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Abstract—Recent advances in the physical layer have enabled the
simultaneous reception of multiple packets by a node in wireless net-
works. We address the throughput optimization problem in wireless
networks that support multi-packet reception (MPR) capability. The
problem is modeled as a joint routing and scheduling problem, which
is known to be NP-hard. The scheduling subproblem deals with finding
the optimal schedulable sets, which are defined as subsets of links that
can be scheduled or activated simultaneously. We demonstrate that any
solution of the scheduling subproblem can be built with |E| + 1 or fewer
schedulable sets, where | E| is the number of links of the network. This
result is in contrast with previous works that stated that a solution of
the scheduling subproblem is composed of an exponential number of
schedulable sets. Due to the hardness of the problem, we propose a
polynomial time scheme based on a combination of linear programming
and approximation algorithm paradigms. We illustrate the use of the
scheme to study the impact of design parameters on the performance
of MPR-capable networks, including the number of transmit interfaces,
the beamwidth and the receiver range of the antennas.

Index Terms—Wireless networks, multi-hop, multi-packet reception,
directional antennas, NP-hard.

1 INTRODUCTION

Recent advances in multiuser detection techniques open
up new opportunities for resolving collisions at the
physical layer. These techniques permit the simultaneous
reception of multiple packets by a node, which in turn
increases the capacity of wireless networks [1]. However,
to fully exploit multi-packet reception (MPR) capabil-
ity, new architectures and protocols should be devised.
These new schemes need to reformulate a historically
underlying assumption in ad hoc wireless networks
which states that any concurrent transmission of two
or more packets results in a collision and failure of all
packet receptions [2].

Recently, researchers started focusing on theoretical
upper and lower bounds on the throughput of MPR-
capable wireless networks [1], [3], [4]. Garcia-Luna-
Aceves et al. [1] demonstrated that architectures ex-
ploiting MPR capability increase the capacity of random
wireless networks by a logarithmic factor with respect to

the Protocol model of Gupta et al. [5]. Subsequent work
considered alternative schemes to compute asymptotic
bounds on the throughput capacity under some homo-
geneous assumptions, such as nodes transmit to a single
base station or access point [2], or nodes are equipped
with a single omni-directional antenna' [6].

In this paper, we present a generalized model for the
throughput optimization in MPR-capable wireless net-
works, where nodes have one or more transmit antennas.
The problem is known to be NP-hard, since finding the
cardinality of the maximum independent set of a graph
is equivalent to finding the optimal throughput in a wire-
less network [7]. The model divides the problem into two
subproblems: routing and scheduling. For the scheduling
subproblem, we demonstrate that any solution can be
built with |E| 4 1 or fewer schedulable sets, where E is
the set of links of the network, |-| denotes cardinality, and
links in the same schedulable set can be simultaneously
activated. This result is in contrast with a conjecture that
states that a solution to the scheduling subproblem is
composed of an exponential number of schedulable sets
[7]. We finally propose a polynomial time scheme for the
joint routing and scheduling problem.

The paper is organized as follows. Section 2 discusses
related work. Section 3 presents the antenna and channel
models used in the paper. Section 4 formulates the
throughput optimization problem in MPR networks as a
joint routing and link scheduling problem, and Section 5
presents a polynomial time scheme to approximate to the
optimal solution. Section 6 shows performance studies,
and Section 7 concludes our work.

2 RELATED WORK

Scheduling problem. The throughput optimization prob-
lem in wireless networks can be seen as an extension
of the maximum flow (max-flow) problem, where at

1. Antenna and interface are used interchangeably hereafter.



any time only a subset of links may be simultaneously
scheduled or activated. Brar et al. [8] presented a greedy
algorithm for the scheduling problem under the physical
model [5]. Moscibroda et al. [9] proposed a centralized
scheduling algorithm for scenarios where the traffic de-
mands are the same on every network link.

Joint routing and scheduling. Jain et al. [7] presented
a max-flow linear program for computing upper and
lower bounds on the optimal throughput under the pro-
tocol model. The scheme requires to find all independent
sets in the conflict graph, which is intractable. Kodialam
et al. [10] proposed a polynomial time approximation
algorithm for the routing problem, and a graph-coloring
approach for the scheduling problem. Zhang et al. [11]
presented a column generation approach to iteratively
solve the joint routing and scheduling problem.

