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Bayesian Fusion Performance and System
Optimization for Distributed Stochastic Gaussian

Signal Detection Under Communication Constraints
Sudharman K. Jayaweera, Member, IEEE

Abstract—The problem of decentralized detection and fusion of
a Gaussian signal is considered under the assumption of analog
relay-amplifier local processing. It is shown that under an average
global (system) power constraint, there always exists an optimal
number of nodes that achieves the best possible performance under
both orthogonal and nonorthogonal sensor-to-fusion center com-
munication. Any increase in the number of nodes beyond the op-
timal value leads to degraded performance. This implies that each
node needs to maintain a certain minimum received power level at
the fusion center in order to make a useful contribution to the final
decision. This is contrasted with the monotonic performance im-
provement observed under individual node power constraints as
well as in the case of deterministic signal detection under a global
power constraint. Three communication scenarios are studied in
detail: 1) orthogonal; 2) equicorrelated; and 3) random signaling
waveforms. In each case, error exponents and resulting bounds for
Bayesian fusion performance are derived. A sensor system opti-
mization method based on Bhattacharya error exponent, that leads
to simple rules for determining the optimal number of nodes under
a global average power constraint is also proposed.

Index Terms—Data fusion, distributed detection, hypothesis
testing, large-system analysis, random spreading, random matrix
theory, sensor networks.

I. INTRODUCTION

THE general distributed detection problem, first posed by
Tenney and Sandell in [1], involves designing optimal local

and fusion center tests when only the local decisions made by
remote nodes are available at a fusion center. In most cases
the local processing at distributed nodes could be a form of
lossy compression or simple relaying. The preliminary local
processing of data at sensor nodes may be preferred due to var-
ious reasons such as capacity of the communications channel,
limited processing power at the fusion center, finite average
power (or energy) constraints on both sensor nodes and the fu-
sion center, maximum peak power constraints on sensor nodes,
reliability and survivability of the system. Since [1] there has
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been a considerable amount of work on distributed detection
schemes, fusion center rules as well as their performance anal-
ysis under various assumptions [2]–[5].

However, most of these investigations tend to ignore effects
of noisy and bandlimited communication channel between local
sensors and the fusion center. This might have been due to the
traditional assumption of a relatively reliable wire-line connec-
tion, such as an optical fibre, from each sensor node to the fusion
center. However, in the context of distributed wireless sensor
networks that are becoming increasingly popular, such an as-
sumption might be questionable. Due to highly dynamic nature
of wireless channels it is imperative that one takes into account
communication resource constraints that may result in possible
communication errors. Motivated by such considerations, re-
cently there has been a renewed interest in distributed detection
under communication constraints as can be found, for example,
in [6]–[12].

The two main physical resources in many communication
systems, and in particular in low-power distributed wireless
sensor or ad hoc networks, are power and bandwidth. There
are two ways of taking the power constraints into account
in a system. In the first method, each node is assumed to be
subjected to an individual power constraint. A second approach
suitable for certain other scenarios is to place a finite total
(global) power constraint on the whole sensor system as in [7].
This implies that as number of nodes in the network increases
the power available for individual nodes correspondingly de-
creases. This allows trading off individual node power against
the number of nodes in the network and vice versa. For example,
in certain applications the cost of a node may be dominated by
the cost of batteries. In such situations it may be necessary to
determine whether to deploy a few nodes with high power or a
large number of nodes with each having low power. Also, when
the sensor system is powered by a distributed power source
(for example, solar power) with a certain power density per
unit area the total available power may be constant justifying
application of the global power model. The fusion performance
for a deterministic signal under a global power-constraint
was considered in [7] assuming orthogonal signaling from
sensors-to-fusion center. The conclusion was that it is better to
divide the available power among as many nodes as possible.
In [9], it was shown that the same conclusion holds even when
communication channel is band limited, leading to nonorthog-
onal communication between sensors and the fusion center.

This paper extends the above work by considering decentral-
ized detection of a stochastic Gaussian signal under commu-
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nication constraints. Note that, in situations where it is diffi-
cult to characterize the structure of the signal to be detected
it is common to model it as being an instance of a stochastic
process. This random signal model is justifiable, for example,
in case of radar-jamming signals, communication signals that
are reflected from ionosphere as well as signals encountered in
radio astronomy [13]. The stochastic signal model might also
be applicable in certain environmental monitoring applications.
This paper first derives the fusion performance under an indi-
vidual node power constraint. The new contributions include fu-
sion performance analysis with nonorthogonal sensor-to-fusion
center communication especially in the limit of asymptotically
large systems.

