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Signal-Processing-Aided Distributed Compression in
Virtual MIMO-Based Wireless Sensor Networks

Sudharman K. Jayaweera, Member, IEEE, Madhavi L. Chebolu, and Rakesh K. Donapati

Abstract—An adaptive signal-processing-aided distributed
source coding scheme for virtual multiple-input–multiple-output
communication-based wireless sensor networks (WSNs) is
proposed. A computationally inexpensive distributed compression
scheme that exploits the spatiotemporal correlations of sensor
data is implemented with the aid of a recursive least squares
(RLS)-based adaptive correlation tracking algorithm. The tracked
correlation is used to compute side information that assists in
distributed source compression. The proposed virtual space–time
block coding and RLS-based compression side information are
shown to improve energy efficiency at distributed nodes compared
to previously proposed schemes with single-input–single-output
communication. A semi-analytical approach is developed for
energy efficiency analysis over different channel conditions and
transmission distances. The energy efficiency performance of the
proposed design is evaluated on real WSN data. The results show
that the proposed integrated system outperforms conventional
designs beyond certain transmission distance thresholds and leads
to lower decoding errors, which makes it a good candidate for
energy-aware WSNs.

Index Terms—Adaptive signal processing, distributed com-
pression, energy efficiency, virtual multiple-input–multiple-output
(V-MIMO), wireless sensor networks (WSNs).

I. INTRODUCTION

A TYPICAL wireless sensor network (WSN) consists of a
set of spatially distributed sensor nodes that is wirelessly

connected to a data-gathering node (DGN). Usually, the dis-
tributed nodes are battery operated. In many applications, their
replacement can be expensive and/or difficult [1], which makes
energy efficiency of paramount importance in designing large-
scale, low-cost, and reliable sensor networks.

Naturally, one way to conserve node energy is to compress
sensed data before transmission to the DGN. Of course, there
are other possible information processing techniques that re-
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duce energy consumption at network nodes. Some of these
alternatives that have been explored in recent years include,
for example, packet/data aggregation, energy-aware medium-
access control protocols, and energy-efficient routing protocols
[2]. The data compression in a distributed sensor network,
however, can be challenging if intersensor communication
among data collection nodes is to be avoided (or minimized).
A compression scheme that exploits spatiotemporal data corre-
lations while completely avoiding intersensor communication
was proposed in [3]. Building on this basic compression algo-
rithm, in this paper, we first develop a scheme that achieves
better compression rates via better correlation tracking and data
modeling.

An alternative approach for node energy conservation in any
communication system is to reduce the per-bit-energy required
for communication between the transmitter and the receiver. In
a WSN, any improvement on this front can be a significant
gain since, in most situations, the transmission energy is the
dominant power consumption term. A promising solution that
has gained wide applicability in cellular and wireless local-
area networks (WLAN) and that provides previously unimag-
inable data rates and reliable transmission performance in
the presence of channel fading is the multiple-input–multiple-
output (MIMO) technique based on dual antenna arrays [4]–[8].
Different MIMO techniques such as space–time block coding
(STBC) [9], [10], space–time trellis coding [11], and layered
space–time designs [12] have been extensively studied for
wireless cellular and WLAN systems during the past decade.
However, MIMO techniques often require complex transceiver
circuitry, sophisticated signal processing, and large physical
dimensions to accommodate multiple antennas. Since the nodes
in low-power WSNs are usually subjected to constraints on
energy and physical dimensions, direct application of such
MIMO techniques to wireless sensor systems does not seem
realistic. The recently proposed virtual MIMO (V-MIMO) con-
cept, however, allows the realization of MIMO techniques in a
network of distributed nodes, each having only a single antenna,
via node cooperation and the so-called local communications
among nodes [13], [14]. In this paper, we integrate the above
side-information-aided distributed compression scheme with
the V-MIMO communication architecture of Cui et al. [13]
and Jayaweera [14] that is based on distributed STBC. As
we will note later, the proposed V-MIMO scheme necessarily
requires data exchange among sensor nodes. However, an effi-
cient integrated design is achieved by performing this exchange
only on compressed data and limiting it to only the closest
nodes. Note that the distributed STBC scheme of Cui et al. [13]
and Jayaweera [14] is just one example of node cooperation
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in WSNs. In general, there is a significant amount of work
on node cooperation and cooperative diversity in wireless
networks [15]–[23]. Various forms of distributed space–time
coding approaches have also been studied previously in [24]
and [25]. A joint source–channel coding approach based on
node cooperation in an additive white Gaussian noise (AWGN)
channel, which can be viewed as a special case of the proposed
V-MIMO scheme for fading channels, has previously been
proposed in [26]. While a multiple-relay channel with a single
source and a destination is strictly different from cooperative
wireless networks, the two problems are of course somewhat
related. The information-theoretic aspects of wireless networks
with multiple relaying have recently been investigated, among
others, in [27]–[29].

The remainder of this paper is organized as follows. In
Section II, we describe our sensor network model and the
integrated system design with V-MIMO communication and
signal processing-aided distributed compression. In Section III,
we present the proposed recursive least squares (RLS)-based
correlation-tracking algorithm and an efficient encoding side-
information computation method based on proper data mod-
eling. In Section IV, we develop a semi-analytic approach
to evaluate the energy consumption of the integrated system
that takes into account both transmission and circuit power
consumption in nodes. In Section V, we provide performance
results of the proposed integrated design based on real WSN
data. Finally, Section VI concludes this paper by discussing
possible extensions.

