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Abstract

This paper proposes a framework for distributed sequential parameter estimation in wireless sensor networks.

In the proposed scheme, the estimator is updated sequentially at the current node with its new measurement and the

noisy corrupted estimator from the previous node. Since all nodes in the network may not carry useful information,

methodologies to find the optimal set of nodes and the corresponding node ordering for the sequential estimation

process are investigated. It is shown that the determining the optimal set of nodes that leads to the globally optimal

performance is computationally complex when the network size is large. We develop two distributed greedy type

node selection algorithms with reduced computational and communication complexities. In these algorithms, the

next best node is selected at the current node such that it optimizes a certain objective function. It is shown that

the performance of both proposed greed type schemes leads to exact, or close to exact, results to the optimal

scheme computed via forward dynamic programming, under certain conditions. Moreover, contrast to existing

methodologies, our work considers the node selection and inter-node communication noise jointly in the sequential

estimation process.

I. INTRODUCTION

Distributed parameter estimation is one of the common tasks in many wireless sensor network (WSN)

applications. Severe resource constraints such as node power and communication bandwidth in WSNs call

for efficient algorithms for estimation that combine estimation accuracy with optimal resource consump-

tion. In a static parameter estimation problem, the required parameter is to be estimated based on noise

corrupted observations at local nodes. In most sensor network applications considered in the literature it

is assumed that the spatially separated sensor nodes send their locally processed information to a fusion

center to form the final decision or the estimator [1]–[4]. In some sensor network applications, however,
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it is required that any distributed node has the ability to form the final decision or the estimator by

collaborating with other nodes in the network. Distributed sequential estimation, in which nodes update

the local estimators sequentially, is one way of achieving collaborative estimation without depending on

a central fusion center [5], [6]. In a sequential estimation process, the estimator is updated sequentially

with the information residing at the current node and the information received from the previous node.

Contrast to estimation via consensus in which each node has to agree with the final estimator, in sequential

estimation any node in the sequential estimation process has the ability to declare the final estimator if

the desired performance level is reached. Since all nodes in the network may not have useful information

regarding the Phenomenon of Interest (PoI), it is required to select nodes which carry useful information

such that the sequential estimation process will be terminated with the minimum number of nodes. This

ensures that only the nodes that contribute to the final estimation need to be in active mode while others

may remain idle preserving their transmit energy.

The distributed sequential estimation problem was addressed in previous work [5]–[7]. According to

[6], [7], a lead node sequentially queries sensor nodes and updates its estimator (based on the posterior

distribution of the state of the PoI) until a desired performance level is reached. In these schemes, the lead

node has to keep track of all nodes which have been participated in the estimation process at each step. In

[5], the posterior distribution (belief) at the current node is transmitted to the next node where it updates

the state of belief based on the current belief and the new measurement at that node. Note that in this

scheme, if the belief (posterior distribution) cannot be represented by a parameterizable distribution, grid

samples of the distribution should be transmitted to the next node leading to a considerable communication

burden. However, when the belief cannot be represented by a standard parameterizable distribution, [5]

proposed to approximate the belief by a parameterizable distribution and the corresponding parameters

are transmitted to the next node. The communication complexity in transmitting belief then is determined

by the number of parameters and their dimensions. To find the next best node in the sequential estimation

process, several objective functions incorporated with information utility measures based on entropy and

the network geometry were proposed in [7]. In [8] a node selection algorithm for target tracking based on

the posterior Cramer-Rao Lower Bound (CRLB) was presented. In [9], a sequential data processing at the

fusion center for estimation of multiple random sources is presented in which the node ordering is based

on the mutual information. However, neither of these considered the noise in inter-node communication

links and the node selection together. In [10], the sequential estimation of a non-random parameter over

noisy correlated channels was considered. However, it did not consider the best ordering of the nodes for

the sequential processing.

In this paper, we consider the distributed sequential estimation of a random static parameter in which

the estimator is updated at each node sequentially based on its own measurement and the noisy corrupted

estimator received from the previous node. In proposed schemes, each node in the estimation process



needs to transmit only two parameters, namely the updated estimator and the corresponding minimum

mean squared error (MMSE). We propose two greedy algorithms to find the ordering of nodes for the

estimation process such that the current node selects the next node as the one which maximizes a certain

reward function. This reward function is assumed to be a combination of the information utility measure

and the communication cost incurred between the current node and the next node. The two schemes are

different from each other in terms of the search space; global search or a local search. We propose to use

mutual information as the information utility measure and investigate the use of MMSE of the estimator

as an alternative when it is difficult to compute the mutual information. Note that, the mutual information

utility measure selects the node that provides the maximum amount of new information regarding the PoI

given the current estimate, as the next processing node. In the global search based scheme, we assume

that any two nodes in the network can communicate with each other and the next node is searched over

all possible unvisited nodes to maximize the relevant reward function. In the scheme based on the local

search, on the other hand, we assume that each node has a set of neighbors that it can communicate at

an affordable communication cost. The candidate next nodes at each node are allowed to be selected only

from these neighbors. The information utility measures of the candidate nodes are computed according

to the current node’s observation and the knowledge of positions of the neighboring sensor nodes and the

target. In the proposed scheme based on local search, each node has to keep track of only its neighbors to

determine which nodes have been participated in the estimation process, while in the scheme with global

search, each node has to keep track of all unvisited nodes in the whole network.

From simulation results we see that the performance of the proposed scheme with local approach

becomes closer to that with the global approach after processing a relatively small number of nodes.

However, it should be noted that, with proposed greedy type node selection schemes a global optimal

MMSE solution is not guaranteed. We further develop an algorithm to find the optimal sequence of nodes

(with best ordering) which yields the global MMSE, based on forward dynamic programming with a

higher computational complexity compared to that with greedy type algorithms. We compare the two

proposed schemes with the global optimal solution obtained via dynamic programming and show that the

performances of both proposed greedy type schemes are getting closer to that with the optimal scheme

with a relatively small number of processing nodes. Moreover, the proposed greedy type node selection

schemes result a significant performance improvement compared to that with the nearest node selection

method in the context of number of nodes required to achieve a desired performance level.

The remainder of this paper is organized as follows: Section II presents the sensor network and

observation models and formulates the distributed sequential estimation problem over noisy communication

channels. In Section III, the sequential MMSE performance is evaluated. The node selection schemes are

discussed in the Section IV. Section V presents the performance results of the noisy sequential estimation

process with the node selection schemes. Final concluding remarks are given in Section VI.



II. SENSOR NETWORK MODEL

Consider a spatially distributed, sensor network consisting of 𝑛 number of nodes. Denote by 𝑠𝑘 the

𝑘-th node, for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛. Note that, when there is no ambiguity, we use 𝑠𝑘 and 𝑘 to denote the 𝑘-th

processing node interchangeably. The network is deployed to estimate the signal amplitude emitted by a

possible target (e.g. a sound source) based on the following observation model at node 𝑠𝑘:

𝑤′
𝑘 =

𝜃

∥x𝑘 − x𝑡∥𝛼/2 + 𝑣′𝑘, for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛, (1)

where 𝜃 is the parameter to be estimated (target amplitude) that is assumed to be Gaussian with zero mean

and variance 𝜎2
𝜃 , x𝑘 and x𝑡 denote the positions of sensor node 𝑠𝑘 and the target, respectively, 𝑣′𝑘 is the

measurement noise that is assumed to be white Gaussian with zero mean and variance 𝜎2
0 and 𝛼 is the path

loss exponent that is determined by the propagation environment. This model can be used, for example,

in applications in which acoustic sensors are used to estimate the amplitude of sound signals emitted by

a target [7], [11]. By rearranging (1), we can re-write the observation at node 𝑠𝑘 in the equivalent form

of

𝑤𝑘 = 𝜃 + 𝑣𝑘, for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛, (2)

where now 𝑣𝑘 is assumed to be independent but not identically distributed. In particular, 𝑣𝑘 is Gaussian

with mean zero and variance 𝜎2
𝑘 ∝ ∥x𝑘 − x𝑡∥𝛼.