Next, the fusion performance of a random Gaussian signal
in a sensor system subjected to a global power constraint is
considered. It has been shown recently in [10] that for a given
global power constraint on the system there is always an op-
timal number of nodes to be used. This is quite different from
the monotonic performance improvement observed in the case
of detecting a deterministic signal subjected to a global power
constraint [7], [9]. The analysis in [10], however, was limited to
orthogonal sensor-to-fusion center communication. In a large
sensor network it may be natural to consider nonorthogonal
sensor signaling. This could either be due to having only a fi-
nite bandwidth available for the whole system, thus necessi-
tating efficient spectrum sharing via nonorthogonal signaling, or
due to unavoidable practical considerations of signal distortion
resulting from asynchronous system operation. Interestingly, it
was shown in [14] that nonorthogonal sensor-to-fusion center
communication is in fact advantageous in the case of determin-
istic signals. However, this possibly counter-intuitive result is
due to the assumption that coherence among distributed nodes
is achievable. In practice, there is a price to pay in terms of avail-
able resources in order to achieve this coherence (which is some-
what similar to the distributed beam-forming discussed in [15]).
For these reasons in this paper we consider both orthogonal as
well as nonorthogonal sensor-to-fusion center signaling. In par-
ticular, we investigate the following: 1) orthogonal; 2) equicor-
related; and 3) random signaling. As we will see later, only in
certain situations the Bayesian fusion performance can be de-
rived in closed form. As a result, we characterize the fusion per-
formance via Chernoff and Bhattacharya error exponents and
associated bounds [16]. This error exponent-based performance
analysis shows that there is always an optimal number of nodes
that leads to the best fusion performance when the system is sub-
jected to a global power constraint. A method based on the max-
imization of Bhattacharya error exponent is proposed in order to
optimize the fusion system performance in those situations. We
show that in many cases the proposed method leads to simple
rules for determining the optimal number of nodes.

In this paper, we limit ourselves to the case of distributed
Bayesian detection. It should be noted that in this paper we
do not address the problem of finding optimal local tests nec-
essary for distributed detection. Rather, our interest is in ana-
lyzing the fusion performance under communication resource
constraints with analog relay-amplifier local processing. This
is a resource-aware distributed processing scheme in which the
amplifier gain is determined by the available power at a node.

While its simplicity is probably the most attractive feature in the
context of low-power sensor networks, it is perhaps also of in-
terest to note that it has been shown to perform very well in the
presence of additive noise under certain conditions [17].

The remainder of this paper is organized as follows: In
Section II we present our system model and formulate the
decentralized detection and fusion problem. Next, in Section III
we analyze the fusion performance of a stochastic Gaussian
signal under the assumption of individual node power con-
straints. Section IV derives the corresponding fusion perfor-
mance and large system error exponents under a global system
power constraint. In Sections III and IV we also present numer-
ical examples and discuss design guidelines that emerge from
our analysis. Finally, in Section V we conclude by summarizing
our results and pointing out further research directions.

II. SYSTEM MODEL DESCRIPTION

Consider a binary hypothesis testing problem in a distributed
sensor system consisting of -nodes and a fusion center. The
null and alternative hypotheses are denoted by and , re-
spectively, having corresponding prior probabilities

and . The th node observation , for
, can be written as

(1)

where the set of observation noise samples and the set of de-
sired signal samples are distributed as , and

, respectively, with denoting the -vector of
all zeros. In this paper, we limit ourselves to the case in which
both s and s are independent and identically distributed
(iid) sequences so that and where is the

identity matrix. Moreover, the noise and the signal
are independent of each other. We define the observation quality
signal-to-noise ratio (SNR) at each node as .

In a distributed network, each node processes its observa-
tion independently to generate a local decision and
communicates it to the fusion center. The fusion center makes
a final decision where is
the received signal at the fusion center. In general, the problem
of distributed detection and fusion involves simultaneous opti-
mization of both local and global (i.e., fusion) decision rules

. However, it is known that
finding those decision rules under general conditions can be a
formidable task [1], [2], [4]. Optimal local processing schemes
have been derived only under certain special assumptions. One
such situation is when the observations are conditionally (con-
ditioned on the true hypothesis) independent under both hypoth-
esis in which all decision rules can be implemented as likelihood
ratio rules. Unfortunately, even in this iid observation case the
optimal thresholds of the likelihood ratio tests can, in general,
be different from sensor-to-sensor.

