distributed as

S(nTs) =
{

S1(nTs) with prob λm

S2 with prob 1− λm
, (1)

where S1(nTs) and S2 are as shown in Fig. 2 (b). The cov-
erage area of k-th static sensor at time nTs ≤ T0 is given by,
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Cs
k(nTs) = Cs

k = A(S2) = πr2, and the coverage area of the
k-th mobile node at time t = nTs is given by (corresponding
to shape S1(nTs)) Cm

k (nTs) = A(S1(nTs)) = πr2 +2rnTsv̄.
Note that for nTs ≥ T0, we have Cm

k (nTs) = A(S1(nTs)) =
πr2 + 2rT0v̄ while Cs

k(nTs) = Cs
k = πr2.

The probability that the target is detected at time t = nTs

is given by the following theorem.
Theorem 1: (Detection probability) The probabilities of de-

tection with single-sensing and the k-sensing models (k ≥ 1)
at time t = nTs are given by,

P 1
D(nTs) =

{
1− e−λ(πr2+2λmrv̄nTs) if nTs ≤ T0

1− e−λ(πr2+2λmrv̄T0) if nTs > T0

(2)

and

P k
D(nTs) =




1−∑k−1
j=0

(λ(πr2+2λmrv̄nTs))je−λ(πr2+2λmrv̄nTs)

j! , if nTs ≤ T0

1−∑k−1
j=0

(λ(πr2+2λmrv̄T0))je−λ(πr2+2λmrv̄T0)

j! , if nTs > T0

respectively.
Proof: See Appendix A.

Since allowing more nodes to be mobile is not desirable
in many applications due to energy constraints, it is required
to determine the minimum fraction of mobile nodes to be
deployed in order to achieve the desired performance during a
given time interval. The following theorem states the minimum
fraction of mobile nodes required to achieve a desired prob-
ability level within a desired time interval for single sensing
detection.

Theorem 2: (Minimum mobile node density required with
single sensing detection) Let ηD be the desired detection
probability to be achieved by the hybrid sensor network at
time tD ≤ T0. The minimum fraction of mobile nodes to
be used to achieve ηD at time tD(≤ T0) with single-sensing
detection model is given by,

λmin
m =

{ − log(1−ηD)−λπr2

2b tD
Ts
cλrv̄Ts

, if ηs ≤ ηD ≤ ηt

infeasible, otherwise,
(3)

where ηs = 1− e−λπr2
and ηt = 1− e−λ[πr2+2b tD

Ts
crv̄Ts].

Proof: See Appendix B.
In the case of k-sensing detection, the minimum fraction

of mobile nodes can be found by finding the minimum λm
which satisfies the following inequality:

1−
k−1∑
j=0

(λ(πr2 + 2λmrb tD
Ts
cv̄Ts))

je
−λ(πr2+2λmrb tD

Ts
cv̄Ts)

j!
≥ ηD.

However, if the desired delay constraint is such that b tD

Ts
c ≤

πr
2v̄Ts

, the minimum fraction of mobile nodes can be found
by finding the minimum λm which satisfies the following
inequality:

λm − log(f1(k − 1) + λmf2(k − 1))

2λrb tD
Ts
cv̄Ts

≥ − log(1− ηD)− λπr2

2b tD
Ts
cλrv̄Ts

where f1(k − 1) =
∑k−1

j=0
(λπr2)j

j! and f2(k − 1) =
2rb tD

Ts
cv̄Ts

πr2

∑k−1
j=1

(λπr2)j

(j−1)! .

B. First contact length for single-sensing detection
An important measure to evaluate the quality of the target

detection is to analyze the mean distance between the target
and the closest point (to the target) covered by at least one
sensor by the sensor network at any time instant. This is called
the first contact distance of the target with single-sensing.
When there are mobile nodes in the network, this measure
essentially reflects how fast each point in the sensor network
is covered over time.

The following theorem states the mean length of the first
contact distance for single-sensing detection.