II. PROPOSED INTEGRATED SYSTEM DESCRIPTION

We consider a typical WSN model in which a collection of
low-end (limited-energy) sensor nodes are wirelessly connected
to a high-end DGN that has no energy constraints. The dis-
tributed low-end sensors observe a physical phenomenon of
interest and collect periodic data samples. The sensor nodes
represent their observations using n-bits. Since node observa-
tions correspond to a common physical process, naturally, they
are expected to be both spatially and temporally correlated.

The energy consumption in low-end nodes can be reduced by
compressing n-bit observations by exploiting redundancy due
to these inherent spatiotemporal correlations. Of course, one
would like to perform this compression without any intersen-
sor communications. The theoretical foundation for distributed
compression that avoids intersensor communication is provided
by the Slepian–Wolf theorem [30]. In the proposed design, we
make use of an algorithm for distributed source compression
with side information proposed in [3] to avoid intersensor
communication. According to this scheme, all sensor nodes
agree on a common tree-structured codebook that is also known
to the DGN. The root node of the code tree is assigned all
possible data points (2n sample points). Next, the tree is de-
veloped by assigning data points of a parent node alternatively
to its two children nodes. Thus, the code tree will have n-
levels. The tree branches are labeled with 0 or 1 depending on
whether its direction is to the left or to the right of a parent
node, respectively. Here, we omit further details of codebook
construction and refer the interested readers to [3].

Note that, according to this construction, the ith level of
the tree consists of 2i nodes, and each of these nodes can be
given a unique label using only i ≤ n bits. In fact, the i bits
corresponding to the branch labels from the root node to a given
node provide such a unique label. Each node at the ith level,
however, represents 2n−i number of sample points that is called
a subcodebook. Once correctly informed to which subcodebook
an observed data point corresponds at the ith tree level, there
is a way for the DGN to pick the true data point out of these
2n−i possible choices in a particular subcodebook; then, it
is enough for each node to send only those i-bit node labels
to the DGN. This is precisely what our assumed distributed
source compression scheme from [3] does. The value of i
to be used is the encoding side information provided by the
DGN to each node. Formally, let us denote the observation of
sensor j at time k by X(j)

k and the encoding side information
provided by the DGN to node j at time k by i(k, j). The

source encoding operation at node j first computes f(X(j)
k ) =

index (X(j)
k ) mod 2i(k,j). The i(k, j)-bit binary representation

of f(X(j)
k ) is the bit stream that specifies the path from the root

codebook to the subcodebook S at level i(k, j) that contains the
data point X(j)

k . The compressed data that node j transmits at

time k are thus the i(k, j)-bit binary representation of f(X(j)
k ).

Clearly, the above distributed source encoding scheme does
not require node j to know anything about the observations of
other nodes. Hence, it completely avoids intersensor commu-
nication. The only thing the node j needs is the encoding side
information i(k, j). In essence, the value i(k, j) summarizes the
correlation structure between X(j)

k and other nodes. However,
it is computed by the DGN that tracks the data correlation
structure, and fed back to the distributed nodes. Consequently,
low-end nodes can blindly encode their observations, which
leads to lightweight encoders.

Assuming that the i(k, j) bit stream from node j representing
f(X(j)

k ) is received at the DGN correctly, the first step in
decompression process is to use this bit sequence to trace to the
subcodebook S at the i(k, j)th level. Next, the observationX(j)

k

is decoded as X̂(j)
k = arg min

rm∈S
‖Y (j)

k − rm‖, where X̂(j)
k is

the decoded reading, Y (j)
k is the prediction ofX(j)

k at the DGN,

S is the subcodebook to which the actual readingX(j)
k belongs

to, and rm is the mth codeword in the subcodebook S for
m = 1, . . . , 2n−i(k,j). It was shown in [3] that if the difference
between X(j)

k and its prediction Y (j)
k at the DGN is less than

2i(k,j)−1∆, where ∆ is the quantization step of the analog-to-
digital converter (ADC), then the reconstruction X̂(j)

k will be
perfect, and decoding errors will be avoided. For this reason,
2i(k,j)−1∆ is defined as the tolerable prediction noise level.

As will be explained in Section III, in this paper, we em-
ploy an RLS-based adaptive spatiotemporal prediction filter
to generate prediction Y (j)

k at the DGN. The prediction error

e
(j)
k = Y (j)

k −X(j)
k is modeled as a zero-mean Gaussian ran-

dom variable. This model is used to compute the encoding side
information i(k, j) that is fed back to the distributed nodes, as
shown in Section III.
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Fig. 1. (a) Sensor cluster formation and encoding information transmission by the DGN. (b) Local and long-haul communications.

In the proposed integrated design, V-MIMO communica-
tion is used to transfer the compressed bits from each node
[i.e., the binary representation of f(X(j)

k )] to the DGN. The
V-MIMO technique proposed in [13] and [31] exploits node
cooperation to overcome the problem of having a single antenna
at each node. Note that while there have been several V-MIMO
proposals for sensor networks in recent years [13], [14], [26],
[32], in this paper, we confine ourselves to distributed STBC
[9] withM -ary quadratic-amplitude modulation (QAM).