Scheduling with directional antennas. Spyropoulus et al.
[12] formulated the scheduling problem as a series of
maximal-weight matching in a graph. Cain et al. [13] de-
scribed a distributed TDMA scheduling protocol, while
Capone et al. [14] presented a max-flow formulation
which results in an integer linear program.

Scheduling, routing and MPR. Garcia-Luna-Aceves et
al. [1] demonstrated that MPR increases the order of
capacity of random wireless networks by a logarithmic
factor with respect to the protocol model [5]. The same
authors [3] demonstrated that throughput is also im-
proved with respect to the physical model [5]. Wang
et al. [6] proposed a max-flow ILP formulation that
considers MPR capability, and a centralized heuristic
algorithm that jointly performs routing and scheduling.

3 ANTENNA AND CHANNEL MODELS

In this section we present the models used for the
antenna and the channel. For an extended overview of
these models, please refer to Section 1, supplemental
material. We represent a wireless network as a directed
graph G = (V, E), where V is the set of nodes and E the
set of links. The existence of a directed link e = (i,j) € E
from node i € V to node j € V is determined by the
antenna model. From here on, we will use the notations
(1,7) and e in an interchangeable manner. However, the
first notation will be used when the endpoints of a link
must be specified.

3.1

The antenna model considered in this paper is the
one used in previous work including [15]. Sidelobes
and backlobes are ignored. The interference region of
an antenna is principally determined by its main lobe
and a simplified radiation pattern does not substantially
change the result of the throughput analysis [15]. We
assume that: i) all nodes in the network lie in a two-
dimension plane, so that the gain of the antenna is a
function of the azimuth angle only; ii) the gain of the
main lobe is constant (greater than zero), and zero out-
side it. The main lobe is characterized by the beamwidth
B of the antenna; iii) the axis of the main lobe, namely

Antenna Model

the boresight, can be directed to only one direction at
a time. Fig. 1(a) shows the radiation pattern model,
where o represents the angle between the boresight of
the transmit antenna and the direction of a potential
receiver node. R represents the receiver range of the
receiver node. The conditions for successfully receiving a
packet can be stated as follows. A node j can successfully
decode a packet sent by a node ¢ if and only if (iff):

ri; < R, 1)
B

where r;; is the distance between nodes ¢ and j, and
«;; represents the angle between the boresight of the
transmit antenna at sender node i and the direction to
receiver node j. Eq. (1) requires the sender node being
inside the receiver range. We will say that there exists a
link (i, ) € E iff this condition is satisfied. Eq. (2) states
that the receiver node must lie inside the main lobe of
the radiation pattern of the transmit antenna.

3.2 Channel Model

For MPR capable nodes, the MPR protocol model [1],
[3], [6] states that the reception of up to K packets sent
inside a disk of radius R from the receiver is achievable
if the the number of simultaneous transmitters is K
or less. Transmitters outside of radio R do not affect
the reception of the receiver node. We assume a single-
channel Additive White Gaussian Noise (AWGN) chan-
nel with bandwidth W, where the capacity of a link (g, j)
is modeled by the following equations:

- Cori? i L < <8
SINR;; = { 0 otherwise, ©
cij = Wlogy(1+ SINR;;). @

Eq. (3) states that the signal-to-interference-plus-noise
ratio (SINR;;) decays exponentially according to the
distance 7;; between nodes ¢ and j, and it is zero
if receiver node j is outside of the main lobe of the
radiation pattern of the transmit antenna. v is the path
loss exponent, and ( is a term that depends on multiple
factors such as path loss model and decoding technology.
We simply consider ¢ as an opaque value, which can be
computed as desired. Eq. (4) is the Shannon capacity.

We will assume that nodes can simultaneously decode
up to K packets, and that they are equipped with
M > 1 transmit antennas, unless otherwise is explicitly
specified. The notation (M, K, 5)-network will refer to a
network with M transmit antennas with beamwidth
per node, where nodes have a decoding capability of K.