A class of important local processors are the amplify-and-
relay schemes in which each node amplifies and retransmits its
observation to the fusion center [7]. When local observations
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are corrupted only by additive noise, as in our formulation, am-
plify-and-relay local processing is known to perform fairly well.
Moreover, amplify-and-relay local processing can be an attrac-
tive choice for low-power wireless sensor networks that are be-
coming popular [6], [8]. In this case, the local decisions sent to
the fusion center are simply given by

where is the analog relay amplifier gain at the th node
that depends on either the specified individual node power con-
straint or the global system power constraint on the whole
sensor system. For simplicity, throughout this paper we assume

and for all . [The issue of (distributed) power
allocation in which not all s are the same will be considered
in a future work.]

The th sensor node is assigned a signaling waveform (code)
normalized such that , for . We as-

sume that the number of degrees of freedom (DoF) in the sig-
naling waveform to be [for example, the number of chips
per symbol in a direct-sequence code-division multiple-access
(DS-CDMA) system] so that is a length vector. The mes-
sage of the th sensor is transmitted to the fusion center over
a noisy, bandlimited wireless channel by modulating onto the
signaling waveform . Hence, th sensor’s transmit signal is
given by . Throughout this paper we assume an addi-
tive white Gaussian noise (AWGN) channel and ignores the ef-
fects of fading. Assuming synchronized sensor transmissions,
the received chip-rate sampled signal at the fusion center can be
written as

(2)

where is the sampled (at the chip-rate) white Gaussian re-
ceiver noise with double-sided spectral density so that

. A sufficient statistic for the fusion center processing
is obtained by passing through a bank of matched-filters (each
matched to a signaling waveform of a particular node) [16]. The
output of the bank of matched filters can be written in vector no-
tation as

(3)

where is the -dimen-
sional, filtered noise vector and is the , symmetric
and normalized received signal correlation matrix in which the

th element is given by . It is easy to show that can
be written as where is an matrix with as its

th column. In the special case of orthogonal sensor-to-fusion
center communication, the received signal model (3) simplifies
such that .

Let us define the covariance matrix
and the spectral decomposition of to be .
Under the assumption that the signaling codes of the sensors are
all linearly independent of each other, the set of orthonormal
eigenvectors s forms a complete basis for and s are the
corresponding eigenvalues. With these definitions, it is easy to

show that the fusion problem can be reduced to the following
hypothesis testing problem:

where is the density of under the hypothesis , for
and . It is known that the optimal (e.g., Bayesian,

minimax or Neyman-Pearson) fusion center designs should then
be based on the likelihood ratio . As
shown in Appendix I, this likelihood ratio can be written as

(4)
where are a set of independent, but in general not
identically distributed, zero-mean Gaussian random variables
obtained by projecting the observation vector on to each of
the eigenvectors followed by scaling (see Appendix I). If the
variance of the th sample under is , for and

, then it can also be shown that (see Appendix I)

(5)

The optimal fusion decision rule is given by

(6)

where

and the decision variable is the quadratic form
. In (6), is the original threshold that depends

on the exact optimality criteria. For example, for minimum
probability of error Bayes detection with equal priors
and in an -level Neyman-Pearson design it will be determined
by the false-alarm probability . In this paper, however, we
will only consider Bayesian optimal detectors.1 Thus, the basic
performance criteria is the probability of error of a detector
defined as (with equal priors)

(7)

where and are the false-alarm and miss probabilities, re-
spectively, in a system with sensors. However, only in certain
special circumstances one can evaluate the exact probability of
error of the optimal quadratic detector (6). Even when we
can write the performance in closed form it may still be in terms
of certain special functions that might require numerical com-
putations. While exact, such results may fail to provide insight

1Throughout the paper, we have assumed equal priors. However, it is not dif-
ficult to modify the analysis to take into account non-equal priors. In particular,
the derived optimization results hold verbatim since our error exponents do not
depend on the priors.



JAYAWEERA: DISTRIBUTED STOCHASTIC GAUSSIAN SIGNAL DETECTION 1241

into performance trends and trade-offs. As a result, they may
not lead to useful general conclusions regarding the design of
decentralized sensor systems. A common method in such situ-
ations is to use error bounds and error exponents. While they
may not be exact, in most situations error exponents (and the
bounds based on them) can be more illuminative in character-
izing the performance of a detection procedure. The most com-
monly used bound for Bayesian detection is the Chernoff upper
bound to the probability of error which (assuming equal priors)
can be written as where Chernoff error exponent
is defined as [16]

(8)

In this paper, however, we base our analysis on the so-called
Bhattacharya upper bound. Although somewhat looser than the
Chernoff bound it is much easier to evaluate in situations con-
sidered in this paper. Specifically, the Bhattacharya coefficient
is given by using in the expectation inside the argu-
ment of the logarithm on the right-hand side (RHS) of (8) [16].
We denote the logarithm of the Bhattacharya coefficient by
and call it the Bhattacharya error exponent in parallel with the
Chernoff error exponent defined earlier:

(9)

The Bhattacharya upper bound to the probability of error is then
given by .