In V-MIMO, a set of nodes close to each other forms a
cluster as in Fig. 1(a). Each node in the network associates
itself with at least one predetermined cluster. Note that the
distance between nodes in a cluster is assumed to be consid-
erably less than the distance between a cluster and the DGN.
Virtual space–time block encoding is performed in a cluster
as if cluster nodes were elements of an antenna array. This
requires all cluster nodes to have the same input data sequence
necessitating intersensor communication. However, intersensor
communication is performed after the distributed compression
of sensor observations (as explained above), thereby reducing
the amount of data exchange. Further, we assume that the
DGN broadcasts the updated encoding information i(k, j) of
each sensor of a cluster once every Te seconds. (Hence, each
node knows the encoding information of others within its own
cluster.) At each node, the compressed data corresponding to
all Ne samples within the entire period of Te are concatenated
into a single stream of i(k, j)Ne bits. Local communication
among cluster members is performed once every Te seconds
to exchange these compressed data streams corresponding to
blocks ofNe samples. The transmission of data from a cluster to
the DGN is known as long-haul communication [see Fig. 1(b)].

Let us assume that each node in a cluster transmits its
data during the local communication step using M -ary QAM.
The nodes share the wireless channel via time-division mul-
tiplexing. When the length of the bit stream i(k, j)Ne is not
divisible by log2M , theM -QAM implementation may require
Nd number of tail bits to be added to the data stream. At the
end of the local communication step, the original data bits can

be demodulated simply by removing the extra tail bits (this
is possible since each node knows i(k, j) values of others in
its cluster). The proposed block-based local communication of
once every Te seconds reduces the extra energy needed to spend
on tail bits. Also, it should be emphasized that the required
intersensor communication is considerably reduced since local
communication is performed only on compressed data.

At the end of the local communication step, each cluster
node combines data symbols broadcasted by all the nodes in
its cluster into a single stream. Once this is done, each node in
a cluster acts as if it were an element of a centralized antenna
array. Thus-formed virtual antenna array then space–time block
encodes the cluster data sequence that is to be sent to the DGN.
This assumes that the data streams at all antenna elements
(sensor nodes) are the same. In practice, channel errors dur-
ing local communication may result in unequal data streams
at cluster members, which leads to error propagation. It is,
however, reasonable to assume that a sufficiently small error
rate can be ensured during local communication with judicious
choice of system parameters since clusters have a small radius
that leads to relatively small transmission power requirements.
Let us denote the symbol stream of the jth node by b(j)k and
consider, for simplicity, a cluster consisting of only two nodes.
At the end of local communication, two nodes in the cluster
have following symbols at time k: 1) b(1)k and b̂(2,1)

k at node 1;
and 2) b(2)k and b̂(1,2)

k at node 2, where b̂(j,j
′)

k is the estimate
of b(j)k at node j′. The space–time block encoding (which, in
this case, is the Alamouti scheme) is implemented as follows:
At the first time instant, nodes 1 and 2 transmit b(1)k and b(2)k ,
respectively. At the second time instant, nodes 1 and 2 transmit
−(b̂(2,1)

k )∗ and (b̂(1,2)
k )∗, respectively.

Note that a cooperative source-channel coding scheme hav-
ing essentially the same local and long-haul communication
steps as above has previously been proposed in [26]. How-
ever, there are notable differences. First, Murugan et al. [26]
assumed an AWGN channel. Thus, effectively, the MIMO
(or cooperative) gain in [26] is achieved by using a (spatial)
repetition code without having to use any elaborate space–time
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(block) code. Moreover, in [26], the distributed compression is
achieved using punctured low-density parity check codes. The
implementation requires that each node be able to turbo-decode
the received data during local communications. This can, of
course, lead to complex node design requirements, whereas
the proposed approach does not require such decoders at
distributed nodes.

III. ADAPTIVE SIGNAL-PROCESSING-AIDED SIDE

INFORMATION COMPUTATION

A. RLS-Based Correlation Tracking Algorithm

Without loss of generality, let us assume that the sensors
are labeled according to the order they are decoded at the
DGN, starting with a reference sensor. In general, the DGN’s
prediction Y (j)

k of sensor reading X(j)
k is formed using a linear

combination of M1 past readings of the jth sensor, and current
andM2 past readings of already decoded sensors as follows:

Y
(j)
k =

j−1∑
l=1

α
(j)
l X

(l)
k +

M1∑
i=1

β
(j)
i X

(j)
k−i +

j−1∑
i=1

M2∑
l=1

ξ
(j)
l,i X

(i)
k−l

(1)

where α(j)l , β(j)i , and ξ(j)l,i are the weighting coefficients. Note
that (1) is a generalization of the linear predictive model pro-
posed in [3]. As we will discuss in Section V, the inclusion of
past readings leads to improved performance both in terms of
node energy efficiency and decoding error rates at the expense
of increased computational complexity at the DGN.

In vector form, (1) can be written as Y (j)
k = θ(j)T z(j)(k),

where, with M2 = 0 for brevity, θ(j) = (α(j)1 , α
(j)
2 , . . . ,

α
(j)
j−1, β

(j)
1 , . . . , β

(j)
M1

)T , z(j)(k)= (X(1)
k ,X

(2)
k , . . . , X

(j−1)
k ,

X
(j)
k−1, . . . , X

(j)
k−M1

)T , and the superscript T denotes the
transpose of a vector or a matrix (note that the following vector
equations apply to the general case with nonzero M2). The
prediction error is given by

e
(j)
k = X(j)

k − Y (j)
k = X(j)

k − θ(j)T z(j)(k). (2)

In the previously proposed approaches to computing side
information at the DGN, the prediction coefficient vector θ(j)

was chosen to minimize the mean squared error (MSE) defined

asE[e(j)k

2
] and adapted with the well-known least mean squares

(LMS) algorithm [3]. On the other hand, in this paper, we
propose to choose the filter coefficient vector θ(j) to minimize
the weighted least-squares prediction error at time k defined as
J(k) =

∑k
n=0 λ

k−n|e(j)n |2, where 0 < λ < 1 is the so-called
exponential forgetting factor. Note that unlike the minimum
MSE solution that is the same for all sequences of data having
the same statistics, the least-squares solution that minimizes
J(k) depends explicitly on the particular realization of data.