3.3 Scheduling in an (M, K, §)-network

A schedulable set S C E is a set of links which can be
scheduled simultaneously. The set S can be characterized
by a schedulable vector S of a vector space {0,1}". The ;"
element of this vector is set to one if the link e; € E is
a member of 5, and to zero otherwise.

In polyhedral combinatorics, a schedulable vector as
defined above is also known as characteristic vector [16]
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Fig. 1. (a) Radiation pattern model. (b) A wireless network where links (a,b), (
other. (c) Schedulable vectors and corresponding convex hull for the network in (b
The schedulable vectors are: S, = (0,0,0), S = (1,0,0), S2 = (0,1,0), S3 = (0,

¢,d) and (e, f) interfere with each
), assuming a (1, 2, 2m)-network.
0,1), S4 = (1,1,0), S5 = (1,0,1)

and Ss = (0,1,1). (d) A schedulable set for the netvgork in (b), assuming a (1, 2, 8’)-network, and (e) corresponding
schedulable vectors and convex hull, where vertex S; = (1,1, 1) is added.

or incidence vector [17]. A characteristic vector uniquely
identifies a subset of a given ground set. In this paper,
the ground set is the set of links E, and a subset is a
schedulable set S. Since a schedulable vector cannot be
formed as a convex combination of other schedulable
vectors, it can be regarded as a vertex of the convex
hull of the set of schedulable vectors [17]. The following
example illustrates these concepts.

Example 1. Consider the network topology of Fig. 1(b),
where E = {(a,b),(c,d), (e, f)} and the links conflict
with each other. For a (1, 2, 2x)-network, links can
be scheduled individually, or they can be combined
in groups of two (because K = 2). Fig. 1(c) shows
the corresponding schedulable vectors and convex hull.
Now, if nodes are endowed with directional antennas so
that the network becomes a (1, 2, §')-network, a feasible
schedulable set is shown in Fig. 1(d), which enlarges the
convex hull as depicted in Fig. 1(e).

To define the feasibility conditions for scheduling, we
need the following terminology. Let 6+ (i) C S denote the
set of links in S which have node i as the transmitter
node. Similarly, let §=(j) € S be a set of links such
that, Ve € 6~ (j), the corresponding transmitter node
of link e, say node 4, is within the receiver range of
j and schedules its antenna in a direction for which
_Tﬁ <ay; < g (i.e., Egs. (1) and (2) are satisfied). 6 (3)
represents the set of links for which node j is within a
distance R to the corresponding transmit antennas and
lies in the main lobe of them. For an (M, K, 3)-network,
aset S C E is a feasible schedulable setif V e = (i, j) € S:

or@) < M, ®)
-Gl < K ©6)
The term on the left hand side of Eq. (5) is the number
of links having node ¢ as transmitter, which must be less

than or equal to M. Eq. (6) states that the receiver node
j can decode at most K packets.

4 PROBLEM FORMULATION
4.1 Routing

We first present the routing and scheduling subproblems
separately, and then the joint formulation. Let N be the

set of end-to-end flows. Each flow is characterized by
a 3-tuple (sp,dn, fn), which denotes the source node,
the destination node, and the amount of flow? in bits
per second (bps) transmitted from s,, to d,,, respectively.
fn can be thought as a constant bit rate flow. Let 7}
be a variable representing the amount of the n‘* flow
routed on link (4, j). The routing problem is defined in
Fig. 2. Eq. (7) is the aggregated throughput or amount
of flow (or simply throughput), to be optimized. Eq. (8)
represents the flow conservation constraint; for each flow
n € N, the amount of flow at each node other than
its own source or destination must be zero. Eq. (9) is
the capacity constraint. Eqs. (10) and (11) restrict the
per-source throughput and the amount of flow on each
link to be non-negative. We will refer to Egs. (7)-(11)
as routing linear program (RT-LP), which is sometimes
called sum multicommodity flow model [18].