III. FUSION PERFORMANCE UNDER INDIVIDUAL

NODE POWER CONSTRAINTS

In this section, we consider the fusion performance in a
system subjected to individual node power constraints. We
assume that each node is subjected to the same fixed av-
erage power constraint so that

, for all . This gives the common gain factor

(10)

Let us also define the channel quality SNR as
and, for brevity, let .

A. Orthogonal Signaling

We first briefly consider the fusion performance of the dis-
tributed sensor system with orthogonal communication from
sensors to the fusion center. Under orthogonal signaling, which
requires , the normalized cross-correlation matrix be-
comes so that all eigenvalues in (4) degenerate such that

for all . As a result, the variances
and for all in (5). Using the definitions of and
we may write them as

(11)

Similarly, the threshold simplifies to
. Following standard techniques it is

straightforward to show that in this case is a Gamma random
variable of the form of under the
hypotheses . The probability of error of the detector (6) can
then easily be shown to be [16]

(12)

where is the Gamma function and
is the incomplete Gamma function.

Investigation of (12) shows that the monotonically im-
proves with increasing for all and . This is of course
well-known in classical random signal detection (see, for ex-
ample, [16]): Including more node measurements always helps
improve the performance. To be complete, in the following
proposition we state without proof the corresponding Chernoff
and Bhattacharya error exponents for the orthogonal signaling.

Proposition 1: The Chernoff and Bhattacharya error expo-
nents with orthogonal signaling, and , respectively, cor-
responding to the Bayesian fusion performance are given by

(13)

and

(14)

where is given by (11) and
in (13).

It can be shown that for all , the above inde-
pendent of the value of indicating the monotonic performance
improvement with increasing . (We omit the details here but it
is not difficult to establish using standard techniques.)

B. Equicorrelated Signaling

In practice, the orthogonal signaling model may not be jus-
tified due to various reasons. Even if one could assign a set of
orthogonal signaling waveforms for all nodes, it is likely that
due to channel dynamics this orthogonality will be lost at the
receiver. In a low-power sensor network the nodes might not
also be perfectly synchronized. Further, in a bandwidth-con-
strained, large sensor network it might be impossible to pro-
vide all nodes with orthogonal waveforms. If we assume that
each node is assigned a length code for channel access,
the number of orthogonal codes available will be limited to
where the largest possible value of will ultimately be lim-
ited by the available communication bandwidth. This makes it
important to investigate the fusion performance of a distributed
sensor system, in general, under nonorthogonal sensor-to-fusion
center communications.

A commonly used nonorthogonal signaling model is the
equicorrelation model in which correlation between any two
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different signaling waveforms is assumed to be the same, so
that

...
...

...
. . .

...
(15)

where is the common correlation between any pair
of received signaling waveforms (in the following analysis we
will assume that . The analysis for negative
follows easily). While (15) may seem somewhat artificial this
model does provide a good approximation for certain commu-
nication scenarios. For example, in the case of Gold codes [18]
and the recently proposed min-TSC (total-squared-correlation)
codes [19], the cross-correlation between any two distinct wave-
forms is guaranteed to be bounded. Moreover, in most situa-
tions of practical interest the waveform correlations may be very
small although not identically zero. In those cases, small varia-
tions in different correlations may be ignored.

The eigenvalues of (15) can easily shown to be
and . As a

result, the decision statistic is a sum of squares of
identical zero-mean Gaussian random variables plus the square
of an additional zero-mean Gaussian random variable with a
different variance (all of them independent). The deviation in
this one sample, however, makes the closed form analysis of
the error probability significantly difficult as we see from the
following proposition.

Proposition 2: The false-alarm and the miss probabilities,
and respectively, of the optimal fusion detector in dis-

tributed stochastic Gaussian signal detection with equicorre-
lated sensor-to-fusion center signaling are

(16)

(17)

where

(18)

and and are defined in (46). In (18), is the
confluent hypergeometric function defined as

where

is the Pochhammer
symbol.