The idea is to estimate the parameter 𝜃 sequentially via inter node communication. Let 𝑠1 be the starting

node of the sequential estimation process. The starting node estimates the parameter based on its own

observation, 𝑧1 = 𝑤1 = 𝜃 + 𝑣1. Denote 𝜃1(𝑧1) to be the estimator at node 𝑠1. The sequential estimation

process is continued until either the desired performance level is reached or observations at all nodes

are processed. When 𝑘 = 1, if the MMSE does not meet the desired performance, the estimator 𝜃1 is

transmitted to the next node, selected based on a certain criteria, over a noisy channel. The criteria for

selection of next node is discussed in a later section. For 𝑘 > 1, the 𝑘-th node estimates the parameter 𝜃

based on its own observation and the received estimator from the (𝑘−1)-th node. The effective observation

vector at node 𝑠𝑘 (for 𝑘 > 1) is

zk =

⎡
⎣ 𝑤𝑘

𝑦𝑘

⎤
⎦ =

⎡
⎣ 𝜃 + 𝑣𝑘

𝜃𝑘−1 + 𝑛𝑘

⎤
⎦ , for 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛, (3)

where 𝑦𝑘 is the noise corrupted estimator from node 𝑠𝑘−1. The channel noise 𝑛𝑘, from node 𝑠𝑘−1 to node

𝑠𝑘 is assumed to be independent Gaussian with mean zero and variance 𝜎2
𝑐(𝑘−1,𝑘) ∝ ∥x𝑘 − x𝑘−1∥𝛼′

for

𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛 where 𝛼′ is the path loss index of communication channels between nodes.



III. SEQUENTIAL MMSE PERFORMANCE

For 𝑘 = 1, assuming that the parameter 𝜃 is independent of observation noise 𝑣1, the optimal Minimum

Mean Squared Error (MMSE) estimate at node 𝑠1 based on 𝑧1 is given by

𝜃1(𝑤1) =
𝜎2
𝜃

𝜎2
𝜃 + 𝜎2

1

𝑤1, (4)

and the corresponding MMSE, denoted by 𝑀1, of the estimator (4) is

𝑀1 =
𝜎2
1𝜎

2
𝜃

𝜎2
1 + 𝜎2

𝜃

=

(
1

𝜎2
1

+
1

𝜎2
𝜃

)−1

. (5)

Equivalently, (4) can be expressed as 𝜃1(𝑤1) = 𝑀1

𝜎2
1
𝑤1.

For 𝑘 > 1, the MMSE estimator at node 𝑠𝑘 is computed based on the observation vector (3).

Lemma 1: The MMSE estimator 𝜃𝑘(𝑤𝑘, 𝑦𝑘) and the corresponding MMSE 𝑀𝑘 at node 𝑠𝑘 for 𝑘 > 1

are given by,

𝜃𝑘(𝑤𝑘, 𝑦𝑘) =
𝑀𝑘

𝜎2
𝑘

𝑤𝑘 +
𝑀𝑘(𝜎

2
𝜃 −𝑀𝑘−1)

𝑀𝑘−1(𝜎
2
𝜃 −𝑀𝑘−1) + 𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

𝑦𝑘, (6)

and

𝑀𝑘 =
𝜎2
𝜃

𝜎2
𝜃𝑑

2
𝑘−1,𝑘 + 1

, (7)

respectively, where 𝑑2𝑘−1,𝑘 = 1
𝜎2
𝑘
+

(𝜎2
𝜃−𝑀𝑘−1)

2

𝜎2
𝜃

[
𝑀𝑘−1(𝜎

2
𝜃−𝑀𝑘−1)+𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

] and 𝑀𝑘−1 is the MMSE at the node 𝑠𝑘−1

that is assumed to be available at node 𝑠𝑘.

Proof: (Proof of Lemma 1) Given 𝜃, we can show that 𝑦𝑘 and 𝑤𝑘 are distributed as,

𝑦𝑘∣𝜃 ∼ 𝒩
(

(𝜎2
𝜃 −𝑀𝑘−1)

𝜎2
𝜃

𝜃,
𝑀𝑘−1(𝜎

2
𝜃 −𝑀𝑘−1) + 𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

𝜎2
𝜃

)
(8)

and 𝑤𝑘∣𝜃 ∼ 𝒩 (𝜃, 𝜎2
𝑘), respectively, where we use 𝑋 ∼ 𝒩 (𝜇, 𝜎2) to denote that the random variable 𝑋

is distributed as Gaussian with mean 𝜇 and the variance 𝜎2. Since given 𝜃, 𝑦𝑘 and 𝑤𝑘 are independent,

the effective observation vector at the node 𝑠𝑘, z𝑘 is distributed as, z𝑘∣𝜃 ∼ 𝒩 (𝝁𝑘𝜃,Σ𝑘), where 𝝁𝑘 =[
1

(𝜎2
𝜃−𝑀𝑘−1)

𝜎2
𝜃

]𝑇
and Σ𝑘 =

⎡
⎣ 𝜎2

𝑘 0

0
𝑀𝑘−1(𝜎

2
𝜃−𝑀𝑘−1)+𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

𝜎2
𝜃

⎤
⎦ . From [12] (page 150-151), it can be

shown that the posterior density for 𝜃, 𝑝(𝜃∣z𝑘) is given by,

𝜃∣z𝑘 ∼ 𝒩 (
𝜇𝑘, �̃�

2
𝑘

)
, (9)

where �̃�2
𝑘 =

(
𝑑2𝑘−1,𝑘 + 1

𝜎2
𝜃

)
with 𝑑2𝑘−1,𝑘 = 𝝁𝑇

𝑘Σ
−1
𝑘 𝝁𝑘 = 1

𝜎2
𝑘

+
(𝜎2

𝜃−𝑀𝑘−1)
2

𝜎2
𝜃

[
𝑀𝑘−1(𝜎

2
𝜃−𝑀𝑘−1)+𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

] and 𝜇𝑘 =

�̃�2
𝑘𝝁

𝑇
𝑘Σ

−1
𝑘 z𝑘. Then the MMSE estimator of 𝜃 is given by,

𝜃𝑘(𝑤𝑘, 𝑦𝑘) = 𝔼{𝜃∣z𝑘} = 𝜇𝑘

and the MMSE, 𝑀𝑘 is given by, 𝑀𝑘 = 𝔼{𝑉 𝑎𝑟(𝜃∣z𝑘)} = �̃�2
𝑘. After manipulating, we get MMSE estimator

and the corresponding MMSE as given by (6) and (7).



From (6), it can be seen that the MMSE estimator at node 𝑠𝑘 is determined by its own observation,

information from the node 𝑠𝑘−1 and the channel noise quality. The MMSE at the 𝑠𝑘-th node is determined

only by statistics of observations and channel noise and it is reasonable to assume that they can be made

available at neighbors [10]. Note that, MMSE (7) can be expressed alternatively as,

𝑀𝑘 =
𝜎2
𝜃

1 + 𝑈𝑘 + 𝑇𝑘−1,𝑘
(10)

where 𝑈𝑘 =
𝜎2
𝜃

𝜎2
𝑘

is the received SNR at the node 𝑠𝑘, and 𝑇𝑘−1,𝑘 =
(𝜎2

𝜃−𝑀𝑘−1)
2

𝑀𝑘−1(𝜎
2
𝜃−𝑀𝑘−1)+𝜎2

𝜃𝜎
2
𝑐(𝑘−1,𝑘)

represents the

effect of the estimator at the node 𝑠𝑘−1 and the channel noise between nodes 𝑠𝑘−1 and 𝑠𝑘. As expected,

from (10) it can be seen that by combining the previous node’s estimator always reduces the MMSE at

the node 𝑠𝑘 rather than node 𝑠𝑘 makes the estimator from its own observation only.

Since MMSE 𝑀𝑘 in (7) depends on the channel noise of inter-node communication links, it is interesting

to examine the behavior of 𝑀𝑘 with respect to the corresponding channel quality. We consider following

two extremes: Channel quality is good such that 𝜎2
𝑐(𝑘−1,𝑘) → 0 and channel quality is poor such that

𝜎2
𝑐(𝑘−1,𝑘) → ∞ for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑛. In the first case, we have

lim
𝜎2
𝑐(𝑘−1,𝑘)

→0
𝑀𝑘 =

𝑀𝑘−1

1 +
𝑀𝑘−1

𝜎2
𝑘

, for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑛.