> @)

neN

f’rul = Sn

0; otherwise

max Frr-Lp =

n n _

J:(i,j)€EE j:(4,0)EE
neN
doal < cyilig) €E ©)
neN
fn 2 OmeN (10)
xZ"] > 0O;neN,(,j)eE (11)

Fig. 2. Routing linear program (RT-LP).

4.2 Scheduling

A schedule specifies the schedulable sets and the frac-
tion of time allocated to each of them. Let I' =
{S1,8S2,...,Sr|} be a set of all possible schedulable sets
which satisfy Egs. (5) and (6) in an (M, K, 5)-network.
Let M\;,0 < A < 1, be a fraction of time allocated

2. Although a flow is characterized by (sn,dn, fn), we will also use
the term flow to informally refer to f.



to the set S;. We may write the time interval [0,1] as
Uk [tk tk+1], where links in Sy, are active for the activity
period try1 —tp = Mg, k€ {1,2,..,]T'}, t1 = 0 and
tirj+1 = 1. The variable ), represents the activity period
variable corresponding to set Sj. The schedule restriction
can be written as: T

Z/\k =1.
k=1

Eq. (12) states that the sum of the fraction of time allo-
cated to all schedulable sets must be one. The scheduling
subproblem requires reconsidering Eq. (4), which models
the capacity of a link that is active at all time. In the
scheduling subproblem, the amount of flow through
a link must not exceed its capacity given by Eq. (4)
multiplied by the fraction of time the link is active:

PIEIE

4.3 Joint Routing and Scheduling Problem

(12)

)\kcij.

(13)

Vke{1,2,...,|T[}|(4,5) €Sk

In general, only a small subset I C T' is needed to
evaluate Egs. (12) and (13), as we shall see in Proposition
2. By incorporating Egs. (12) and (13) into RT-LP and
optimizing not only over the variables given by Egs.
(10) and (11) but also over all possible set I C I' of
schedulable sets, the formulation of the joint routing and

scheduling problem is given in Fig. 3.

glg)r( Frrscu-Lp = Z fn (14)
neN
fnyif i = sy
Sooalh— > ap = { —fu3if i = dn (15)
SDEE GG EE 0; otherwise
neN
zy < Z AkCig;
neN Vke{1,2,..., T/} (2,7)ESK
(i,j) € E (16)
T’
M = 1 17)
k=1
fo > OneN (18)
xzy; > 0;neN,(i,j) € E (19)
e > 0ke{1,2,..,I"} (20)

Fig. 3. Routing & scheduling linear program (RTSCH-LP).

The complexity of the routing and scheduling lin-
ear program (RTSCH-LP) is mainly determined by
the scheduling subproblem. To find an optimal solu-
tion, RTSCH-LP requires searching for a set of optimal
schedulable vectors in {0,1}/#!, which is exponentially
large in |E|. The hardness of the problem, alternatively,
can be proved by noting that the throughput opti-
mization problem under the Protocol model, for omni-
directional antenna networks without MPR-capability
[7], is a particular case of the of the joint routing and
scheduling problem in an (M, K, 5)-network (i.e., it can

be reduced to RTSCH-LP). Since the former is an NP-
hard problem, RTSCH-LP is also NP-hard.

The goal of exploring space {0, 1}!¥! in the context of
RTSCH-LP is to obtain the best set of schedulable vec-
tors, so that Eq. (14) is maximized. An optimal solution
would require allocating a fraction of time to each cor-
responding schedulable set. Jain et al. [7] formalized the
above observation for the throughput optimization prob-
lem under the Protocol model, for omni-directional an-
tenna networks without MPR capability. We can extend
this observation for an (M, K, 8)-network. As showed
in Section 3.3, a schedulable set S can be characterized
by its schedulable vector S, which becomes an extreme
point of the convex hull of the set of schedulable vectors.
Let @ = (u1,uz, ...,u p|) be an |E|-dimensional utilization
vector, where uy, indicates the fraction of time allocated
to link e, € E. When using the notation (,j) instead
of e, for a link e, = (i,5) € E, we will refer to the
corresponding link utilization as w;;. By regarding « as
a point in {0, 1}/”l, we have the following proposition:

Proposition 1: A solution to the scheduling subproblem

given by a set I = {S51,55,...,8/} € I' with corre-
sponding activity periods A1, Az, ..., \|rv| is feasible iff the
resulting utilization vector # lies within the convex hull
of the schedulable vectors.
Proof: = Assume a feasible solution, with a set
I = {S1,82,..., 9} and corresponding activity peri-
ods A1, Az,...; Arv|. Then @ must be of the form v =
Z‘ZF:/{ )\15‘; By definition, the convex hull of all schedu-
lable vectors, denoted by Co(T"), is the set of all convex
combinations of all possible schedulable vectors:

Co(T) = {6151+ ... +0 Sy, forall S; €T,

0; > 0,91 + ...+ 9‘[*‘ = 1}. (21)
Note that the utilization vector 4 is a convex combination
of the schedulable vectors corresponding to the sets in
IV, where the weights are given by the activity periods
A1, A2, ..y v Since IV C T, 4 is a particular point that
satisfies Eq. (21) and therefore lies inside Co(T').
< Assume that @ lies within Co(T"). Then, @ can be
expressed as a convex combination of a set of schedu-
lable vectors, which have a corresponding set I" =
{81, 82, ..., Sjr|}. By allocating A; seconds to S; € I' (the
schedulable set that has a corresponding schedulable
vector 5‘), we can build a feasible schedulable, which
implies that # is feasible.

Proposition 1 implies that any convex combination
of schedulable vectors is schedulable. Since there is an
exponential number of schedulable sets, a solution to the
scheduling subproblem might be composed of © (2/#1)
schedulable sets, as claimed by Jain et al. [7] for the
scheduling problem without multi-packet reception and
with omni-directional antennas only. Proposition 2, how-
ever, shows that it is not necessary to use an exponential
number of schedulable sets.

Proposition 2: Any utilization vector # can be repre-
sented as a convex combination of |E| + 1 or fewer
schedulable vectors from Co(T").



Proof: we can apply Caratheodorys’s Theorem on convex
sets [19]. Let 4 = Z‘,L/'l AxSi be an utilization vector
corresponding to a set of schedulable sets I'' C I', where
IT’| > |E| + 1. Denote the i'" scalar component of the
schedulable vector 5;; as Sk;. Then, for any e; € E, the
component u; of @ can be computed as u; = ZLF:/‘l e Ski,
which can be formulated as:

T’

Z AeSki = Ui; € € E (22)
k=1
I’
ZAk = 1L (23)
k=1
X > 0ke{1,2,..]I"} (24)

Fig. 4. Feasibility linear program.

Every feasible linear program has a basic feasible so-
lution [20]. In a basic feasible solution, only the basic
variables are nonzero. The linear program of Fig. 4 has
|E| + 1 basic variables, one for each equality constraint.
Hence, the utilization vector obtained from this basic
feasible solution corresponds to a convex combination
of just |E| + 1 schedulable vectors of the original |T|
vectors, which demonstrates Proposition 2.

Example 2. Consider the network of Fig. 1(a) and
the corresponding convex hull of Fig. 1(d). Let I} =
{51, 52,83, 54, 55,56} be a schedule with corresponding
allocation times A, = % for all © € {1,2,...,6}. The
schedule produces an utilization vector @ = $°_, \;S; =
(1,1.1), activating each link for } seconds. According
to Proposition 2, we can build a schedule with no more
than |E| + 1 = 4 schedulable sets that produces the
same utilization vector. A possible solution is the set
I, = {So,S7} with corresponding allocation times of
X = A7 = % The allocation of % seconds to Sy means
that there are more resources (i.e., time) than needed by
the links, and the network is idle for half of the time.
Note also that |I'y| = 2 < |E|+1. In general, however, the
number of schedulable sets may be |E|+ 1. For example,
referring back to 1(a) but assuming that only one link
can be active at any time and that an utilization vector
@ = (1,1, 1) is to be achieved, the only set that produces
the desired % is I'y = {So, S1, 52, S5} with corresponding
Ai =1 fori€{0,1,2,3} (ie, T4 = |[E| + 1).