For , the above false-alarm and miss probabilities can
be approximated as

and (19)

Proof: See Appendix II.
Substitution of (16) and (17) in (7) gives the exact fusion

probability of error. To the best of our knowledge there does
not exist simple closed forms for either of the integrals involving
the confluent hypergeometric function in (16) or (17). Thus, for
evaluating (16) or (17) we need to resort to numerical integra-
tion. A reasonable approximation to the fusion probability of
error can be obtained by using (19), especially when the system
size is large. As an alternative, we can consider error exponents
and the related bounds. The following proposition states the
Chernoff and Bhattasharya error exponents for this case:

Proposition 3: The Chernoff error exponent for Bayesian fu-
sion performance in distributed stochastic Gaussian signal de-
tection with equicorrelated sensor-to-fusion center signaling is

where [see (20) at the bottom of the page] with

and . The corresponding Bhat-
tacharya error exponent can be written as

(21)

Note that when we have in (20) (since in this
case due to ). Fig. 1 shows the
exact error probability computed via the numerical integration
of the pdf (19) and the large approximation given in (19).
Clearly, the difference from the exact performance is negligible
unless is very small. Although approximation worsens as
increases, for sufficiently large the approximation becomes
closer to the true error probability even for large values.
Fig. 1 also shows that signaling correlations always tend to
degrade the performance. From (19) note that the difference in

(20)
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Fig. 1. Fusion probability of error with equicorrelated signaling under indi-
vidual node power constraints.

performance from the orthogonal communication essentially
stems due to the replacement of the ratios in (12)
with . However, for it can be seen that

. Thus, a
comparison with the orthogonal signaling reveals that the per-
formance is essentially as if individual node power constraints
were rather than the actual value , at least when
is large. This shows that the effect of nonorthogonal signaling
always degrades the final fusion performance. The larger the
signaling waveform correlation the more the performance
will degrade as one would expect intuitively. On the other
hand, including more nodes always leads to better performance
regardless of the value of .

The performance upper bounds obtained via Chernoff and
Bhattacharya exponents along with the large approximation
to error probability given in terms of the Gamma distribution are
shown in Fig. 2. It can be shown that for small the optimal

, thus making the Bhattacharya exponent as good as
the Chernoff exponent. Similarly, it can be shown that for large

and large

(22)

Thus the Bhattacharya bound is expected to be loose for large
compared to that of Chernoff bound. Note that for sufficiently
large , the optimal (20) that results in the tightest upper
bound of the Chernoff-type decreases with increasing . Hence,
this deviation is worst for smaller values of . This is clear from
Fig. 2.

C. Under Random Signaling

Another widely used model, especially popular in DS-CDMA
spread spectrum communication performance analysis litera-
ture, is the random signaling waveform (code) model. Here it
is assumed that the transmit signaling waveform of the th
sensor is a pseudo-random code of length in which each
element is an independent and identically distributed random
variable with zero-mean and variance , where is the

Fig. 2. The upper bounds and approximation for the fusion probability of error
with equicorrelated signaling under individual node power constraints.

number of degrees of freedom (for example, number of chips
per symbol in a DS-CDMA system). For example, we may
consider the sequences as binary with each element being either

with equal probability although our results hold
under more general conditions [20], [21]. It is also assumed
that s are chosen independently so that the matrix of
transmit waveforms is a random matrix
of iid elements. As aforementioned, the fusion performance
depends on the matrix only through its eigenvalues,
which in this case are themselves random. For simplicity, in the
following we concentrate on Bhattacharya error exponent and
the resulting fusion probability of error bound. The key results
are summarized below.

Proposition 4: Consider a large sensor system with random
signaling in which dimensions and grows without bound
such that . The normalized Bhattacharya
error exponent corresponding to the fusion error probability of
a Gaussian signal with random signaling waveforms converges
almost surely (a.s.) in the limit of a large system to (23), shown
at the bottom of the next page, where we have defined

and

(24)

with
(25)

Moreover, when the Bhattacharya error exponent in a
large system can be written as

(26)
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Proof: See Appendix III.
Note that, (26) asserts that when observation quality at sensor

nodes are good the fusion performance will only be limited by
the communication channel quality . We also have following
two immediate corollaries.

Corollary 1: Regardless of the value of

(27)

where denotes the Bhattacharya error exponent with orthog-
onal signaling.

Proof: It can be verified that, and

(28)

Using these in taking the limit of (23), we obtain the
same expression as that of given in (14).

Since , essentially implies
that . In other words, there are many more DoFs in sig-
naling compared to the number of sensor nodes, meaning that it
is possible provide orthogonal signaling to all nodes. Note that,
in light of this the conclusion (27) of Corollary 1 is immediate.