Therefore, it is seen that when 𝜎2
𝑐(𝑘−1,𝑘) → 0, 𝑀𝑘 ≤ 𝑀𝑘−1 for all 𝑘. That is, by sending the node 𝑠𝑘−1’s

estimator to the node 𝑠𝑘 always improves the MMSE performance at node 𝑠𝑘 compared to that with at

node 𝑠𝑘−1. On the other hand, if inter-node communication channel quality is poor, we have

lim
𝜎2
𝑐(𝑘−1,𝑘)

→∞
𝑀𝑘 =

𝜎2
𝜃𝜎

2
𝑘

𝜎2
𝜃 + 𝜎2

𝑘

, for 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛. (11)

That is, when the quality of inter-node communication link is poor, the performance at node 𝑠𝑘 does not

depend on the estimator at node 𝑠𝑘−1, but is entirely determined by the observation quality at node 𝑠𝑘. It

implies that there will be a certain threshold value for channel quality of inter-node communication links

which ensures that 𝑀𝑘 ≤ 𝑀𝑘−1 for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑛. Indeed, it can be shown that if 𝜎2
𝑐(𝑘−1,𝑘) satisfies the

following inequality for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑛

𝜎2
𝑐(𝑘−1,𝑘) ≤

𝑀2
𝑘−1(𝜎

2
𝜃 −𝑀𝑘−1)

𝜎2
𝑘(𝜎

2
𝜃 −𝑀𝑘−1) −𝑀𝑘−1𝜎2

𝜃

, (12)

then 𝑀𝑘 ≤ 𝑀𝑘−1; i.e. sending the estimator at node 𝑠𝑘−1 to node 𝑠𝑘 improves the MMSE performance

at 𝑠𝑘. This is further discussed in Section V.

If we assume that the node observations are i.i.d and the inter-node communication is noiseless such

that 𝜎2
𝑘 = 𝜎2

0 and 𝜎2
𝑐(𝑘−1,𝑘) = 0 for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑛, it can be shown that the MMSE at node 𝑠𝑘 (7) reduces

to 𝑀𝑘 =
𝜎2
𝜃𝜎

2
0

𝜎2
𝑣+𝑘𝜎2

𝜃
, which is a monotonically decreasing function of 𝑘. It is also interesting to see that in

this case the minimum number of nodes 𝑛𝑚𝑖𝑛 required to achieve a required MMSE performance level 𝜖

is given by, 𝑛𝑚𝑖𝑛 = 𝜎2
0

(
1
𝜖
− 1

𝜎2
𝜃

)
.



In the case of i.i.d. observation noise such that 𝜎2
𝑘 = 𝜎2

0 for all 𝑘, Fig. 1 shows the MMSE performance

of the sequential estimation process with different channel noise qualities on inter-node communication

links. In Fig. 1, we have let 𝜎2
0 = 1 and 𝜎2

𝜃 = 1. In the special case when channel noise is also i.i.d. such

that 𝜎2
𝑐(𝑘−1,𝑘) = 𝜎2

𝑐 for all 𝑘, from Fig. 1 it can be seen that 𝑀𝑘 ≤ 𝑀𝑘−1 holds for all 𝑘. Moreover, as

expected from (11) the MMSE performance converges to 0.5 as 𝜎2
𝑐 increases. It is expected that when

both observations and channel noise are i.i.d., the performance of the MMSE estimator is independent of

the order of the processing nodes. Figure 1 also shows the performance of the MMSE estimator when

channel noise is not identical (still the observation noise is i.i.d.). We have considered two cases: In the

first, 𝜎2
𝑐(𝑘−1,𝑘)’s are drawn randomly from a uniform distribution in [0, 1] without any order. In the second

case, these random 𝜎2
𝑐(𝑘−1,𝑘)’s are arranged in an ascending order. From Fig. 1 it can be seen that whenever

the condition (12) is satisfied at node 𝑘, 𝑀𝑘 ≤ 𝑀𝑘−1. In this case, to find the node where the minimum

MMSE is achieved, the process should be continued for all nodes. On the other hand, in case 2, where

nodes are selected with minimum distance from the current node, we observe that after a certain node

the MMSE starts to monotonically increase. Therefore, it is enough to continue the sequential estimation

process only until this specific node, thereby, saving the network power.

Figure 2 shows the MMSE performance of the sequential distributed estimation process with non-

identical observations and channel noise. Dashed line corresponds to channel noise variance drawn from

a uniform distribution without any order while the solid line corresponds to channel noise variance in

ascending order with 𝑘. In both cases, the observation noise variances are drawn from a uniform distribution

on [0, 1]. As can be observed from Fig. 2, when observations are not i.i.d., just selecting the nearest node

as the next node does not always improve the performance. Therefore, when observations are not identical,

it is required to have an information driven approach to select the nodes with higher information gain as

well as lower communication cost.

IV. SENSOR NODE SELECTION

As can be seen from Fig. 2, when observation noise and the channel noise are both non identical,

(which is the most realistic scenario) it is inefficient to continue the sequential estimation process without

considering the node ordering or selection. This motivates us to find the optimal distinct ordered sequence

of nodes which contains the minimum number of nodes required to reach a desired performance level. In

the following we propose greedy type sequential algorithms to find the best ordering of nodes to achieve a

desired performance level where each node in the estimation process determines its next best node based

on a certain reward function. The reward function is considered to be a combination of an information

utility measure, which reflects the information gain that can be achieved by selecting a node and the

communication cost which accounts for the communication burden including bandwidth, latency, when

communicating with the selected node.



A. Distributed node selection: global approach

In the following we determine the best ordering of nodes sequentially that would complete the estimation

process by reaching at the desired performance level with a minimum number of processing nodes as

a trade-off between the information gain and the communication cost. Let 𝑆𝑛 = {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛} be the

set of nodes in the network. Let 𝒱𝑗 denote the set of nodes that have been participated in the sequential

estimation process up to step 𝑗. Let 𝑠𝑗 ∈ 𝑆𝑛 be the selected processing node at step 𝑗. Then the next node

𝑠𝑗+1 at step (𝑗 + 1) is chosen as,

𝑠𝑗+1 = argmax
𝑠𝑘∈𝒱𝑐

𝑗

𝑅(𝑠𝑗, 𝑠𝑘) (13)

where 𝒱𝑐
𝑗 denotes the set complement of 𝒱𝑗 with respect to 𝑆𝑛 and the objective function 𝑅(𝑠𝑗 , 𝑠𝑘) is

defined as

𝑅(𝑠𝑗 , 𝑠𝑘) = 𝛽𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘) + (1 − 𝛽)𝑅𝑐(𝑠𝑗, 𝑠𝑘). (14)

The first term in (14), 𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘), represents a measure which reflects the information gain achieved

by selecting node 𝑠𝑘 when the current node is 𝑠𝑗 and the second term in (14), 𝑅𝑐, accounts for the cost

of communication between node 𝑠𝑗 and 𝑠𝑘 including bandwidth and latency. 𝛽 ∈ [0, 1] is a trade-off

parameter that balances the contributions from the two terms in (14) and 𝑦𝑗,𝑘 = 𝜃𝑗 + 𝑛𝑗,𝑘 is the received

signal at node 𝑠𝑘 if it is chosen to be the next node when the current node is 𝑠𝑗 and 𝑛𝑗,𝑘 is the channel

noise between nodes 𝑠𝑗 and 𝑠𝑘. The choice of 𝛽 will depend on the required information gain and the

tolerable communications cost. Note that when 𝛽 = 1, the next node is selected as the one which provides

the best information gain and which will provide a faster reduction of the estimation uncertainty. When

𝛽 = 0, the next node is selected as the one which minimizes the communication cost while the information

gain is not taken into account. Note that in this scheme, when the current processing node is 𝑠𝑗 , the next

best node is selected from the set of all unvisited nodes in the network up to step 𝑗.

There are several possible information utility measures that can be used to quantify the information

gain provided by a sensor measurement. For example, [7], [5] provided a detailed description of entropy-

and geometry-based information utility measures. In this paper, we consider two measures for information

utility: (1). the conditional mutual information 𝐼(𝜃;𝑤𝑗+1∣𝑦𝑗,𝑗+1 = 𝜃𝑗 + 𝑛𝑗,𝑗+1) which is considered to be

the measure that provides the greatest amount of new information by selecting node 𝑠𝑗+1 when the current

estimate is 𝜃𝑗 (2). the negative of MMSE 𝑀𝑗+1∣𝑗 at the 𝑠𝑗+1-th node, when the current node is 𝑠𝑗 , for

𝑠𝑗, 𝑠𝑗+1 ∈ 𝒱 . We explore the use of (-)MMSE as an alternate information measure if its computation

is easier. In the following we find a relationship between the conditional mutual information and the

sequential MMSE of our sequential estimation process.