Setting the derivative of J(k) with respect to θ(j)(k) to zero
gives the least squares solution

θ
(j)
opt(k) = (R(j)(k))−1 r(j)zx (k) (3)

where R(j)(k) =
∑k

n=0 λ
k−nz(j)(n)z(j)T (n) is the exponen-

tially weighed deterministic autocorrelation matrix of data,
and r(j)zx (k) =

∑k
n=0 λ

k−nz(j)(n)X(j)
n is the cross correlation

between data z(j)(n) and the desired output X(j)
n .

In practice, θ(j)opt(k) in (3) needs to be updated for each k.

If at the kth time instant θ(j)(k) = (R(j)(k))−1r(j)zx (k), then it
can be shown that the recursive update of the coefficient vector
at the (k + 1)th time instant is

θ(j)(k + 1) = θ(j)(k) + g(j)(k + 1)e(j)k+1 (4)

where g(j)(k + 1) is the gain vector defined as

g(j)(k + 1) =
λ−1(R(j)(k))−1z(j)(k + 1)

1 + λ−1z(j)T (k + 1)(R(j)(k))−1z(j)(k + 1)
.

It is well known that a faster rate of convergence as well as a
relatively smaller prediction error can be obtained with an RLS-
based adaptive algorithm compared to that of an LMS-based
approach. Thus, it can be argued that the proposed method is
better suited for highly dynamic data environments requiring
a faster rate of convergence than that offered by the LMS-
based approach. In addition, the smaller prediction error leads
to better energy efficiencies at the distributed nodes and smaller
decoding errors at the DGN, as we will show in Section V.

B. Encoding Side-Information Computation

As mentioned earlier, if the actual reading X(j)
k and the

prediction Y (j)
k are not more than 2i(k,j)−1∆ apart, then X(j)

k

will be decoded correctly at the DGN. Assuming that the pre-
diction error e(j)k is distributed with a zero mean and a variance
σ2

e
(j)
k

, Chou et al. [3] bounded the probability of decoding

error as P [|e(j)k | > 2i(k,j)−1∆] ≤ σ2
e
(j)
k

/(2i(k,j)−1∆)2 via the

Chebyshev inequality. If the probability of decoding error is to
be less than a given threshold Pe, then the required encoding
side information is

i(k, j) =
1
2

log2


 σ2

e
(j)
k

∆2Pe


 + 1. (5)

However, experiments with real sensor data show that, typ-
ically, it is reasonable to assume that the prediction error e(j)k

is Gaussian distributed. If we assume that e(j)k is Gaussian
with zero mean and a variance of σ2

e
(j)
k

, the probability of

decoding error can then be approximated as Pe = P (|e(j)k | >
2i(k,j)−1∆) ≈ 2Q(2i(k,j)−1∆/σ

e
(j)
k

), where Q(.) denotes the

standard Gaussian tail distribution function. This leads to the
following new expression for the encoding side information:

i(k, j) = log2

(σ
e
(j)
k

∆
Q−1

(
Pe

2

))
+ 1 (6)

where Q−1(.) denotes the inverse Q-function. As we will
confirm via experimental results in Section V, the Gaussian
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model based encoding side-information computation method
seems to be efficient in most situations.

Computing i(k, j) via either (5) or (6) requires knowledge
of the prediction error variance σ2

e
(j)
k

at the DGN. In order to

initialize the correlation tracking algorithm, the DGN queries
all sensors for their uncompressed readings for a training period
ofNtr samples before starting real-time operation. At the end of
this training period, the prediction error variance is initialized
using the unbiased estimate σ2

e
(j)
k

=(1/(Ntr − 1))
∑Ntr

k=1|e
(j)
k |2.

In order to track the time-varying nature of the sensed data,
this initial estimate is iteratively updated during real-time data
compression using the filtered estimate

σ2
e
(j)
k+1

= (1 − γ)σ2
e
(j)
k

+ γe(j)k

2

where 0 ≤ γ ≤ 1 is a forgetting factor accounting for the
effects of sudden (impulsive) variations in sensed data [33], and
the prediction error e(j)k is computed in decision-directed mode.

IV. ENERGY ANALYSIS OF THE INTEGRATED SYSTEM

The two main components of power consumption along a
signal path are due to that of power amplifiers and the circuit
blocks of sensors, which are denoted, respectively, by PPA and
PC [13], [14]. The amplifier power consumption term can be
approximated as in [13] and [14] as

PPA = (1 + α)Pout (7)

where α = ξ/η − 1, where η is the drain efficiency of the radio
frequency power amplifier, and ξ is the peak-to-average ratio.

If M -QAM is used, then ξ = 3
(
(M − 2

√
M + 1)/(M − 1)

)
[13]. The transmit power Pout can be determined as

Pout =
(4π)2dκMlNf

GtGrλ2
ĒbRb (8)

where d is the transmission distance, κ is the path loss ex-
ponent, Gt and Gr are the transmitter and receiver antenna
gains, respectively, λ is the carrier wavelength, Ml is the link
margin,Nf is the receiver noise figure, Ēb is the average energy
per bit required for a given bit error rate (BER) P̄b, and Rb is
the system bit rate. The receiver noise figure Nf is given by
Nf = Nr/N0, where Nr is the power spectral density (PSD)
of the total effective noise at the receiver input, and N0 is the
single-sided thermal noise PSD at room temperature.