Corollary 2: In the special case of , the normalized
Bhattacharya exponent converges almost surely to

(29)

Proof: When , integral (51) in Appendix IV simpli-
fies to

(30)

Substituting this in (23) leads to (29).
Fig. 3 shows the exact (random) and asymptotic Bhattachrya

error exponents. It is interesting to note that the asymptotic error
exponent in fact is tight even for relatively small values of .
Under individual node power constraints the probability of fu-
sion error monotonically improves with increasing as one
would have expected. Fig. 3 also shows the performance penalty

Fig. 3. The large system approximation to the Bhattacharya error exponent
with random signaling under individual node power constraints.

due to the use of nonorthogonal sensor-to-fusion center com-
munication via random waveforms. The performance degrada-
tion in terms of the Bhattacharya error exponent (and thus in
terms of fusion error probability) monotonically increases with
increasing . However, it can be shown that the normalized per-
formance penalty defined as is indepen-
dent of , for large . This is of course a consequence of the con-
vergence of the empirical distribution of the eigenvalues. On the
other hand is a function of the observation SNR quality.
Indeed it can be proven that the normalized performance penalty

increases with before finally converging to

(31)

IV. FUSION PERFORMANCE UNDER A TOTAL

AVERAGE POWER CONSTRAINT

Let us now consider a system subjected to a global average
power constraint . In this case we can show that the amplifier
gain is given by

(32)

Note that, as more nodes are introduced the gain at each node
correspondingly decreases. Let us also redefine the channel

(23)
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quality SNR as and, .
In the following, we investigate fusion probability of error
under a total system power constraint for the same three situ-
ations considered earlier.

A. Under Orthogonal Signaling

The exact fusion error probability and its asymptotic be-
havior under orthogonal signaling is summarized in the
following proposition:

Proposition 5: The minimum error probability achieved by
the optimal Bayesian detector for a random Gaussian signal is
given by (assuming equal priors)

(33)

where
and . Moreover, it

exhibits the following asymptotic properties:
(34)

(35)

where and
.

The key observation from Proposition 5 is that, in contrast
to the case of individual node power constraints, the final fu-
sion performance is not monotonic in the number of nodes . In
fact, as can be seen from Fig. 4(a), there is an optimal number
of sensor nodes for each and combination, beyond of
which the performance monotonically degrades. Although this
behavior was observed in [10], it did not address the issue of
deriving the optimal number of nodes, partly because the error
probability expression as given in (33) is too complicated to be
useful for that purpose. Fig. 4(b) shows the convergence of fu-
sion probability of error to the asymptotic bound (35) given in
Proposition 5 for large values.

In order to investigate the optimal number of nodes to be
used in this scenario, we resort to the error exponents. By mod-
ifying Proposition 1, it can be shown that the Chernoff and
Bhattacharya exponents are given by

(36)

(37)

where in (36). Interestingly,
using the fact that for , we can show that

. This indicates that the Bhattacharya upper
bound to the error probability goes to 0.5 hinting that the fusion
error may also degrade in large systems. Fig. 4(a) also shows
the behavior of as a function of for a fixed . (We have
not included since it is very close to for the considered
range of and values.) Clearly there are optimal values of
for which both and are minimized. Moreover, although
the bound could be somewhat loose, the optimal for

Fig. 4. Minimum achievable fusion probability of error in distributed detec-
tion of a random signal with orthogonal sensor-to-fusion center communication
under a global system power constraint. 
 = 20 dB. (a) Exact error probability
and Bhattacharya upper-bound. (b) Limiting behavior for large 
 .

Bhattacharya bound seems to be almost the same as that for
the exact error probability. This motivates us to use the Bhat-
tacharya exponent as the basis for optimizing the sensor system
size due to its relative simplicity. The following proposition
summarizes the solution to the sensor system optimization
problem in the case of orthogonal signaling under a global
power constraint.

Proposition 6: The optimal number of nodes that results
in the minimum Bhattacharya upper bound to the fusion error
probability in a distributed sensor system subjected to a global
power constraint is given by

(38)

where is the unique positive solution to the equation
with

(39)
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Fig. 5. Sensor system-size optimization under a total power constraint. 
 =
20 dB. (a) Function f ( � ). (b) Zero of the function f ( � ).

This optimal number of sensors for a given total power con-
straint can be approximated as follows:

(40)

where .
Proof: See Appendix IV.

The function is shown on Fig. 5(a) as a parameterized
plot. It is a well-behaved, smooth function with a unique zero.
Moreover, as can be seen from Fig. 5(b), for both very small and
very large values of the zero of converges to the limits
specified in Proof of Proposition 6 (for medium values of ,
we need numerical methods to find the unique zero of function

). In Fig. 6 we have shown the optimal number of sensor
nodes for distributed detection of a stochastic signal under a total
power constraint obtained via the exact solution to the zero of

. Fig. 6 shows that indeed the asymptotic solutions given in

Fig. 6. Optimal number of sensor nodes as a function of the observation SNR
for a given channel SNR. The system is under a global system power constraint
with orthogonal sensor-to-fusion center communication.