5 JRS SCHEME

We present a polynomial time Joint Routing and
Scheduling (JRS) scheme for the problem presented in
Section 4. The scheme consists of three steps:

1) Solve RT-LP.

2) Create a set I'' € I" by using an approximation al-
gorithm. To obtain a polynomial running time, the
approximation algorithm guarantees that the num-
ber of schedulable sets found during the searching
process is upper-bounded by |E|.

3) Solve RTSCH-LP.
Step 1
This step is intended to identify good paths for each
flow, such that the Frp-rp is maximized. The output
of the step 1 is the set of links which are assigned
a positive amount of flow value by RT-LP, namely
Err-1p = {(Z,]) € E| ZneN xz > 0}
Step 2
Given that step 1 may produce an unfeasible solu-
tion, since RT-LP ignores the feasibility conditions for
scheduling imposed by Egs. (5) and (6), step 2 finds
feasible schedulable sets for Egrp-rp. The algorithm
schedules all the links in Epp-rp by finding a small
number of maximal schedulable sets, so that they can be
found in polynomial time. A maximal set S is defined
as a schedulable set, such that, when all links in S
are activated, no more links can be activated without
violating the scheduling constraints.

The utilization of a link (¢, j) defined in Section 4.3 can

be expressed as u;; = %m], where > 27 is the
amount of flow through link (¢, j) resulting from step 1.
The scheduling algorithm schedules links so that every
link (7, j) can send the amount of flow }_ 27, during
a schedule period. The algorithm schedules the links one
by one, in an arbitrary order, until a maximal set S is
obtained. The fraction of time allocated to S; is equal to
the minimum link utilization among all links in 51, i.e.,

71 = min{u;;|(4, j) € S1}. (25)

Having been scheduled for this fraction of time, the link
(1,7) = argmin{u;;|(¢,j) € S1} can send the amount
of flow wi; - ¢ij = 3, cny @i Thus, it is then removed
from S; and is not considered for any subsequent set.
The remaining links form a new set Sz, which becomes
maximal by adding new links not scheduled yet. Succes-
sive sets are found iteratively in a similar way. Consider
a general iteration when S), is being created, and sets
S1, ..., Sx—1 have already been built. Define the residual
link utilization of a link (4, j) as:

uéj = Uij — T - (26)
Vh/€{1,2,....k—1}|(i,§) €S}
For a general iteration k, Eq. (25) can be rewritten as:
T = min{u;j|(i7j) € Sk} (27)

The process is repeated until all link (¢, j) € Egp-1p have
been scheduled for a fraction of time ;.

The pseudo-code of the scheduler is shown in Fig. 5. In
lines (8)-(11), links are added one by one until a maximal
set is created. In line 16, the link with minimum residual
utilization is removed from S}, so that a new maximal set
is created in the next iteration. For an operation example
of the scheduler algorithm, please refer to Section 2,
supplemental material.

The throughput of the schedule produced by scheduler
algorithm can be computed as follows. Let 7 = >, 7%
be the schedule period, where 7, is the fraction of



Scheduler
. INPUT: ERT-LP/ G(V7 E)
: OUTPUT: Set I'V of schedulable sets.

1
2
3 uj; =i, V(i,5) € ERr-LP;

4 T={}ES={hLt=0k=0;

5: while (3 (¢, j)|uj; > 0) do

6: k=k+1;

70 Sk =S8k-1;

8 while (3 (¢,5) € Egp-Lp|SkU{(4,j)} is a schedulable set) do
9: Sk =Sk U{(i, )}

10: Err-rp = Err-LP — {(i,5)};
11:  end while

12: I =T'USy;

13: e = argmin{ulle € S;};

14: 1 =ul;

16: Sk = Sk - {6};
17: end while
18: return I7;

Fig. 5. Scheduler algorithm.

time allocated to Si (Eq. (27)). Then, the throughput is:

_ Frr-Lp _ Frr-pp F :
= - = . For particular network
schedule period 4 p

topologies, we have the following proposition.
Proposition 3: Let E' = {ei,ea,...,e;p/|} be the set of
links to be scheduled by the scheduler algorithm, and
u1,uz, ..., u | be the corresponding link utilizations. In
a fully-connected (M, K,27)-network with M > K,
and in a single-hop MPR-capable network where the
transmissions are directed to a central node, the schedule
period is guaranteed to be factor two optimal.
Proof: for the two types of network topologies referred
in the proposition, K links can be simultaneously sched-
uled. This is illustrated in Fig. 6, where there is a timeline
for each scheduled link. Let ef be the link with the
larger completion time (i.e., link ey is scheduled until
the completion time of the whole schedule), and start
be the time ey is scheduled. Since the algorithm creates
maximal sets, all the timelines are busy until start;
(otherwise, the schedulable set prior to start; would
not be maximal, and the algorithm would have already
scheduled ef). From this observation, it follows that
starty is less than or equal to the average timeline:

1
starty < I3 Z Ue.

ecE’

(28)

K l

Fig. 6. Operation of the scheduling algorithm. Since it cre-
ates maximal schedulable sets, K links are always active
until at ¢ = starty, the time the link with larger completion
time is scheduled. This implies that start; < & . te.

The average timeline, on the other hand, can be consid-
ered as a lower bound of any schedule period; i.e., the
optimal schedule period 7opr is at least the total du-
ration of all link utilizations divided by K. In addition,
Topr is at least equal to the largest link utilization. These
two lower bounds can be expressed as:

1

?Zue < 7orr, (29)
ecE’

max{u.} < TopT. (30)
ecE’

By combining Egs. (29) and (30) with Eq. (28), we can express
the schedule period 7 of the algorithm as:

T = starty +uy < 270pPT, (31)

which proves Proposition 3.

Although feasible, this solution may not be optimal
with respect to I'. The optimal solution can be found by
applying step 3.

Step 3

The last step solves RTSCH-LP, which produces the
optimal solution with respect to I (i.e., the best con-
vex combination of the schedulable vectors considering
the schedulable sets in I" is obtained). The solution of
RTSCH-LP gives the amount of flow z7; routed through
each link (7, j) (which may differ with z7; found by RT-
LP), and establishes the fraction of time A\, allocated to
each schedulable set Sj.

6 PERFORMANCE STUDIES

We present numerical examples based on the scheme
presented in Section 5, which was implemented as a
solver in C language. For RT-LP and RTSCH-LP, the
solver incorporates the package LP-solve [21]. We set
W = 1, and a link capacity ¢;; = 10 units when
the distance 7;; between nodes i and j is equal to R
(maximum distance from which a node can decode a
packet). The path loss exponent v was set to 4, which
corresponds to the two-ray model. Having set these
values, any link capacity can be computed according to
Egs. (3) and (4). The results were evaluated in terms of
the objective function of the joint routing and scheduling
problem (Eq. (14)), and normalized to the upper bound
Frr-rp (Eq. (7)). We simulated 3 random topologies of
50 nodes over a 1000 x 1000 square-meter area, and
analyzed the results of the JRS approach. Additional
performance studies over a grid topology can be found
in Section 3, supplemental material. The first random
topology was generated by setting R = 200, which
produced a network with an average node degree of
10.96. By varying this parameter to R = 300 and R = 400,
subsequent random topologies with average node de-
grees of 21.92 and 35.7 were generated. Topologies can be
seen in Fig. 7, supplemental material. We include results
for both (M, K, 8)-networks and half-duplex (HD) net-
works. This comparison permits us to visualize the gain
obtained by the former type of networks with respect to
the latter, which was proposed in previous work [6]. Ten
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Fig. 7. Numerical results.

flows were created. The source and destination of each
flow were randomly selected.

Impact of the Number of Transmit Antennas. Fig. 7(a) shows
the throughput as a function of K, for different number
of antennas with 3 = Z. Note that the throughput for
HD and M = 1 increases monotonically until K = 3,
and that further increments of K have no impact. This
constitutes a transmission-oriented bottleneck; transmitting
nodes cannot generate enough beams, even when the
decoding capability is increased. Consequently, the num-
ber of simultaneously scheduled links is limited by this
bottleneck. The curves for HD and M = 1 are almost
overlapped because they have the same bottleneck: only
one interface can operate in transmit mode. By adding
more transmit antennas, the MPR capability is better

exploited. Note also that the throughput increases ap-
proximately linearly until K equals M.