MMSE and the conditional mutual information: The conditional mutual information between 𝜃 and 𝑤 𝑘

when selecting node 𝑠𝑘 as the next node given that the current node is 𝑠𝑗 , 𝐼(𝜃;𝑤𝑘∣𝑦𝑗,𝑘 = 𝜃𝑗 + 𝑛𝑗,𝑘) is

given by,

𝐼(𝜃;𝑤𝑘∣𝑦𝑗,𝑘 = 𝜃𝑗 + 𝑛𝑗,𝑘) = ℎ(𝜃∣𝜃𝑗 + 𝑛𝑗,𝑘) − ℎ(𝜃∣𝜃𝑗 + 𝑛𝑗,𝑘, 𝑤𝑘) (15)

where ℎ(.) denotes the differential entropy [13]. Using (9), the second term in (15) can be shown as,

ℎ(𝜃∣𝜃𝑗 + 𝑛𝑗,𝑘, 𝑤𝑘) =
1

2
ln 2𝜋𝑒𝑀𝑗,𝑘, 𝑛𝑎𝑡𝑠 (16)

where 𝑀𝑗,𝑘 is the MMSE at node 𝑠𝑘 when the current node is 𝑠𝑗 . From (8) and using results in [12]

(pages 150-151), it can be shown that 𝜃∣𝑦𝑗,𝑘 ∼ 𝒩
(

𝑀𝑗,𝑘(𝜎
2
𝜃−𝑀𝑗)

𝑀𝑗(𝜎2
𝜃−𝑀𝑗)+𝜎2

𝜃𝜎
2
𝑐(𝑗,𝑘)

𝑦𝑗,𝑘,
𝑀𝑗,𝑘𝜎

2
𝑘

𝜎2
𝑘−𝑀𝑗,𝑘

)
. Then the first term

in (15) is given by,

ℎ(𝜃∣𝜃𝑗 + 𝑛𝑗,𝑘) =
1

2
ln 2𝜋𝑒

𝑀𝑗,𝑘𝜎
2
𝑘

𝜎2
𝑘 −𝑀𝑗,𝑘

𝑛𝑎𝑡𝑠. (17)

From (16) and (17), we get the condition mutual information as,

𝐼(𝜃;𝑤𝑘∣𝑦𝑗,𝑘) =
1

2
ln

[
𝜎2
𝑘

𝜎2
𝑘 −𝑀𝑗,𝑘

]
𝑛𝑎𝑡𝑠. (18)

From (7), it can be shown that 𝑀𝑗,𝑘 ≤ 𝜎2
𝑘 for all 𝑠𝑗, 𝑠𝑘 ∈ 𝒮𝑛 so that (18) is valid for all 𝑠𝑗 , 𝑠𝑘 ∈ 𝒮𝑛. We

use natural logarithm for mutual information and differential entropy measures such that they are in nats

and we omit writing the unit when there is no ambiguity.

In [14], authors present a relationship between input-output mutual information and the MMSE achiev-

able by optimal estimation of the input given the output through an additive Gaussian noise channel for

different variations (such as discrete time, continues time, scalar and vector Gaussian channel models).

Similarly, it can be shown that the following relationship holds between the sequential MMSE at the node

𝑠𝑘 when the current node is 𝑠𝑗 , 𝑀𝑗,𝑘 and the conditional mutual information 𝐼(𝜃;𝑤𝑘∣𝑦𝑗,𝑘):
∂𝐼𝑗,𝑘(𝑈𝑘, 𝑇𝑗,𝑘)

∂𝑈𝑘
=

𝑀𝑗,𝑘

2𝜎2
𝜃

(19)

where 𝑈𝑘 =
𝜎2
𝜃

𝜎2
𝑘

and 𝑇𝑗,𝑘 =
(𝜎2

𝜃−𝑀𝑗)
2

𝑀𝑗(𝜎2
𝜃−𝑀𝑗)+𝜎2

𝜃𝜎
2
𝑐(𝑗,𝑘)

as defined before, and we write 𝐼𝑗,𝑘 to represent 𝐼(𝜃;𝑤𝑘∣𝑦𝑗,𝑘).
We consider both measures MMSE and the mutual information as information utility measures in the

reward function (14). When mutual information is used as the information utility measure, the first term

𝑅𝐼(.) in (14) is given by,

𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘) =
1

2
log

[
𝜎2
𝑘

𝜎2
𝑘 −𝑀𝑗,𝑘

]
, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛. (20)

When MMSE is used as the information utility measure, we have

𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘) = −𝑀𝑗,𝑘 = − 𝜎2
𝜃

𝜎2
𝜃𝑑

2
𝑗,𝑘 + 1

, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛 (21)



where 𝑑2𝑗,𝑘 = 1
𝜎2
𝑘
+

(𝜎2
𝜃−𝑀𝑗)2

𝜎2
𝜃

[
𝑀𝑗(𝜎2

𝜃−𝑀𝑗)+𝜎2
𝜃𝜎

2
𝑐(𝑗,𝑘)

] . The communication cost function between current node 𝑠𝑗 and

the possible next node 𝑠𝑘 is taken to be 𝑅𝑐(𝑠𝑗 , 𝑠𝑘) = 1
𝑑𝑚𝑎𝑥

(x𝑗−x𝑘)
𝑇 (x𝑗−x𝑘) where 𝑑𝑚𝑎𝑥 is the maximum

distance between any two nodes in the network. Then the composite objective function (14) can be written

as,

𝑅(𝑠𝑗 , 𝑠𝑘) = 𝛽𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘) − (1 − 𝛽)

𝑑𝑚𝑎𝑥
(x𝑗 − x𝑘)

𝑇 (x𝑗 − x𝑘), (22)

where 𝑅𝐼(𝜃, 𝑤𝑘, 𝑦𝑗,𝑘) is as given in (20) or (21), for the mutual information or the MMSE, respectively. To

find the next best processing node, the node 𝑠𝑗 has to compute the reward function (22) for all candidate

nodes in 𝒱𝑐
𝑗 . At the worst case, node 𝑠𝑗 has to compute the reward function for 𝑛 − 1 candidate nodes.

On the other hand, estimation process may consist of 𝑛 nodes at the worst case, thus resulting in a worst

case computational complexity of order 𝑂(𝑛2) for the whole network. Note that in this scheme, in general

the computational complexity is much more reduced (compared to the worst case complexity) since as

the process continues, the number of nodes to be queried by the current processing node is decreased.

However, in this scheme each node 𝑠𝑗 has to keep track of nodes that have already been participated in the

estimation process up to step 𝑗, which requires a certain communication among nodes. Due to these factors,

implementing this scheme distributively might be difficult. Thus, in the following, we propose a distributed

algorithm for sensor node selection with reduced computational and communication complexities in which

each node only needs to keep track of its neighboring nodes to perform the sequential estimation. As we

will see with numerical examples, the performance of the proposed scheme based on local approach (in

next subsection) shows closer performance to that with the global approach discussed in this subsection,

after processing a small number of nodes.

B. Distributed node selection scheme: local approach

Assume that 𝑘-th node in the network has a set of neighbors 𝒩𝑘 for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛 where the neighbors

are determined based on a node’s effective communication range. We assume that each node has the same

effective communication range, 𝑟𝑐, so that the criteria for selection of neighbors is the same for all nodes.

In other words, each node 𝑠𝑘 selects its neighbors as the nodes located inside a disk with an area of 𝜋𝑟2𝑐

centered at location x𝑘 of node 𝑠𝑘, for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Moreover, if node 𝑠𝑘 is a neighbor of node 𝑠𝑖, for

𝑖 ∕= 𝑘, then node 𝑠𝑖 is also a neighbor of node 𝑠𝑘. Let 𝑠𝑗 be the current processing node at step 𝑗. The

node 𝑠𝑗 selects the next node based on the objective function (13) from the set of candidate sensor nodes

𝒞𝑠𝑗
𝑗 , which is the set of its neighbor nodes who have have not been participated in the estimation process

previously. Note that each node 𝑠𝑗 ∈ 𝒮𝑛 updates its set of candidate nodes 𝒞𝑠𝑗
𝑗 based on the information

received from its neighbors. Thus in this scheme, each node has to communicate and keep track of the

nodes participated in the estimation process only within its neighborhood. According to this approach,



the next node 𝑠𝑗+1 at step (𝑗 + 1) is chosen as,

𝑠𝑗+1 = argmax
𝑠𝑘∈𝒞

𝑠𝑗
𝑗

𝑅(𝑠𝑗 , 𝑠𝑘), (23)

where 𝑅(𝑠𝑗, 𝑠𝑘) is as given by (22). To find the next best node according to (23), the node 𝑠𝑗 has to

compute the reward function (22) only for candidate nodes in the set 𝒞𝑠𝑗
𝑗 . Denote 𝑚 = max

𝑘∈{1,2,⋅⋅⋅ ,𝑛}
{∣𝒩𝑘∣}

to be the maximum size of the set of neighbors for any node 𝑠𝑘 in the network where 𝑚 ≤ 𝑛 − 1.