(40) provide a very good approximation except for a small range
of values for the observation SNR .

B. Under Equicorrelated Signaling

Let us now suppose that the signaling from sensors-to-fusion
center is nonorthogonal with the normalized correlation matrix
given by (15), where is the common cross-correlation
between any pair of received signaling waveforms. The perfor-
mance results derived in Section III-B still hold verbatim once
we replace by . These substitutions in the density of
given by (18) and in (19) specify the exact and the approximate
fusion error probabilities, respectively, under a global power
constraint with correlation matrix (15).

Similarly, corresponding to the eigenvalues
and of

(15) we have and
. Substituting these in Proposi-

tion 4 gives the Chernoff and Bhattacharya error exponent in this
case. Interestingly, in contrast to the orthogonal communication
considered earlier, the optimal in this case is not monotonic
in . However, it can be shown that, for large it does converge
to the following:

(41)

Note that, in agreement with our earlier observations, above
also satisfies .

A plot of the (tightest) Chernoff and Bhattacharya error ex-
ponents shows that, as with individual node power constraints,
the performance degrades as increases. Moreover, again it can
be shown that there is an optimal number of sensor nodes that
results in the lowest upper bound for each . As before, we base
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Fig. 7. Optimal number of sensor nodes as a function of the observation SNR
for a given channel SNR. The system is under a global system power constraint
with equicorrelated sensor-to-fusion center communication.

Fig. 8. The exact and large system approximation to the Bhattacharya error
exponent with random signaling under a global power constraint.

our sensor system optimization on the Bharracharya error expo-
nent. However, unlike in the case of orthogonal sensor-to-fusion
center communication, a direct optimization of as a func-
tion of does not, in general, yield a closed-form expression. In
Fig. 7 we have shown the numerically obtained optimal
as a function of for different and values. As can be ob-
served from Fig. 7, for a fixed and , the optimal de-
creases as a function of . An asymptotic expansion shows that
optimal can be approximated as follows:

(42)

where is the unique zero of the function defined in (53)
in the Proof of Proposition 6. In Fig. 7 we have also included
the above approximations to optimal . Note that, for a fixed

as increases, the approximations in (42) worsen. However,

Fig. 9. Optimal sensor system size under a total power constraint. 
 = 20 dB.
(a) For a fixed observation SNR 
 . (b) For a fixed �.

as long as is not too small, (42) can be used as a
good rule of thumb in optimizing a sensor system. It is inter-
esting to note from (42) that again acts as the effec-
tive channel SNR. This confirms the fact that nonzero can only
degrade the final fusion performance. In general, this is not true
for the fusion of a deterministic signal with analog local pro-
cessing as was shown in [14]. With a deterministic signal, at
least when the system is perfectly synchronized, [14] showed
that the nonzero can improve the fusion performance due to
the effect of beam-forming. The reason is that, with a determin-
istic signal essentially all nodes transmit exactly the same infor-
mation. In particular, when the signals from distributed
nodes create a perfectly directed beam towards the fusion center
thereby exploiting full coherent gain, whereas when the
cooperative beam-forming gain is lost due to the use of orthog-
onal channels to send essentially the same information. In con-
trast, in the case of a random signal, the nonorthogonal signaling
can never improve the final fusion performance as confirmed by
the above results.
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C. Under Random Signaling

Suppose now that the elements of the signaling waveform
of the th node are iid, zero-mean random variables with

variances. For large , the Bhattacharya error exponent
corresponding to the fusion performance of a random signal still
converges to (23) after the replacement of by . As we have
seen several times already the resulting performance however
dramatically changes from that in individual node power con-
straint situation as can be seen from Fig. 8 for . In contrast
to what we saw under individual node power constraints, there
is an optimal number of sensor nodes that results in the best
possible fusion error probability. Moreover, as before, even for
very small the asymptotic error exponent provides a tight ap-
proximation to the exact (random) Bhattacharya error exponent
computed for a specific realization of the matrix .

A plot against will also show that as the error
exponent (23) converges to that of an orthogonal system as
suggested by Corollary 1. As can be seen from Fig. 9(a) the
optimal number of nodes increases as increases for a fixed
set of and whereas decreases as increases for fixed

and as explicitly shown in Fig. 9(b). It is interesting to
note that the dependance on seen in Fig. 9(b) is the same as
that observed in Fig. 6 for orthogonal signaling. In particular,
it is easy to see that as , the optimal number of nodes
in Fig. 9(b) for the case of random signaling indeed seems to
agree with that shown in Fig. 6. This is of course a consequence
of Corollary 1.