Theorem 3: (Mean first contact distance) Denote X1(nTs)
to be the distance between the target, located at any arbitrary
point in region R, and the closest point covered by the sensor
network by at least one sensor at time t = nTs. Denote
X̄1(nTs) = E{X1(nTs)} to be the corresponding mean
distance. Then X̄1(nTs) is given by,

X̄1(nTs) =



1√
λ
e

1
π

λλ2
mv̄2n2T2

s Q

(√
λ
2π

(2πr + 2λmv̄nTs)

)
, if nTs ≤ T0

1√
λ
e

1
π

λλ2
mv̄2T2

0 Q

(√
λ
2π

(2πr + 2λmv̄T0)

)
, if nTs > T0

and is upper bounded by,

X̄1(nTs) ≤
{

1
2
√

λ
e−λ(πr2+2λmrv̄nTs), if nTs ≤ T0

1
2
√

λ
e−λ(πr2+2λmrv̄T0), if nTs > T0

(4)

where Q-function is defined as Q(x) = 1√
2π

∫∞
x

e−
t2
2 dt.

Proof: See Appendix C.
For nTs ≤ T0, from (4) it can be seen that when λm or

n is increased, the mean length of the first contact distance
is decreased for fixed λ and r. On the other hand, if there is
only a stationary sensor network, X̄1(nTs) can be decreased
by only increasing either λ or r. Note that, (4) shows the
proper trade-off between X̄1(nTs), λm and n when the total
node density λ and r are fixed.

C. Detection latency
In a hybrid sensor network embedded with mobile nodes,

it is important to analyze the time delay till the target is
first detected after appearing in the sensor network, which
is called the detection latency [15]. This measure essentially
reflects the monitoring capability and how fast the target can be
detected by allowing nodes to be mobile. First, we explore the
dependence of the detection latency on mobile node density
with single-sensing detection. In this discussion we assume
that the target needs to be detected before mobile nodes leave
the sensing region and the average time that a mobile node
requires to leave the region under mobility model 1, T0, is
sufficiently large.

Theorem 4: (Average detection latency for single-sensing
detection) Define the random variable τ1 to be the time
until the target is first detected by the hybrid sensor network
with single-sensing. Then the average detection latency τ̄1 of
the hybrid sensor network in single-sensing detection (when
T0 lim

→
∞) is given by,

τ̄1 =
e−λπr2

2λλmv̄r
. (5)
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It can be seen from (5) that for a given total node density λ and
sensing range r, the average detection latency can be reduced
by increasing the fraction of mobile nodes λm or speed of
mobile nodes, v̄.

Proof: Let τ1 be the random variable which represents
the time until the target is first detected by the hybrid sensor
network with single-sensing. Then we have,

Pr(τ1 > t) = Pr(target is not detected until

time t (≤ T0))

= e−λ(πr2+2rλmv̄t) (6)

Then the mean value of τ1 is given by,

τ̄1 =
∫ T0

0

Pr(τ1 > t)dt

=
e−λπr2

2λλmv̄r

(
1− e−2rλλmv̄T0

)
,

lim
T0 → ∞

τ̄1 =
e−λπr2

2λλmv̄r
. (7)

Detection latency with k-sensing detection for T0 lim
→

∞ is
given by the following theorem.

Theorem 5: (Average detection latency for k-sensing detec-
tion) The average detection latency with k-sensing detection
is given by

τ̄k =
e−λπr2

2λλmv̄r

k−1∑

j=0

(λπr2)j f̃(j), (8)

where f̃(j) =
∑j

i=0
1

(j−i)!

(
1

πr2

)i.
Proof: See Appendix D.