The energy spent by a node can be computed in two steps: en-
ergy spent for local communication and that spent for long-haul
communication. During local communications, the power con-
sumed by the circuit blocks of a node in broadcasting its data
can be approximated as P (LocTx)

C ≈ PDAC + Pmix + Pfilt +
Psynth, where PDAC, Pmix, Pfilt, and Psynth are the power con-
sumption values of the digital-to-analog converter, the mixer,
the active filters at the transmitter side, and the frequency
synthesizer, respectively. Similarly, the node circuit power con-
sumption in receiving broadcasted data from other nodes in its
cluster can be given by P (LocRx)

C ≈ Psynth + PLNA + Pmix +
PIFA + Pfilr + PADC, where PLNA, PIFA, Pfilr, and PADC

are the powers consumed by low noise amplifier (LNA), the
intermediate frequency amplifier (IFA), the active filters at the
receiver side, and the ADC, respectively.

Since local communication is over a very short distance, the
local channel is assumed to be AWGN. Suppose further that we
use M -QAM with b = log2M . Then, for a fixed average BER
of P̄b, we have

ĒLoc
b =

(M − 1)No

3b


Q−1


 P̄b b

4
(
1 − 1√

2b

)





2

(9)

if b ≥ 2 and even. When b is odd, ĒLoc
b can be approximated

by dropping the term (1 − (1/
√

2b)) in the denominator of the
argument of inverseQ-function in (9) [14]. The power amplifier
power consumption during local communication P (Loc)

PA is then
computed from (7) and (8), where Ēb and d are replaced with
ĒLoc

b in (9) and the worst-case distance dLoc between any pair
of sensors within a cluster, respectively.

Let R(Loc)
b denotes the bit rate for local communication.

The total energy consumption per bit (at a node) for local
communication in V-STBC can then be estimated as

ELocal
t =

P
(Loc)
PA + P (LocTx)

C + (Ns−1) × P (LocRx)
C

R
(Loc)
b

. (10)

As no energy constraints are assumed on the DGN, the
total circuit energy consumption of a cluster during long-haul
communication can be approximated as P (Long)

C ≈ (PDAC +
Pmix + Pfilt + Psynth) ×Ns. Let us denote the power amplifier
energy consumption per cluster during long-haul communica-
tion by P (Long)

PA . Again, P (Long)
PA can be computed from (7) and

(8) by assuming that Ēb = ĒL
b and d = dLong, where ĒL

b is the
per bit energy per cluster for long-haul communications, and
dLong is the distance between the cluster and the DGN. Note
that it is the long-haul communication over a fading channel
that benefits from the proposed V-MIMO communications. For
a 2 × 1 Alamouti system, under the assumptions of a Rayleigh
fading channel and BPSK modulation, ĒL

b can be computed
by inverting (throughout this paper, we assume that DGN has
perfect knowledge of the channel fading coefficients)

P̄b =
1
4


1− 1√

1+ 1
ĒL

b

/2No



2
2+

1√
1 + 1

ĒL
b

/2No


 . (11)

The BER of an M -ary QAM STBC-based 2 ×NR MIMO
system (M = 2b) with a square constellation (i.e., b is even)
for b ≥ 2 can be shown to be given by

P̄b =
4
b

(
1 − 1

2b/2

)
1

22NR


1 − 1√

1 + 1
ĒL

b

/2No




2NR

×
2NR−1∑

k=0

1
2k

(
2NR − 1 + k

k

) 
1+

1√
2 + 1

ĒL
b

/2No




k

. (12)
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When b ≥ 2 is odd, we can use (12) as an upper bound for the
BER after dropping the term (1 − (1/2b/2)). By (numerically)
inverting (12), Ēb

L can be computed for a fixed P̄b.
If we denote by Rb

(Long) the bit rate for long-haul commu-
nication, then the total energy consumption per bit for a cluster
during long-haul communication can be approximated as

ELong
t =

PPA
(Long) + P (Long)

C

Rb
(Long)

. (13)

To be complete, we need to take into account three additional
energy terms that arise due to the following: 1) initial training;
2) reception of encoding information i(k, j); and 3) extra tail
bits. Recall that during the initial system training, each node
accumulates Ntr samples and broadcasts them (uncompressed)
to other nodes in its own cluster via local communication. Once
every node has samples of all other nodes in its own cluster,
the cluster sends all these samples to the DGN via distributed
STBC. Thus, the total energy required for the initial training
of all Ns nodes in a cluster is ETr = (ELocal

t + ELong
t ) × n×

Ns ×Ntr, where n is the bits per sample at the output of ADCs.
In order to quantify the energy spent by distributed nodes

in receiving encoding side information i(k, j), let us assume
that each node has a total of L data samples (including training
samples) to be sent, and the bit rate of the feedback channel
is also R(Long)

b . Since encoding side information is assumed
to be updated once every Ne samples, the number of times
the encoding side information is received by a node is r =
(L−Ntr)/Ne. Note that since i(k, j) ≤ n, the encoding side
information can be represented by using log2(n) bits. Since
each node receives all its fellow cluster members’ encoding in-
formation, the total energy consumption by all nodes of a given
cluster in receiving the encoding side information is ERe =
r × Ere

t × log2(n) ×N2
s , where Ere

t is the reception energy
per bit per node that can be given by Ere

t = P (LocRx)
C /RLong

b .
The number of tail bits added in mapping to M -ary

QAM during local and long-haul communications is
N local

d =
∑Ns

j=1

∑r−1
p=0[Nei(pNe+Ntr+1, j)] mod log2M and

N long
d =

∑r−1
p=0([Ne

∑Ns

j=1 i(pNe+Ntr+ 1, j)] mod log2M),
respectively. Hence, the total energy spent on tail bits in the case
of V-STBC is EExtra = ELocal

t ×N local
d + ELong

t ×N long
d .