Each node 𝑠𝑗 in the estimation process has to compute the reward function only for a maximum of 𝑚

nodes. Since there is a maximum of 𝑛 nodes, this leads to a worst case computational complexity of order

𝑂(𝑚𝑛) for the whole network. Since, in this scheme a node has to keep track of only its neighbors, the

communication complexity is reduced compared to the scheme presented in subsection IV-A whenever

𝑚 ≪ 𝑛 − 1. In distributed sensor networks, network architectures where nodes only communicate with

their neighbors to make local estimators are desirable due to network resource constraints. For example,

in [15], each mobile node communicates with its one-hop neighbors at a given time to make a local

estimate of the target state where the one-hop neighborhood at each node is dynamically changing. The

proposed distributed sequential estimation process based on local search is summarized in Algorithm 1

and described in detail in Fig. 4.

Algorithm 1 Sequential estimation process at step 𝑗 at node 𝑠𝑗
while (𝑗 ≥)1 do

Compute estimate 𝜃𝑗 from (6)

Compute MMSE 𝑀𝑗 from (7)

if (𝑀𝑗 < Desired performance or 𝒞𝑠𝑗
𝑗 = ∅) then

1. Make the final estimator

2. Go to sleep mode

else

1. Select next node from 𝒞𝑠𝑗
𝑗 according to (23)

2. Send the current estimate to the node selected

3. Broadcast signal to nodes in 𝒞𝑠𝑗
𝑗 implying node 𝑠𝑗 has been participated in estimation process

4. Go to sleep mode

end if

end while

Note that since node 𝑠𝑗 selects the next node from the candidate set 𝒞𝑠𝑗
𝑗 , node 𝑠𝑗 only needs to

perform ∣𝒞𝑠𝑗
𝑗 ∣ number of computations. Also, node 𝑠𝑗 needs to keep track of the nodes which are not

participated in the estimation process in its neighborhood only. Once the final estimator is made, a signal

is broadcast implying the final estimator is made. Then all unprocessed nodes go to sleep mode, until the



next event occurs. Also it is to be noted that, when the effective communication range 𝑟𝑐 is sufficiently

large (𝑟𝑐 → ∞), this scheme based on local approach converges to the scheme described in subsection

IV-A. Thus the scheme described in subsection IV-A can be considered as a special case of the proposed

scheme in this subsection when 𝑟𝑐 → ∞.

Updating candidate set at the 𝑘-th processing node: Denote 𝒞 𝑠𝑘
𝑗 to be the candidate set of node 𝑠𝑘 at

the step 𝑗. Algorithm for updating the candidate set at node 𝑠𝑘 is explained in Algorithm 2.

Algorithm 2 Updating candidate set at 𝑘-th node
NOTATION

𝑠𝑘: 𝑘-th node, 𝑠𝑗 : processing node at step 𝑗, 𝒞𝑠𝑗
𝑗 : candidate set of the processing node 𝑠𝑗 at step 𝑗, 𝒞𝑠𝑘

𝑗 :

candidate set of the node 𝑠𝑘 at step 𝑗

INITIALIZATION

𝒞𝑠𝑘
0 = 𝒩𝑘

UPDATING

while (𝑗 ≥ 1) do

𝒞𝑠𝑗
𝑗 = 𝒞𝑠𝑗

𝑗−1

if 𝑠𝑘 = 𝑠𝑗 (i.e. node 𝑠𝑘 becomes the current processing node at step 𝑗) then

𝒞𝑠𝑘
𝑗 = 𝒞𝑠𝑗

𝑗

else {𝑠𝑘 ∈ 𝒞𝑠𝑗
𝑗 (i.e. node 𝑠𝑘 belongs to the candidate set of the current processing node at step 𝑗)}

𝒞𝑠𝑘
𝑗 = 𝒞𝑠𝑘

𝑗−1 ∖ 𝑠𝑗
else

𝒞𝑠𝑘
𝑗 = 𝒞𝑠𝑘

𝑗−1

end if

end while

Note that, the node 𝑠𝑗 is not a neighboring node for any node in the network except for those that are

in 𝒩𝑗 itself. Thus it is not necessary for nodes that are not in 𝒩𝑗 to keep track of node 𝑠𝑗 . However,

this process can be terminated when the current node does not have any candidate neighboring nodes (i.e.

𝒞𝑠𝑗
𝑗 = ∅), where ∅ is the null set, irrespective of whether the desired performance level is reached or not,

eventhough there might be remaining nodes in other neighborhoods of the network. However, as observed

from simulations, this does not seem to cause a significant performance loss. To further illustrate this

scenario consider the sensor network as shown in Fig. 5. Assume that the process is started at the node

𝑠1. The corresponding node 𝑠𝑗 at step 𝑗 and the perimeter of the disk centered at the location of 𝑠𝑗 are

shown by the same color. The neighborhood size of the node 𝑠1, ∣𝒩𝑠1∣ = 7. According to the algorithm

based on local search, assume that the consecutive 7 nodes followed by node 𝑠1 in the node sequence are

happened to be the neighbors of the node 𝑠1, as shown in the Fig. 5. If the node 𝑠8 (the last node of the



8-length node sequence) and the node 𝑠1 have the same neighborhood, it can be seen that the process is

terminated at the node 𝑠8, since 𝐶
𝑠𝑗
𝑗 = ∅ for 𝑗 = 8 although there are unprocessed nodes in the network.

Denote �̄� = min
𝑘∈{1,2,⋅⋅⋅ ,𝑛}

{∣𝒩𝑘∣} to be the minimum size of the set of neighbors for any node 𝑠𝑘 in the

network where �̄� > 0. It can be seen that, this phenomenon occurs after, �̄� + 1 number of nodes are

processed, at the worst case. Note that for the worst case scenario to be occurred, the following factors

should be satisfied: (i). ∣𝒩𝑠1∣ = �̄� and (ii). 𝒩𝑠�̄�+1 ⊆ 𝒩𝑠1 . Moreover, with the node selection algorithm

presented in this subsection, this worst case scenario will most likely happen to occur only if the starting

node locates closer to the target position. Otherwise, according to (23) nodes located far from the node

𝑠1 will be queried as the process continues allowing more nodes (≫ �̄�) are participated in the decision

process. Thus, at the worst case, eventhough there is possibility for the process to be terminated after

processing �̄� + 1 number of nodes, since those node are located closer to the target position, they will

carry rich information on the PoI and will result a considerable performance (compared to processing all

allowable nodes) with a relatively small number of nodes. Thus as also observed from simulations, this

phenomenon does not seem to cause a significant performance loss even when varying 𝛽 and 𝑟𝑐.

In both schemes discussed above in subsections IV-A and IV-B, a global minimum is not guaranteed in

general since in both schemes current node selects the next best node from only all unvisited nodes in the

network (in scheme discussed in IV-A), or in neighborhood (in scheme discussed in IV-B), sequentially.

In subsection IV-C, a dynamic programming approach is presented to find the 𝑘-length optimal node

sequence which yields the global minimum, with a higher computational complexity compared to that

with the greedy type algorithms. We observe (see Section V) that when there is no channel noise, the global

scheme discussed in subsection IV-A coincides with the optimal scheme that yields the global minimum

(computed based on dynamic programming as in subsection IV-C) and the local scheme proposed in

subsection IV-B performs close to the optimal scheme after processing relatively small number of nodes.

Even when there is channel noise, we will see that both schemes perform fairly close to the optimal scheme

after processing relatively a small number of nodes. We refer to the node selection scheme presented in

subsection IV-A with global search as the scheme 1 and the proposed scheme with local search presented

in subsection IV-B as the scheme 2, in the rest of the paper.