V. DETECTION PERFORMANCE WITH RANDOM NODE
MOBILITY MODEL 2 (RANDOM WALK)

In this Section, we consider that the mobile nodes follow 2-
D random walk mobility model at each time step nTs as shown
in Fig. 1. With random walk mobility model, since it is difficult
to obtain a closed form solution for detection probability, in
the following we find an approximation for single-sensing and
k-sensing detection models. Let us assume that the sensing
region can be viewed as a virtual square lattice having a total
of ≈ b2

µ2 square sites where µ = v̄Ts is the lattice side length.
The k-th mobile node is assumed to be at the center of a site.
If the mobile node starts to move at time t = 0, the expected
number of distinct sites visited by time nTs, E{G(nTs)} can
be approximated by [24], [29],

E{G(nTs)} ≈ b2

µ2

(
1−

(
cb2

µ2

)− πnTs

b2
µ2 log2

(
cb2
µ2

) )
,

where c = 1.8456....
In this paper we consider only the case r ≤ µ, since if the

step size µ is selected such that µ ¿ r, there are large overlaps
in the sensing areas at consecutive steps [24]. Thus it is more
desirable to select step size of the random walk such that µ ≥
r, which results in a larger coverage area at each step of the
random walk. Since each mobile node performs independent

and identical random walks at each time step, and the sensing
range of each mobile node is identical, it can be seen that,
{Cm

k (nTs)}k∈Vm are a set of independently and identically
distributed random sets where Cm

k (nTs) is the area covered
by the k-th mobile node at time nTs. Denote C̄m

k (nTs) =
C̄m(nTs) to be the average coverage area of the k-th mobile
node at time nTs. A lower bound for the average area covered
by a mobile node at time nTs, C̄m(nTs) is then given by the
following theorem.

Theorem 6: (Minimum average coverage area of a mobile
node) Assuming that µ ≥ r, the minimum average area
covered by any single mobile node at time nTs is given by,

C̄m
min(nTs) = πr2 + (E{G(nTs)} − 1)+2rµ

− (E{G(nTs)} − 2)+(1− π

4
)r2. (9)

Proof: Assuming µ ≥ r, when there is E{G(nTs)}
number of distinct sites visited at time nTs, there should be at
least E{G(nTs)}−1 number of steps to ensure that each point
is connected to at least one lattice point. Then the minimum
coverage area results if these lattice points are located such
that each transition is orthogonal to the previous transition
(That is, then the maximum amount of overlapping will occur
with the minimum number of transitions). Based on geometric
simplification, it can be shown that the minimum coverage area
is given by,

C̄m
min(nTs) = πr2 + (E{G(nTs)} − 1)2rv̄Ts

− (E{G(nTs)} − 2)(1− π

4
)r2.

Note that this result can be shown to be valid for r ≤ µ
2 ,

where there is no overlapping of the sensing range, as well as
for µ

2 ≤ r < µ where there is overlapping of sensing range,
between two consecutive steps.

Then lower bounds for the detection probability in single-
sensor and k-sensor detections can be shown as,

P 1
D(nTs) ≥ 1− e−λC̄min(nTs), (10)

and P k
D(nTs) ≥ 1−∑k−1

j=0
(λC̄min(nTs))j

e−λC̄min(nTs)

j! , respec-
tively, with C̄min(nTs) = λmC̄m

min(nTs)+(1−λm)πr2 where
C̄m

min(nTs) is given by (9).
Let ηD be the desired detection probability lower bound to

be achieved by the hybrid sensor network at time tD. The
minimum fraction of mobile nodes λmin

m that should be used
in order to achieve this probability bound, within the desired
time is stated in the following theorem:

Theorem 7: (Minimum fraction of mobile nodes required
to achieve a desired detection probability lower bound at
a given time) With single-sensing detection, if the desired
detection probability lower bound, ηD, is to be achieved within
a time interval tD, the minimum fraction of mobile nodes that
should be deployed in the hybrid network with single-sensing
detection is given by

λmin
m =

− log(1− ηD)− λπr2

λ
(
Ḡ1(b tD

Ts
cTs)2rv̄Ts − Ḡ2(b tD

Ts
cTs)(1− π

4 )r2
) .
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for µ ≥ r where Ḡ1(b tD

Ts
cTs) = (E{G(b tD

Ts
cTs)} − 1) and

Ḡ2(b tD

Ts
cTs) = (E{G(b tD

Ts
cTs)} − 2).

Proof: The proof follows directly from (10) and (9).