Thus, the total energy consumed by the proposed V-MIMO-
based system in collecting L data samples from all Ns sensors
of a cluster can be written asETotal = EComp + ETr + ERe +
EExtra, where EComp is the total energy spent in transmitting
the compressed real-time data samples to the DGN given by

EComp =
(
ELocal

t + ELong
t

) Ns∑
j=1

L∑
k=Ntr+1

i(k, j). (14)

In the following section, we characterize the energy effi-
ciency of the proposed integrated system with respect to
three reference systems. First is a single-input–single-output
(SISO)-based system in which all nodes send their uncom-
pressed readings to the DGN (i.e., SISO with no compres-
sion). The total energy consumption of this system is ERef1 =
L× ESISO

t ×Ns × (n+ n mod log2M), where ESISO
t is the

TABLE I
COMPARISON OF ENERGY SAVINGS FOR THE PROPOSED RLS-BASED

ALGORITHM AND THE ALGORITHM IN [3] WITH ZERO DECODING ERRORS

per-bit energy of a SISO system in Rayleigh fading. Note
that ESISO

t is computed using (7) and (13) as ESISO
t =

(P (SISO)
PA + P (LocTx)

C )/R(SISO)
b , where R(SISO)

b is the bit rate

of the SISO system. In this case, P (SISO)
PA is computed

as in (8) with d = dLong and Ēb = (2(M − 1)No/3b) ((1 −
(P̄b b/2(1 − (1/

√
2b))))−2 − 1)−1.

In the second reference system, all nodes encode their read-
ings using the proposed RLS-based distributed compression
algorithm but employ SISO communication (i.e., SISO with
compression). In this case, the overall energy consumption
of the system is ERef2 = Ecomp + ESISO

t × (Ntr × n×Ns +
NSISO

d ), where Ecomp = ESISO
t ×

∑L
k=Ntr+1

∑Ns

j=1 i(k, j),
andNSISO

d = N long
d . Note that, here, we also assume that nodes

send compressed readings to the DGN in blocks ofNe samples.
The third reference system uses virtual multiple-antenna

clusters but no distributed source compression (i.e., V-MIMO
without compression). The total energy consumption of this
system is given by ERef3 = (ELocal

t + ELong
t ) ×Ns × L×

(n+ n mod log2M).
The energy efficiency ηE of the integrated system with

respect to any of the above reference schemes is defined as
ηRefE =

(
(ERef − ETotal)/ERef

)
× 100%, where ERef can be

either ERef1, ERef2, or ERef3.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section, we first demonstrate the performance im-
provements obtained by the proposed RLS-aided distributed
compression scheme compared to that of the LMS-aided
method previously suggested in [3]. To be fair, we use exactly
the same humidity, temperature, and light data sets that were
used in [3]. In all cases, a 12-bit ADC is assumed so that
n = 12. In case of humidity and temperature, the network had
Ns = 5 nodes, while for light data, the network had Ns = 4
nodes. As can be observed from Table I, the proposed RLS-
aided scheme offers an improvement of 10%–15% in energy
savings compared to that of the algorithm in [3]. To be fair
in comparisons, the encoding side information in these re-
sults was computed via (5), and M2 = 0, as assumed in [3].
We further investigated the effect of nonzero M2 on energy
efficiency with both the proposed RLS-based approach and
Chou et al.’s [3] LMS-based approach. Our results indicate that
including a reasonably small number of past observations in
the prediction model (M2 = 4, for example) may improve the
energy savings by an additional 5%–10%. This performance
gain stems from the better correlation tracking achieved by
the modified prediction model (1). For example, Fig. 2(a)
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Fig. 2. (Dotted line) Tolerable noise versus (solid line) actual prediction noise for humidity data set (Pe = 0.001, γ = 0.5, µ = 10−5, T = 100, and
zero decoding errors). (a) Prediction model of Chou et al. [3] with M2 = 0 (Energy Savings = 30.37%). (b) Modified prediction model with M2 = 4
(Energy Savings = 35.48%).

and (b) shows the comparison between the actual prediction
noise e(j)k and the tolerable noise levels for humidity data with
the prediction model of Chou et al. [3] and with the proposed
modified prediction model, respectively. For the chosen para-
meters corresponding to Fig. 2(a) and (b), the maximum tolera-
ble noise level is 128 (not shown in the graph for clarity). Apart
from the prediction models used, both figures correspond to the
LMS-based adaptive algorithm of Chou et al. [3]. Observe that
the actual prediction error level in Fig. 2(b) is much smaller than
that in Fig. 2(a). This shows the effectiveness of the modified
linear prediction model. Moreover, as can be seen by comparing
the two figures, the gap between tolerable noise and actual
noise is narrower in Fig. 2(b) than that in Fig. 2(a), which
indicates the better energy savings achieved by the proposed
prediction model.