C. Optimal node sequence via dynamic programming

Denote 𝑠𝑘 to be the 𝑘-th processing node, for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 and 𝑠1 to be the initial node in the

sequential estimation process, as before. Also let 𝒮𝑛 ≡ {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛} be the set containing all nodes in

the network. Let 𝜖 be the desired MMSE performance level and 𝒮𝑘 = {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑘} ⊆ 𝒮𝑛 be a 𝑘-length

sequence of distinct nodes with 𝑠1 = 𝑠1. Then the optimal node ordering problem can be formulated as,

min ∣𝒮𝑘∣
such that 𝑀𝑘 ≤ 𝜖, (24)



where 𝑀𝑘 is as defined in (7) and the minimization is over all possible distinct node sequences of length

𝑘 (including ordering of the nodes), for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛, starting at node 𝑠1. Assume that the starting node

𝑠1 is able to access the information regarding the observation noise variance and position information at

each node without any additional cost. To obtain the optimal 𝑘-length distinct sequence which will yield

the minimum MMSE at 𝑘-th node, one has to consider (𝑛−1)!
((𝑛−1)−(𝑘−1))!

= (𝑛− 1)...(𝑛− 𝑘) possible distinct

sequences for each 𝑘 and compute the minimum over all these sequences. At the worst case, if 𝑘 = 𝑛,

this results computing
∑𝑛

𝑘=1(𝑛 − 1)...(𝑛− 𝑘) distinct sequences which will cause a high computational

burden. In the following we present an algorithm to compute the optimal node sequence which satisfies

(24) based on forward dynamic programming with the best case complexity of 𝑂(𝑛3).

The basic idea of the proposed algorithm is to compute the optimal 𝑘-length distinct node sequence

denoted by 𝒮𝑗
𝑘 , which gives the minimum MMSE when the 𝑘-th node is 𝑠𝑗 , for 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑛. Then the

best 𝑘-length node sequence which results the minimum MMSE (over all possible sequences) at the 𝑘-th

node is given by, 𝒮𝑘 = argmin
𝒮𝑗
𝑘,𝑗=2,⋅⋅⋅ ,𝑛

{𝑀𝑘(𝒮𝑗
𝑘)}, where 𝑀𝑘(𝒮𝑗

𝑘) is the MMSE at the 𝑘-th node of the sequential

estimation process when the node sequence is 𝒮𝑗
𝑘. The process is continued over 𝑘, if the condition in

(24) is not satisfied. To compute 𝒮𝑗
𝑘 recursively for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑛, we propose the following

procedure based on the forward dynamic programming.

Let 𝒟𝑘 be the state space for each 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛, where 𝒟𝑘 ≡ {𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛}. We construct the trellis

at each 𝑘 for 𝑘 = 2, ⋅ ⋅ ⋅ , 𝑛, by concatenating of 𝑛 − 1 copies of the state space followed by a dummy

terminating node 𝑠𝑡 where 𝒟𝑛+1 ≡ {𝑠𝑡} as shown in Fig. 3. At each 𝑘, branch connections and the cost

of transition from node 𝑠𝑖 ∈ 𝒟𝑘, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝑛 to node 𝑠𝑗 ∈ 𝒟𝑘+1, 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑛 are performed as 𝑘 grows

and explained in the following.

To explain the state transitions and the metric assignments of the trellis in Fig. 3, we introduce following

notations. Denote 𝒮 𝑗
𝑘 be a 𝑘-length sequence of distinct nodes in which the starting node is 𝑠1 and the 𝑘-th

node is 𝑠𝑗 . Also denote 𝐽𝑘(𝒮𝑗
𝑘), to be the MMSE (or the cost in the context of dynamic programming)

incurred at the 𝑘-th node when the 𝑘-length node sequence terminating at node 𝑠𝑗 is 𝒮𝑗
𝑘 for 𝑠𝑗 ∈ 𝒟𝑘.

When 𝑘 = 1, since the process is started at node 𝑠1, let 𝐽1(𝑠1) be MMSE at node 𝑠1 as given by (5).

For 𝑘 > 2, depending on the sequence, the quantity 𝐽𝑘(𝒮𝑗
𝑘) can be computed from (7) after substituting

parameters with appropriate notations.

Computing 𝐽𝑘(𝒮𝑗
𝑘) via dynamic programming:

∙ Transition from 𝑘 = 1 to 𝑘 = 2

By 𝑘 = 2, we need to find the optimal 2-length sequence starting from 𝑠1 which will result the minimum

MMSE. We assign the metric 𝑓(𝐽1(𝑠1), 𝜎
2
𝑠𝑗
, 𝜎2

𝑐(𝑠1,𝑠𝑗)
) =

𝜎2
𝜃

𝜎2
𝜃𝑑

2
𝑠1,𝑠𝑗

+1
with 𝑑2𝑠1,𝑠𝑗 = 1

𝜎2
𝑠𝑗

+
(𝜎2

𝜃−𝐽1(𝑠1))2

𝜎2
𝜃

[
𝐽1(𝑠1)(𝜎2

𝜃−𝐽1(𝑠1))+𝜎2
𝜃𝜎

2
𝑐(𝑠1,𝑠𝑗 )

]

for the arc connecting node 𝑠1 to node 𝑠𝑗 ∈ 𝒟2. Note that for clarity we use 𝜎2
𝑠𝑗

and 𝜎2
𝑐(𝑠𝑖,𝑠𝑗)

to denote

observation noise variance at node 𝑠𝑗 and the variance of the channel noise between nodes 𝑠𝑖 and 𝑠𝑗 for



𝑠𝑖 ∕= 𝑠𝑗 , respectively. Then the minimum MMSE at the 2-nd node when the 2-nd node of the 2-length

distinct sequence is 𝑠𝑗 , is,

𝐽2(𝒮𝑗
2) = 𝑓(𝐽1(𝑠1), 𝜎

2
𝑠𝑗
, 𝜎2

𝑐(𝑠1,𝑠𝑗)
). (25)

The optimal 2-length node sequence (over all 2-length node) is given by, 𝒮2 = min
𝑠𝑗∈𝒟2

{𝐽2(𝒮𝑗
2)} and the

corresponding minimum MMSE is 𝑀2(𝒮2). If 𝑀2(𝒮2) does not satisfy the condition in (24), the processes

is continued over 𝑘.

∙ Transition from 𝑘 = 2 to 𝑘 = 3

For transition of stages at 𝑘 = 2 to 𝑘 = 3, node 𝑠𝑖 ∈ 𝒟2 is connected to node 𝑠𝑗 ∈ 𝒟3 for 𝑠𝑖 ∕=
𝑠𝑗 and for 𝑖, 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑛 with the metric 𝑓(𝐽2(𝒮𝑗

2), 𝜎
2
𝑠𝑗
, 𝜎2

𝑐(𝑠𝑖,𝑠𝑗)
) =

𝜎2
𝜃

𝜎2
𝜃𝑑

2
𝑠𝑖,𝑠𝑗

+1
with 𝑑2𝑠𝑖,𝑠𝑗 = 1

𝜎2
𝑠𝑗

+

(𝜎2
𝜃−𝐽2(𝒮𝑖

2))
2

𝜎2
𝜃

[
𝐽2(𝒮𝑖

2)(𝜎
2
𝜃−𝐽2(𝒮𝑖

2))+𝜎2
𝜃𝜎

2
𝑐(𝑠𝑖,𝑠𝑗 )

] . Note that, the node 𝑠𝑖 ∈ 𝒟2 is not connected to the node 𝑠𝑗 ∈ 𝒟3 if

𝑠𝑖 = 𝑠𝑗 , since no node is visited more than once. Then the minimum MMSE at the 3-rd node when the

3-rd node of the 3-length distinct sequence is 𝑠𝑗 , is,

𝐽3(𝒮𝑗
3) = min

𝑠𝑖∈{𝒟𝑘∖𝑠𝑗}
𝑓(𝐽2(𝒮𝑖

2), 𝜎
2
𝑠𝑗
, 𝜎2

𝑐(𝑠𝑖,𝑠𝑗)
), (26)

where we use the notation 𝒟𝑘 ∖ 𝑠𝑗 to represent all the node elements of 𝒟𝑘 except node 𝑠𝑗 . The optimal

3-length node sequence (over all 3-length node) is given by, 𝒮3 = min
𝑠𝑗∈𝒟3

{𝐽3(𝒮𝑗
3)}.

∙ Transition from 𝑘 to 𝑘 + 1 for 𝑘 ≥ 3

When connecting arcs and assigning costs for transitions from 𝑘 to 𝑘+1 for 𝑘 ≥ 3, additional constraints

are to be considered. If 𝐽𝑘(𝒮𝑗
𝑘) is computed at 𝑘 ≥ 3 and the condition (24) is not satisfied, the process

should be continued to 𝑘 + 1. When connecting branches and assigning costs from node 𝑠𝑖 ∈ 𝒟𝑘 to

𝑠𝑗 ∈ 𝒟𝑘+1, it should be noted that, any node is processed only once in the sequential estimation process.