Impact of the Beamwidth. Fig. 7(b) shows the curves of
throughput vs K, for HD and different values of j.
The best performance is obtained with the minimum
beamwidth value (8 = %), due to a better spatial reuse.
However, the disadvantage of having wider beamwidth
antennas can be compensated by increasing the MPR
capability; for K > 11, even the use of omni-directional
antennas produces an optimal performance. The effect
of using two transmit antennas per node is shown
in Fig. (7)(c): the maximum throughput increases from
about 0.19 to 0.35. Note also that, for both, HD and
M =2, and for a given value of K, say 5, a beamwidth
B = % produces about the same result as a beamwidth



f = % (a beamwidth of 7 is narrow enough for optimal
performance; narrower beamwidths would not produce
significant improvement).

Impact of the Receiver Range R. Fig. 7(d) shows, for HD,
the normalized throughput Frrscu-rp/Frr-Lp’, where
Frr-1p' is the flow value when R = 400. RT-LP produces
the maximum upper bound on throughput when R
increases, because of a higher connectivity (the average
node degrees for R = 200, 300 and 400 meters (m) were
10.26, 21.92 and 35.7 respectively). As a result, the maxi-
mum amount of flow that can potentially be sent from
a source to a destination increases (through multiple
paths). However, to achieve this goal, nodes may need to
decode a very high number of transmissions. Consider
the case for § = % in Fig. 7(d). The throughput is an
increasing function of K. For R = 400, however, incre-
menting K beyond 3 does not result on better perfor-
mances because of the transmission-oriented bottleneck.
Similarly, for R = 300 and R = 200, the throughput
also experiences the transmission-oriented bottleneck.
Note, however, that increments of K beyond 3 but less
than or equal to 6 still produce improvements when
R = 300 or R = 200. The reason of this is the higher
number of links that can be simultaneously scheduled
in the network. Since each transmission consumes a
circular area of radio R and angle 3, no more than
K -1 other transmissions can take place in the same
sector. Similar results are obtained with 8 = =x. With
omni-directional antennas, the same phenomenon would
be observed when K > 15. As shown in Fig. 7(e),
incrementing the number of transmit antennas increases
throughput. Let average node degree = \VLI ‘kF:‘l Ak |Skl;
i.e., the time-averaged number of links per node acti-
vated in the network. This metric quantifies the node
degree of the network, as links are scheduled. Fig. 7(f)
better highlights the transmission-oriented bottleneck for
the particular case when R = 200 and 8 = 3. As
M increases, nodes can transmit to multiple receivers,
increasing the number of simultaneous transmission. As
a consequence, the average node degree and throughput
(refer to Figs. 7(d) vs 7(e)) are incremented. However,
while potentially 10.26 links might be scheduled per
node, the average node degree is at most approximately
3 (when M = 5 and K = 15). R, K, M, and 8 play
key roles: throughput may increase with R, but the
decoding capability should be very high (for example,
for R = 400, in average, every transmission may affect
35.7 other nodes for omni-directional transmissions; in
general the number of nodes covered by a transmission
may be proportional to R? and to (). To exploit the
multiple paths resulting from increasing R, nodes should
generate a high number of transmissions.

7 CONCLUSION

We have presented a generalized model for the through-
put optimization problem in wireless networks. We have
decoupled the problem into two subproblems, routing

and scheduling, and demonstrated that any solution of
the scheduling subproblem can be built with |E| + 1 or
fewer schedulable sets. Because of the hardness of the
scheduling subproblem, we have also proposed a poly-
nomial time scheme based on a combination of linear
programming and approximation algorithm paradigms.
Numerical results showed that to fully exploit MPR
capability, nodes may need to be endowed with multiple
transmit antennas. The study of increasing the MPR
capability of networks with wide beamwidth antennas to
achieve similar performance to networks with narrower
beamwidths was discussed. Future work includes the
application of the multi-access channel model to over-
come current model limitations at the physical layer.
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