In Fig. 2(a) and (b), the gap between the actual prediction
error and the tolerable noise is unnecessarily too large. This
is wasteful and leads to less energy savings. The proposed
least-squares approach leads to much better energy savings
by considerably decreasing this wasteful margin of error,
as seen in Fig. 3. Note that Fig. 3 corresponds to the same
prediction model (and the humidity data set) as in Fig. 2(a)
but uses the proposed RLS-based approach in place of the
LMS-based approach of Chou et al. [3] assumed in Fig. 2(a).
Comparison of Figs. 2(a) and 3 shows the improvement in
energy efficiency with the proposed RLS-based algorithm,
since it has significantly reduced the tolerable noise level while
still keeping it above the actual noise level (which has also been
reduced). As noted earlier, the performance of the RLS-based
approach can further be improved by employing past data of
other sensors (i.e.,M2 = 0) in the prediction model.

Next, we semi-analytically evaluate the energy efficiency of
the integrated system with V-MIMO and distributed compres-
sion. For this, we again use the same humidity and temperature
data sets that were used in [3] and assume that the nodes are
organized as clusters. In particular, we choose four nodes and

Fig. 3. (Dotted line) Tolerable noise versus (solid line) actual prediction
noise of the proposed algorithm for humidity data with zero decoding errors
(Energy Savings = 45.23%).

assign them to two clusters. We assume a perfect feedback
channel from the DGN to the sensor nodes and set dLoc = 10 m.
(Note that clustering and the value of dLoc are chosen arbitrar-
ily.) Thus, our sensor network consists of two virtual antenna
arrays (each having two elements) and a single DGN. The
power consumption parameters are the same as that assumed in
[13], i.e., Pmix = 30.3 mW, Pfilt = 2.5 mW, Pfilr = 2.5 mW,
PLNA = 20 mW, Psynth = 50 mW,Ml = 40 dB,Nf = 10 dB,
GtGr = 5 dBi, and η = 0.35. Additionally, in all the
results, Ntr = 65, Ne = 20, and the local communication is
with 16-QAM. The encoding information is computed using
(5) as in [3]. Fig. 4(a) shows the per-bit energy consumption
of the proposed integrated V-MIMO-based scheme and that
of the SISO-based (still with distributed compression) scheme
with different M -QAM orders assuming a path loss exponent
of κ = 2. Observe from Fig. 4(a) that for large-enough
long-haul distances, there are considerable energy savings
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Fig. 4. Comparison of the per-bit energy consumption of the proposed scheme (with both 4-QAM and 16-QAM) with that of BPSK-based SISO with compression
scheme. (a) κ = 2. (b) κ = 3 and κ = 3.5.

to be achieved with the V-MIMO-based approach compared
to that of SISO-based communication. Moreover, the region
in which the V-MIMO-based scheme is inferior to that of
the SISO-based scheme is considerably smaller than that in
Fig. 4(a) for most realistic wireless path loss exponents. For
example, most near-earth propagation channels usually have
3 ≤ κ ≤ 6 [34]. With larger κ, the proposed integrated system
based on V-MIMO outperforms the corresponding SISO-based
systems even for relatively smaller dLong distances, as shown
in Fig. 4(b). For instance, when κ ≥ 3, the proposed scheme
with fixed 4-QAM provides enormous energy savings over
the corresponding SISO-based system even for a few tens of
meters of long-haul distance.

In situations where an increase in node and system design
complexity can be tolerated, it has been suggested that rate
optimization can be used to improve the performance of
V-MIMO schemes [13], [14]. In this case, for each long-haul
distance, we find the optimal M -QAM constellation size that
results in the minimum per-bit energy. Fig. 5 shows the overall
energy consumption per information bit for the proposed and
three reference schemes defined earlier with rate-optimized
M -QAM for long-haul communication (again, a 16-QAM sys-
tem is assumed for local communication) assuming that κ = 2.
It can be seen from Fig. 5 that the proposed integrated system
outperforms SISO without compression scheme after about
25 m, and SISO with compression scheme after about 125 m.
More importantly, however, for long-haul distances below
125 m, the performance of the proposed scheme now almost
matches with that of the SISO-based compression scheme.
Hence, the proposed scheme with rate optimization can be used
without considerable loss in energy savings for dLong < 125 m
but with significant savings for dLong > 125 m.

In Fig. 6, we have shown the performance gain due to
the proposed new method (6) for computing the encoding
information based on Gaussian error approximation. Fig. 6(a)
and (b) shows the per-bit energy of a 2 × 2 V-MIMO-based

Fig. 5. Total per-bit energy consumption with optimal constellations.

system (two antennas at the DGN and two sensors per cluster)
with κ = 3 using, respectively, (5) and (6) for computing
the encoding information. Comparing Fig. 6(a) and (b), we
observe that the proposed new method provides an improved
performance over the Chebyshev-bound-based method of
Chou et al. [3], and the performance gain is more prominent
for larger long-haul distances.

Table II summarizes the energy efficiencies of the proposed
V-MIMO-based system with respect to the three reference
systems defined above. (Note that η1E , η2E , and η3E represent
the efficiencies with respect to first, second, and third reference
systems, respectively.) Table II is based on 4-QAM long-haul
communication and 2 × 2 V-MIMO.

In the above results, we have assumed that all nodes in a
cluster act as a single antenna array. Of course, this need not
be the case. In particular, in a large sensor network, we may
have clusters with a large number of nodes. In such situations,
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Fig. 6. Comparison of the per-bit energy consumption of the proposed scheme (with both 4-QAM and 16-QAM) with that of BPSK-based SISO with compression
scheme. κ = 3. (a) Encoding information is computed via bounding the decoding error with Chebyshev’s inequality. (b) Encoding information is computed by
assuming that the prediction error is Gaussian.