VI. SIMULATION RESULTS

A. With node mobility model 1

We verify the analytical results obtained in this paper via
extensive Monte-Carlo simulations. The dimension of the
sensing area is assumed to be b = 1000m, such that the area is
1000× 1000m2. This figure for the network size is consistent
with network sizes used in existing literature for large scale
sensor networks, for example in [23]. Unless specified, for
each figure in the following, 105 Monte-Carlo runs were
performed. Mobile node speed is set to v̄ = 1m/s, which
is consistent with the speeds of some of the currently existing
mobile nodes, for example in [28]. Initially a total of N = 500
sensor nodes are deployed independently and uniformly in
the sensing field, such that the node density λ = 0.0005. A
fraction λm of 500 total nodes, is directed to move according
to the random mobility model 1 as described in subsection
III-B. With these parameters, it can be shown by simulations
that the average time a mobile node takes to leave the sensing
region with the mobility model 1 is, T0 = 473.31655s.

In the first experiment, the time varying detection prob-
ability is investigated when the fraction of mobile nodes is
varying for a given sensing range for mobile and static nodes.
Figure 3 shows the analytical and simulated results which
reflect the time varying detection probability of the hybrid
sensor network for single-sensing detection when the fraction
of mobile nodes deployed is varied. In Fig. 3, we assume that
the sensing range of a sensor, r = 20m, which is a valid figure
for sensing range of certain currently existing sensors [23],
[30]. From Fig. 3, we can see the derived analytical results
almost exactly match with the simulation results for nTs ≤ T0

and nTs > T0. It can be seen from Fig. 3, that after a certain
time period, the detection probability reaches a steady state,
which essentially means that the area is maximally covered
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Fig. 4. Detection probability Vs fraction of mobile nodes in the network for
single-sensing and 2-sensing detection models for mobility model 1; Desired
detection delay is tD = 60s.

by the mobile nodes (with static nodes) before they leave the
sensing region. Interestingly, we see that when the fraction
of mobile nodes is increasing, this steady state probability
becomes 1 and it is reached well before the nodes leave
the sensing region. This means that when λm increases, the
network can be completely covered by the hybrid network
within a shorter time (compared to T0) with the mobility model
1. This phenomenon essentially reflects the trade-off between
the fraction of mobile nodes and the probability of detecting
the target before it disappears in the field. For example, if
the target appearing time is shorter, it is desired that the
total area is covered as quickly as possible to detect it before
disappearing, which needs a relatively larger fraction of mobile
nodes. On the other hand, if the target appearing time is longer,
then with a relatively small number of nodes is enough to cover
the area with the desired quality. Also it is noted from Fig. 3
that, at earlier time intervals before the probability reaches
steady state, the detection probability has rapid increment
compared to the stationary configuration, and increases slowly
as it approaches the steady state probability. Moreover, it is
seen for Fig. 3 that by adding a small fraction of mobile nodes
will boost the detection performance significantly compared
to the stationary configuration, and the rate of performance
improvement eventually decreases as λm increases.

In the next experiment, the detection performance is eval-
uated with varying sensing ranges for single-sensing and 2-
sensing detection models. Figure 4 shows the detection prob-
abilities for single-sensing (top plot) and 2-sensing (bottom
plot) detection models of the hybrid sensor network Vs the
fraction of mobile nodes for a given desired delay constraint,
when the sensing range is varied. In Fig. 4 we let the delay
constraint tD = 60s < T0 in which the network has not
reached the steady state performance. Note that, with mobility
model 1, our interest is more on the dynamic performance
results in the hybrid network before it reaches the steady
state (i.e. before the mobile nodes leave the sensing region).
Different plots in Fig. 4 are corresponding to varying sensing
ranges (for r = 20m, r = 30m and r = 40m). From Fig
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Fig. 5. Minimum fraction of mobile nodes required to achieve a desired
performance level within a desired delay constraint for mobility model 1

4, it can be seen that the derived analytical results perfectly
match with the simulation results. It can also be seen that the
detection probability is nearly-linearly increasing, when the
fraction of mobile nodes is increasing, for a given sensing
range around the considered delay constraint (i.e. around
relatively lower delay constraints). Also, when the sensing
range is increasing the increment in the detection probabilities
over λm occurs at a lower rate for both single and 2-sensing
detection models.