V. CONCLUSION

This paper analyzed the fusion performance of a stochastic
Gaussian signal in a distributed sensor system under power and
spectral constraints. Both average individual node power con-
straints as well as average total system power constraints were
investigated under the assumption of analog relay-amplifier
local processing. One of the main results is that in the case of
a global average power constraint, there is an optimal number
of local decisions that results in the best error performance at
the fusion center, in contrast to the monotonic performance
improvement observed in the decentralized detection of a
deterministic signal (subjected to a global power constraint)
as in [9]. Thus, there is a fundamental difference in the fusion
performance behavior of deterministic and random signal
distributed detection under a total system power constraint.
Beyond this optimal value the performance degrades as the
number of sensors is increased.

The fusion performance was investigated with: 1) orthog-
onal; 2) equicorrelated; and 3) random signaling waveforms for
sensor-to-fusion center communication. Since only in certain
situations Bayesian fusion performance can be derived in closed
form, our analysis was based on the Chernoff and Bhattacharya
upper bounds to the fusion error probability. We also proposed

a sensor system optimization method based on Bhattacharya co-
efficient that leads to simple rules for determining the optimal
number of nodes under a global average power constraint. The
results showed that for a fixed observation quality SNR and a
fixed global power constraint , the optimal number of nodes

monotonically increases with increasing spectral efficiency
parameter . On the other hand, for a fixed spectral efficiency
level and a fixed , optimal decreases as increases. We
also showed that nonorthogonal signaling in general leads to de-
graded fusion performance. Possible future work includes, ob-
taining closed-form expressions for the optimal sensor network
size in random signaling case, nonuniform power allocation
across the sensors and consideration of other local processing
schemes (in particular, quantized decisions).

APPENDIX I
DERIVATION OF (4)

It is easily seen that the likelihood ratio can be written as

(43)

Noting that s form a complete, orthonormal basis for we
have that and

. Using these in (43) leads to (44), shown at the
bottom of the page. If we define a new set of random variables,
for , as

(45)

then, by virtue of the orthonormality of s, it is easy to show
that s are a set of zero-mean and independent Gaussian
random variables under both hypotheses that is equivalent to
the original statistic . Substitution of (45) in (44) leads to
(4). From (45) it is easy to verify that the variances , for

and , are given by (5).

APPENDIX II
THE PROOF OF PROPOSITION 1

Let us denote the common variance of under
as and that of as , where, from (5)

(46)

and is defined similarly by replacing s in (46) by .
Let us defined and such that

. Then it follows that under

(44)
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and . The
pdf of the decision statistic can then shown to be

(47)

We obtain (18) from (47) by making use of the in-
tegral tables from [22] followed by the substitutions

and where
is the beta function.

For large we may write
. Using this in (18), followed by proper

normalization (required for any valid pdf) shows that in
the case of large , we may approximate

. This leads to approximate error probabil-
ities as specified by (19) for .

APPENDIX III
PROOF OF PROPOSITION 4

Denote the empirical distribution of the eigenvalues of by
, where is the indicator func-

tion of set . Notice that, for any finite is a random
distribution. However, under the assumption of iid random el-
ements of the matrix with mean zero and variance ,
as the matrix dimensions and grows without bound such
that , it is known that converges al-
most surely to a deterministic distribution with the corre-
sponding density that only depends on the ratio as shown
[20], [21], [23]: [see (48) at the bottom of the page], where
is the Dirac-delta function, , and and

are defined in (25).
By substituting for from (5) in the definition in (9), fol-

lowed by the application of the definition of empirical eigen-
value distribution we can then show that

(49)

Then by the convergence of the empirical eigenvalue distribu-
tion to a deterministic distribution with density , in the limit

of a large system the normalized Bhattacharya error exponent
converges almost surely to

(50)

Now, from the results in [24] one can verify the following inte-
gral identity

(51)

that is valid for any , where function
is as defined in (24). Substitution of (51) in (50) results in the
asymptotic expression for the Bhattacharya error exponent as
given in (23) of the Proposition 4. The large asymptotic (26)
follows by applying standard limit theorems.

APPENDIX IV
PROOF OF PROPOSITION 6

We obtain (38) by differentiating (37) with respect to and
letting

(52)

For , using of standard limit techniques it is straightfor-
ward to see that (39) reduces to

(53)

Thus, for , the optimal converges to , the zero of
in (53). Substituting in (38) and using the fact

that gives . Numerical techniques can be
used to show that the unique zero of is .

Since implies that , using the fact that
for small , we have that
. Substitution of (39) gives

if

otherwise
(48)
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the solution which, when used in (38), leads to
for .
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