For 𝑘 ≥ 3, the optimal sequences 𝒮𝑗
𝑘 computed for each 𝑠𝑗 ∈ 𝒟𝑘, contain more than 2 distinct nodes

except 𝑠1. Thus when 𝑠𝑖 ∈ 𝒟𝑘 is connected to 𝑠𝑗 ∈ 𝒟𝑘+1 for 𝑠𝑖 ∕= 𝑠𝑗 and 𝑘 ≥ 3, the associated cost can

not be computed based on 𝐽𝑘(𝒮𝑖
𝑘) if 𝑠𝑗 ∈ 𝒮𝑖

𝑘. When connecting node 𝑠𝑖 ∈ 𝒟𝑘 to node 𝑠𝑗 ∈ 𝒟𝑘+1 for

𝑘 ≥ 3, we follow steps given below:

∙ if 𝑠𝑖 = 𝑠𝑗 for 𝑠𝑖 ∈ 𝒟𝑘, 𝑠𝑗 ∈ 𝒟𝑘+1, no arc is connected between 𝑠𝑖 and 𝑠𝑗 .

∙ if 𝑠𝑖 ∕= 𝑠𝑗 , for 𝑠𝑖 ∈ 𝒟𝑘, 𝑠𝑗 ∈ 𝒟𝑘+1, arcs are connected from 𝑠𝑖 ∈ 𝒟𝑘 𝑠𝑗 ∈ 𝒟𝑘+1. Computing of the

corresponding metrics associated with the transitions are done as follows. Since no node is visited

more than once, it requires to check whether 𝑠𝑗 ∈ 𝒮𝑖
𝑘: that is check whether the node 𝑠𝑗 has already

been participated in the optimal sequence 𝒮𝑖
𝑘. If so, find the 𝑘-length optimal sequence terminating at

node 𝑠𝑖 ∈ 𝒟𝑘 in which the node 𝑠𝑗 has not been participated. Denote 𝐽𝑘(𝒮𝑖
𝑘 ∖ 𝑠𝑗) to be the minimum

MMSE resulted at node 𝑠𝑖 ∈ 𝒟𝑘 without visiting node 𝑠𝑗 at any stage 𝑙 < 𝑘. If 𝑠𝑗 ∈ 𝒮𝑖
𝑘, 𝐽𝑘(𝒮𝑖

𝑘 ∖ 𝑠𝑗)
should be computed going backward in the trellis from the current stage 𝑘, which requires some



additional computation. If 𝑠𝑗 /∈ 𝒮𝑖
𝑘, then 𝐽𝑘(𝒮𝑖

𝑘 ∖ 𝑠𝑗) = 𝐽𝑘(𝒮𝑖
𝑘) and does not require any additional

computation. The metric corresponding to the transition from node 𝑠𝑖 ∈ 𝒟𝑘 to 𝑠𝑗 ∈ 𝒟𝑘+1 is given

by 𝑓(𝐽𝑘(𝒮𝑖
𝑘 ∖ 𝑠𝑗), 𝜎2

𝑠𝑗
, 𝜎2

𝑐(𝑠𝑖,𝑠𝑗)
) =

𝜎2
𝜃

𝜎2
𝜃𝑑

2
𝑠𝑖,𝑠𝑗

+1
with 𝑑2𝑠𝑖,𝑠𝑗 = 1

𝜎2
𝑠𝑗

+
(𝜎2

𝜃−𝐽𝑘(𝒮𝑖
𝑘∖𝑠𝑗))2

𝜎2
𝜃

[
𝐽𝑘(𝒮𝑖

𝑘∖𝑠𝑗)(𝜎2
𝜃−𝐽𝑘(𝒮𝑖

𝑘∖𝑠𝑗))+𝜎2
𝜃𝜎

2
𝑐(𝑠𝑖,𝑠𝑗)

] .

Then the forward DP recursion is given by,

𝐽𝑘+1(𝒮𝑗
𝑘+1) = min

𝑠𝑖∈𝒟𝑘∖𝑠𝑗
{𝑓(𝐽𝑘(𝒮𝑖

𝑘 ∖ 𝑠𝑗), 𝜎2
𝑠𝑗
, 𝜎2

𝑐(𝑠𝑖,𝑠𝑗)
)}, 𝑠𝑗 ∈ 𝒟𝑘, 𝑘 = 3, ⋅ ⋅ ⋅ , 𝑛+ 1, (27)

and the optimal (𝑘+1)-length distinct node sequence which results the global MMSE at the (𝑘+1)-th

node is given by, 𝒮𝑘+1 = min
𝑠𝑗∈𝒟𝑘+1

{𝐽𝑘+1(𝒮𝑗
𝑘+1)}.

From (25), (26) and (27), we observe that the objective function of the dynamic program is not additive

but is a known function which can be computed recursively as the process continues. It is also worth

mentioning that, under this formulation, branch connections from stage 𝑘 to 𝑘 + 1 are performed by

taking the optimal node sequences up to stage 𝑘 corresponding to 𝐽𝑘(𝒮𝑗
𝑘), 𝑠𝑗 ∈ 𝒟𝑘 into account. Thus,

the branch connection and finding the optimal node sequence should be performed simultaneously as the

process continues (𝑘 increases).

However, with a large network size 𝑛, the above dynamic programming approach would be computa-

tionally complex. If the optimization were to be performed at the initial node, it also requires additional

costs (corresponding to latency and bandwidth) for communication. It is noted that both distributed

schemes proposed in subsections IV-A and IV-B can be implemented with reduced computational and

communication complexities compared to that with the optimal scheme. We also show that the algorithms

discussed in subsections IV-A and IV-B can lead to the exact or close to exact results to the optimal

scheme (computed based on dynamic programming) under certain conditions. Details are given in Section

V.

V. PERFORMANCE ANALYSIS

We consider a 2D square sensor network of area 𝐴 on 𝑋 × 𝑌 plane. The locations of the 𝑘-th node

and the target are denoted by x𝑘 = (𝑥𝑘, 𝑦𝑘), for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑛, and x𝑡 = (𝑥𝑡, 𝑦𝑡), respectively as before.

In the following we analyze the performance of a fixed 2D network when the target location is known

exactly.

We assume that the node 𝑠𝑗 has knowledge of its own position, target location and the positions of its

neighbors 𝒩𝑗 . Then the observation noise variance at the 𝑘-th node according to the model (2) can be

expressed as

𝜎2
𝑘 =

(
𝑟𝑘𝑡
𝑟0

)𝛼

𝜎2
0 , (28)

where 𝑟𝑘𝑡 =
√

(𝑥𝑘 − 𝑥𝑡)2 + (𝑦𝑘 − 𝑦𝑡)2 is the distance between the 𝑘-th node and the target, 𝛼 is the path

loss index and 𝑟0 and 𝜎2
0 are constants. The channel noise variance between (𝑘− 1)-th node and the 𝑘-th



node is given by

𝜎2
𝑐(𝑘−1,𝑘) =

(
𝑟𝑘−1,𝑘

𝑟′0

)𝛼′

𝜎2
𝑐 , (29)

where 𝑟𝑘−1,𝑘 =
√

(𝑥𝑘 − 𝑥𝑘−1)2 + (𝑦𝑘 − 𝑦𝑘−1)2 is the distance between the 𝑘-th node and the (𝑘 − 1)-th

node, 𝛼′ is the path loss index and 𝑟 ′0 and 𝜎2
𝑐 are constants.

In the proposed schemes, node 𝑠𝑗 computes the estimator and the MMSE according to (6) and (7). If

the desired MMSE threshold is not met, node 𝑠𝑗 sends its information to the node 𝑠𝑗+1, where the node

𝑠𝑗+1 is selected from the candidate set 𝒱 𝑐
𝑗 according to (22) in the scheme 1 and from 𝒞𝑠𝑗

𝑗 according to

(13) in the scheme 2. We assume that there are 40 sensor nodes deployed in a square region of 10 × 10

square units. The target is assumed to be at the origin and the initial node is selected randomly and

assumed same for all plots. Neighbors at each node are selected as the set of nodes located within a disk

of radius 𝑟𝑐 = 3 units.