In Fig. 5, the minimum fraction of mobile nodes required
to achieve a desired performance level within a desired delay
constraint (< T0) is shown for r = 20m and r = 30m with
single sensing detection. It is seen that when the desired delay
constraint is small, the minimum fraction of mobile nodes is
increasing to achieve a desired performance level. Moreover,
the effect of the mobile node density on the detection perfor-
mance is more significant when the sensing range of the nodes
is low, which is the most practical scenario in many sensor
networks. It can be seen from Fig. 5 that when the sensing
range is increasing, the variation of the required fractions of
mobile nodes to achieve different detection thresholds, is less
compared to that with lower sensing ranges.

The next experiment is performed to evaluate the per-
formance of hybrid sensor network in terms of the mean
first contact distance at a given time. Figure 6(a) shows the
performance of the mean first contact distance derived in
subsection IV-B, with the mobile node density. In Figure 6(a),
we let r = 20m and plots are corresponding to different delay
constraints. From Fig. 6 (a), it can be seen that the derived
results for the mean first contact distance fairly match with the
simulated results. Note that the mean first contact distance at
a given time essentially means that how much, in average, that
an given arbitrary point is closer to any point in the network
covered by at least one sensor at a given time. It can be
seen from Fig. 6(a), as the time elapsed, any arbitrary point
is getting closer to an point covered by the sensor network
by at least one sensor much faster until a certain fraction of
mobile nodes, and after that the mean distance reaches slowly
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Fig. 6. (a). Mean value of the first contact distance for single-sensing
detection with mobility model 1; r = 20m, v̄ = 1m/s (b). Average detection
latency for single-sensing and 2-sensing detection models with mobility model
1; r = 40m, v̄ = 1m/s

to zero. This reflects the proper trade-off between the fraction
of mobile nodes required and the delay constraint in order to
cover any arbitrary point in the network as time goes.

Figure 6(b) depicts the average detection latency for single-
sensing and 2-sensing detection models with the fraction of
mobile nodes. It can be seen that, for a given sensing range,
with a smaller fraction of mobile nodes, the average delay
of detection with 2-sensing model is significantly increased
compared to that with single-sensing model. However, as
λm is increasing, the difference of average detection delays
of two sensing models becomes smaller. This essentially
implies that to obtain the system performance with a higher
confidence level (increasing k) with a smaller fraction of
mobile nodes, it is required to wait a longer time compared
to that with single-sensing model (lower or minimum possible
performance level). Moreover, as λm increases, the average
detection latency required to achieve a performance level with
a higher confidence, is not significantly long compared to
single-sensing detection model.

From the results in the Figures 3, 4, 5 and 6 it can be
seen that the Boolean model is a good approximation for
the hybrid sensor network considered in this paper when the
number of nodes and the sensing area are relatively large.
To further illustrate the suitability of Boolean/Poisson model
with reduced number of nodes and network sizes, in Fig. 7
we plot the time varying detection probability for b = 500m
and N = 125 such that the node density is still λ = 0.0005.
With these parameter values, it can be shown that the average
time that a mobile node needs to leave the sensing region,
T0 = 236.4925s. From Fig. 7, it can be seen that the Boolean
approximation does not give very accurate results when N and
b2 are relatively small.

B. With node mobility model 2

With random walk mobility model, we perform Monte-
Carlo simulations to obtain the exact detection probability to
compare the performance of the derived detection probability
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Fig. 8. Detection probability lower bound with single-sensing detection Vs
fraction of mobile nodes in the network with random walk mobility model
after completing n = 20 steps: for µ =

√
2r and µ = 2r: r = 20m

lower bound. Figure 8 shows the analytical detection proba-
bility lower bound and the exact detection probability vs the
fraction of mobile nodes, with random walk mobility model
after completing n = 20 steps. In Fig. 8, we let the step sizes
of the random walk to be µ =

√
2r and µ = 2r where r is set

to r = 20m. From Fig. 8, it can be seen that the derived lower
bound is a good match for the exact detection probability.
Moreover, when the step size of the random walk is selected
relatively larger compared to the sensing radius of the node, it
can be seen that the derived lower bound becomes much tighter
for the exact detection probability. For a given sensing range,
selecting a larger step size compared to the sensing range is
more desirable in performing 2-D random walk, since then
the overlapping of sensing coverage at consecutive steps is
reduced.

VII. CONCLUSION

In this paper, the impact of mobile node density on the
detection performance in different perspectives of a hybrid

sensor network consisting of both static and mobile nodes was
addressed. We considered two random mobility models for
mobile nodes where in the first one, mobile nodes move on a
straight line after selecting a random direction initially and in
the second one, mobile node follow a 2-D random walk. With
the mobility model 1, we derived the detection performance, in
terms of detection probability, detection latency and mean first
contact distance for single-sensing and k-sensing detection
models of the hybrid sensor network. With mobility model 2,
we derived reasonable approximations for the average cover-
age area and the detection probability for single and k sensing
detection models. We investigated the trade-off between the
mobile node density and the desired (exact or approximated)
performance gain with given constraints. The analytical results
derived in this paper help to select design parameters in hybrid
sensor networks for on-demand application requirements.

APPENDIX A

PROOF OF THEOREM 1

In single sensing detection, the target is considered as de-
tected, if at least one sensor captures it. If C ≡ {αi+Si, i ≥ 1}
is a Boolean model with shapes Si are distributed as S, the
number of sets (shapes) that intersects an arbitrary point (or the
number of sets that covers an arbitrary point) in the Boolean
model has a Poisson distribution with mean λE{A(S)} [26].
Note that with the mobility model 1, the average area covered
by a mobile node within the time interval [0, nTs) is given by
C̄m(nTs) = A(S1(nTs)) = πr2 + 2rnTsv̄ if nTs ≤ T0 and
Cm

k (nTs) = A(S1(T0)) = πr2 +2rT0v̄ if nTs > T0. Now, as
can be seen from the right plot of Fig. 2 (a), at time t = nTs,
the hybrid sensor network can be considered as a Boolean
model in which the diving point process is the initial Poisson
point process and the shape distribution is given by (1), in
which the average coverage areas are determined depending
on whether nTs ≤ T0 or nTs > T0. Denote PR0(m,nTs) to
be the probability that m number of sensors cover the point
R0 at time t = nTs, which is given by [26]

PR0(m,nTs) =

(
λC̄(nTs)

)m
e−λC̄(nTs)

m!
,

where C̄(nTs) = (λmC̄m(nTs)+ (1−λm)Cs) is the average
coverage area of the network at time nTs. Then the probability
that no sensor covers the point R0, PR0(0, nTs), at time nTs

is given by PR0(0, nTs) = e−λC̄(nTs). The probability of the
single-sensing detection at time t = nTs ≤ T0 is thus given
by,

P 1
D(nTs) = 1− PR0(0, nTs) = 1− e−λC̄(nTs)

= 1− e−λ(πr2+2λmrnv̄Ts).

For t = nTs > T0, we will get, P 1
D(nTs) = 1 −

e−λ(πr2+2λmrv̄T0). In k-sensing detection, the target is consid-
ered to be detected if at least k sensors detect it. Probability
that the point R0 is covered by at least k sensors at time nTs
is given by,

P
k
D(nTs) = 1− Pr(R0 is covered by k − 1 or less sensors)

= 1−
k−1∑

j=0

PR0 (j, nTs)
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=





1−∑k−1
j=0

(λ(πr2+2λmrv̄nTs))je−λ(πr2+2λmrv̄nTs)

j! , if nTs ≤ T0

1−∑k−1
j=0

(λ(πr2+2λmrv̄T0))je−λ(πr2+2λmrv̄T0)

j! , if nTs > T0

APPENDIX B

PROOF OF THEOREM 2

If the tolerable detection delay is tD(≤ T0), and the desired
detection probability is ηD, the minimum λm is characterized
by,

min λm

s.t. P 1
D

(⌊
tD

Ts

⌋
Ts

)
≥ ηD ,

where P 1
D

(
b tD

Ts
cTs

)
is given by (2). This leads to

λm ≥ − log(1− ηD)− λπr2

2b tD

Ts
cλrv̄Ts

. (11)

Note that (11) holds for a desired delay constraint, only
if the desired detection probability ηD satisfies the condition
ηs ≤ ηD ≤ ηt where ηs = 1 − e−λπr2

and ηt = 1 −
e−λ[πr2+2b tD

Ts
crv̄Ts] are the detection probabilities achieved by

the network if all nodes are stationary (λm = 0), and if all
nodes are allowed to move (λm = 1), respectively.