In the first experiment, we investigate performance of the greedy based sequential estimation processes

when both mutual information and the MMSE are considered as information utility measures. Figure

6 shows the required number of nodes to be processed to achieve a desired MMSE performance for

different values of 𝛽 with both information utility measures. The top plot of Fig. 6 corresponds to the

global scheme (scheme 1) while the bottom plot corresponds to the local approach (scheme 2) with 𝑟𝑐 = 3

units. In Fig. 6, 𝜎2
𝑐 = 0. When 𝛽 = 1 and 𝛽 = 0 (nearest node selection method), it can be seen from

Fig. 6 that the node selection using both utility measures depict similar performance in the sequential

estimation process. For intermediate value of 𝛽 = 0.5, it can be seen from Fig. 6 that the performance of

the sequential estimation process with node selection based on mutual information gives relatively better

performance compared to that with MMSE being the information utility measure for the smaller region

of 𝜖. However, it can be seen that when 𝜖 is moderate, the performance of both node selection scheme

coincides with one another. Thus it can be seen that for both global and local approaches, choosing MMSE

as an information utility measure would be a good alternative to mutual information especially when the

desired MMSE takes moderate values.

Figure 7 shows the MMSE performance at the 𝑘-th node with no channel noise such that 𝜎2
𝑐(𝑘−1,𝑘) =

𝜎2
𝑐 = 0 (in Fig. 7(a)) and with channel noise with 𝜎2

𝑐(𝑘−1,𝑘) as given in (29) (in Fig. 7(b)), with the MMSE

as the information utility measure.

With no channel noise, it can be seen that when 𝛽 = 1, the performance with node ordering based on

proposed scheme 1 coincides with that of the optimal scheme which results in the global minimum. In

that case, from Fig. 7(a) it can be seen that the performance of the proposed scheme 2 converges to that

of scheme 1 (as well as to that with optimal scheme) after a relatively small number of processing nodes.

For 𝛽 = 0.5 and 𝛽 = 0, it is seen that proposed scheme 1 and scheme 2 give similar performance. For

example, with 𝛽 = 1, to achieve a required performance level of an MMSE of 0.05, scheme 1 requires 2



nodes, while scheme 2 requires 4 nodes. On the other hand, to achieve the same performance level, both

scheme 1 and the scheme 2 require 8 and 12 nodes with 𝛽 = 0.5 and 𝛽 = 0, respectively. It is noted that

the proposed scheme 2 is terminated at node 22, 32 and 25 with 𝛽 = 1, 𝛽 = 0.5 and 𝛽 = 0, respectively,

due to the reason discussed in subsection IV-B. However, it is seen that once such a number of nodes

are processed node ordering does not affect the overall performance level. This implies that when the

sequential estimation process is continued among a large number of sensors, the performance converges

to the same value irrespective of how the nodes are selected, which of course is not desirable in many

resource constrained sensor networks.

On the other hand, when there is channel noise, it is seen that continuing the sequential processing

after some point does not yield improved performance as can be seen from Fig. 7(b). This essentially is

due to the fact observed in (12). However, in this case, from Fig. 7(b) it can be seen that the proposed

scheme 2 (local approach) with 𝛽 = 1 gives closer performance to that of with the optimal scheme. Also

we can see that the performance of proposed scheme 1 (global approach) and that of the scheme 2 is

almost the same for 𝛽 = 0.5 and 𝛽 = 0. When 𝛽 = 1, from Fig. 7(b) it can be seen that the proposed

scheme 2 yields a lower MMSE compared to the scheme 1 after processing a certain number of nodes.

This can be explained by noting the fact that both proposed schemes 1 and 2 are greedy-type algorithms.

Thus they would not necessarily result in the same global minimum after completing the same number

of processing stages.

From these performance results, we can see that in proposed sequential estimation processes, the

proposed greedy-type algorithms essentially result in a near-optimal solution in finding the best ordering of

nodes compared to that with the optimal scheme which yields the global minimum at a high computational

and communication cost.

Figure 8 shows the performance of the scheme 2 (local search with 𝑟𝑐 = 3 units) with the trade-

off parameter 𝛽 in the reward function. Figs. 8(a) and 8(b) correspond to the performance with mutual

information and MMSE as information utility measures, respectively. From Fig. 8, it is observed that the

effect of the values of 𝛽 is more significant to achievable MMSE after processing a small number of

nodes (compared to that with a large number of processing nodes) for both information utility measures

and all considered values of channel noise qualities. However, after processing a relatively a large number

of nodes, the effect of selecting 𝛽 does not seem to cause a large difference in the MMSE performance.

Since the most desirable scenario in a sensor network is to make the final estimator with a small number

of nodes and with a high accuracy, the trade-off parameter value 𝛽 should be selected carefully to achieve

the best possible performance considering both the number of nodes and the communication costs.

In Fig. 9, we investigate the minimum achievable MMSE with varying neighborhood size, 𝑟𝑐, in the

scheme 2 for 𝜎2
𝑐 = 0.001. Note that as pointed out in subsection IV-B, the proposed scheme 2 terminates

at a certain point if all candidate nodes in the current node have already been participated in the estimation



process although there might be unvisited nodes in the network. Fig. 9 (a) shows the minimum achievable

MMSE when 𝑟𝑐 is varying for different values of 𝛽 while Fig. 9 (b) shows the number of nodes in

the estimation process before the process terminates in scheme 2. Compared to the achievable minimum

MMSE with the scheme 1 (global approach), it can be seen from Fig. 9 (a) that although the process

terminates before all nodes are processed, the scheme 2 (with moderate values of 𝑟𝑐) does not seem to

result a severe performance loss compared to that with scheme 1. From Fig. 9 (b), it can be seen that

before terminating, the scheme 2 processes a considerable number of nodes (compared to total nodes) for

all considered values of 𝑟𝑐.

VI. CONCLUSION

This paper presents a sequential estimation methodology for parameter estimation in an autonomous

distributed sensor network. The proposed work considers the inter-node communication noise and the

sensor node selection jointly for the sequential estimation contrast to most existing sequential schemes for

parameter estimation. In the proposed sequential estimation framework, each node makes a local estimate

by combining its own observation and the estimator from the previous node. To update the estimator at

the next node, the current node’s estimator is sent to the next node via a noisy communication channel.

To find the optimal number of nodes with the best ordering that should be participated in the estimation

process, we develop an algorithm based on forward dynamic programming which might be computationally

complex when the network size is large. We proposed two distributed greedy type node selection schemes

to select the best node ordering in the sequential estimation process based on a certain reward function.

To select the next best node, in the scheme 1 the current node maximizes the reward function over all

unvisited nodes in the network, while in the scheme 2 the current node maximizes the reward function

over nodes in only its neighborhood. To implement the scheme 1, each node has to keep track of all

nodes in the network which are already been participated in the estimation process. In the scheme 2, to

perform the distributed sequential estimation process, each node has to only keep track of its neighboring

nodes. We show that the performance with the scheme based on the local search gets closer to that with

the scheme with global search with a relatively small number of nodes. Thus the proposed scheme 2 can

be considered as a better trade-off between the performance gain and the communication and other costs

incurred in message transmission in the sequential estimation process. Since both proposed distributed

node selection schemes are greedy algorithms, they do not guarantee a global minimum MMSE. We

compare the performance of two greedy type schemes with the optimal scheme computed based on

forward dynamic programming, and show that the performance of two greedy type schemes gets very

closer to the optimal solution after processing relatively a small number of nodes.
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Fig. 1. MMSE vs. number of sensor when observation noise is i.i.d.
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Fig. 8. MMSE Vs 𝛽 for scheme 2 with 𝑟𝑐 = 3 units with varying channel noise qualities: (a). with MI as information utility measure (b).

with MMSE as information utility measure



2.5 3 3.5 4 4.5 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

r
c
 units

M
in

im
um

 a
ch

ie
va

bl
e 

M
M

S
E

 

 

β=1
β=0.5
β=0

Minimum achievable MMSE with global approach:
β=1: 0.0170

β=0.5: 0.0124
β=0: 0.0114

(a)

2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

r
c

N
um

be
r 

of
 n

od
es

 in
 th

e 
es

tim
at

io
n 

pr
oc

es
s 

be
fo

re
 te

rm
in

at
in

g

 

 

β=0
β=0.5
β=1

(b)

Fig. 9. Effect of the sequential estimation process terminating before processing all nodes in the network in scheme 2: 𝜎2𝑐 = 0.001, 𝑛 = 40

(a). Minimum achievable MMSE for different values of 𝛽 for varying 𝑟𝑐 (b). Number of nodes in the sequential estimation process before

the process terminates for varying 𝑟𝑐