APPENDIX C

PROOF OF THEOREM 3

To prove theorem 3 we use the following theorem regarding
set intersection whose proof can be found in [26]. An isotropic
random set is a set in which the distribution is invariant under
independent and uniform rotations.

Theorem 8: Consider the Boolean model as defined in sec-
tion III-D1 with the shapes S distributed as isotropic convex
sets. Let S0 be a fixed convex subset in R2. Then the number
of sets in the Boolean model that intersects S0 is poisson dis-
tributed with mean λ(A(S0)+E{A(S)}+ 1

2πP(S0)E{P(S)}).

Proof of Theorem 3

Let the stationary target be located at any arbitrary point
R0 ∈ R. Let R0 + S0(x) represents the disk centered at R0

with a shape defined by S0(x) with a radius of x. Let the
distance between R0 and the closest (to R0) point covered
by the sensor network at time nTs be X1(nTs). Then the
probability of X1(nTs) > x is equivalent to,

Pr(X1(nTs) > x) = Pr(no set intersects the disk

R0 + S0(x)at time nTs)

= e−λ(A(S0(x))+E{A(S(nTs))}+ 1
2πP(S0(x))E{P(S(nTs))}) (12)

where the last step is obtained by applying theorem 8.
In our case, A(S0(x)) = πx2, E{A(S(nTs))} equals to
πr2 + 2λmrv̄nTs if nTs ≤ T0 and πr2 + 2λmrv̄T0 if
nTs > T0, P(S0(x)) = 2πx and E{P(S(nTs))} equals to
2πr+2λmv̄nTs if nTs ≤ T0 and 2πr+2λmv̄T0 if nTs > T0.
Hence the mean distance X̄1(nTs) equals to

X̄
1
(nTs) = E{X1

(nTs)} =

∫ ∞

0
Pr(X

1
(nTs) > x)dx

=





1√
λ

e
1
π

λλ2
mv̄2n2T2

s Q

(√
λ
2π (2πr + 2λmv̄nTs)

)
, if nTs ≤ T0

1√
λ

e
1
π

λλ2
mv̄2T2

0 Q

(√
λ
2π (2πr + 2λmv̄T0)

)
, if nTs > T0

(13)

where the last step results by using (12). The upper bounds in
(4) for X̄1(nTs) (for nTs ≤ T0 and nTs > T0) are obtained by
applying the upper bound for the Q-function, Q(x) ≤ 1

2e−
x2
2

in (13).

APPENDIX D

PROOF OF THEOREM 5

Let τk be the random variable which represents the time
until the target is first detected by the hybrid sensor network
with k-sensing. Then Pr(τk > t) is given by,

Pr(τk > t) = Pr(the target is not detected by

k − sensing until time t)

=
k−1∑

j=0

[λ(πr2 + 2λmv̄rt)]j

j!
e−λ(πr2+2λmv̄rt),

Then we have,

τ̄k =
∫ ∞

0

k−1∑

j=0

[λ(πr2 + 2λmv̄rt)]j

j!
e−λ(πr2+2λmv̄rt)dt

=
k−1∑

j=0

λj

j!
e−λπr2

∫ ∞

0

[πr2 + 2λmv̄rt]je−2λλmv̄rtdt

=
e−λπr2

2λλmv̄r

k−1∑

j=0

(λπr2)j

j∑

i=0

1
(j − i)!

(
1

πr2

)i

,

where we have used the integral identity
∫∞
0

xi−1e−xdx =
Γ(i) = (i − 1)! for an integer i where Γ(.) is the Gamma
function.
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