TABLE II
ENERGY EFFICIENCIES (IN PERCENT) OF THE PROPOSED SCHEME WITH RESPECT TO DIFFERENT REFERENCE SYSTEMS

(2 × 2 V-MIMO, FIXED-RATE 4-QAM, κ = 3, GAUSSIAN PREDICTION ERROR APPROXIMATION)

we may have several virtual antenna arrays within a single
cluster. Moreover, the distributed compression does not have to
be necessarily with respect to the nodes inside a single cluster.
If two clusters are close enough, there may be a considerable
amount of spatial correlations among them that we may want to
exploit. As an example, in Fig. 7, we have shown the topology
of a larger WSN that was built at the Advanced Wireless
Sensors Research Lab (AWSRL) at Wichita State University.
This sensor network consists of 12 Crossbow MicaZ motes
and a single DGN. The network has three clusters with four
sensors per each cluster. Within each cluster, nodes are again
separated into two pairs forming two virtual antenna arrays.
The sensors within each cluster were closely located compared
to the distance between two clusters (typically 4 and 12 m,
respectively). A total of 4115 temperature data samples per
sensor were collected during two consecutive days, and an
intermediate system training is allowed during the transition
from day-1 samples to day-2 samples.

Fig. 8(a) and (b) shows the per-bit energy consumption
against the long-haul transmission distance. Note that the path
loss exponent is assumed to be κ = 3. We can see that the
proposed V-MIMO-based integrated system outperforms the
reference systems for realistic long-haul distances. Comparing
Fig. 8(a) and (b), it can be observed that the performance

gap between that of the proposed scheme and the V-MIMO
with no compression scheme has reduced in the case of
4-QAM compared to BPSK. Thus, V-MIMO with higher-order
modulation schemes may even be used as a tradeoff for
distributed compression.

VI. CONCLUSION AND FUTURE WORK

We have proposed an integrated WSN design that combines
the power of V-MIMO and signal-processing-aided distributed
compression. We proposed an improved distributed compres-
sion scheme with side information based on RLS adaptivity and
a modified linear prediction model for side-information compu-
tation. A new model for computing the encoding side informa-
tion was also proposed. This improved distributed compression
scheme was then integrated with V-MIMO-based communica-
tion. The nodes were arranged into clusters that formed virtual
antenna arrays. An efficient implementation was obtained by
sharing only the compressed data among cluster members and
scheduling the communication in blocks of samples. It can
be concluded from the numerical results that the proposed
V-MIMO-based integrated system with distributed compres-
sion leads to significant energy savings compared to that of
corresponding SISO-based systems for transmission distances
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Fig. 7. Topology of the sensor network used for real-time temperature data collection at AWSRL.

Fig. 8. Comparison of the per-bit energy consumption of the proposed scheme with that of the reference systems. κ = 3. (a) BPSK. (b) 4-QAM.

of a few tens of meters in realistic environments. Moreover,
such significant system efficiencies can be made possible even
with fixed modulation schemes.

Throughout this paper, we have assumed that the DGN has
perfect channel state information and that the system is per-
fectly synchronous, both of which may not be true in practice.
Efficient methods for channel estimation and synchronization
that are suitable for V-MIMO-based wireless sensor systems as
well as performance evaluation in the presence of estimation
and synchronization errors are thus issues to be addressed in the
future. Moreover, it is also possible to consider other V-MIMO
and virtual antenna array [35] communication techniques in
place of distributed STBC, as assumed in this paper. It is

conceivable that certain MIMO techniques may lead to better
integration efficiencies than others.

REFERENCES

[1] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-
constrained ad-hoc wireless networks,” IEEE Trans. Wireless Commun.,
vol. 9, no. 4, pp. 8–27, Aug. 2002.

[2] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks,” Int. J.
High Perform. Comput. Appl., vol. 16, no. 3, pp. 293–313, Fall 2002.

[3] J. Chou, D. Petrovic, and K. Ramchandran, “A distributed and adaptive
signal processing approach to reducing energy consumption in sensor
networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Mar. 2003,
pp. 1054–1062.



2640 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 5, SEPTEMBER 2007

[4] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wirel. Pers.
Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.

[5] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[6] S. K. Jayaweera and H. V. Poor, “Capacity of multi-antenna systems with
both receiver and transmitter channel state information,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2697–2709, Oct. 2003.

[7] H. Bolcskei and A. J. Paulraj, Communications Hand Book. Boca Raton,
FL: CRC Press, 2002, pp. 90.1–90.14. ch. Multiple-input multiple-output
(MIMO) wireless systems.

[8] R. Calderbank, A. Goldsmith, A. Paulraj, H. V. Poor, and E. Biglieri Eds.,
MIMO Wireless Communication. Cambridge, U.K.: Cambridge Univ.
Press, 2007, to be published.

[9] S. M. Alamouti, “A simple transmit diversity technique for wireless com-
munications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,
Oct. 1998.

[10] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block
codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5,
pp. 1456–1467, Jul. 1999.

[11] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes
for high rate wireless communication: Performance criterion and code
construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765,
Mar. 1998.

[12] G. J. Foschini, “Layered space–time architecture for wireless communi-
cation in a flat fading environment when using multi-element antennas,”
Bell Lab. Tech. J., vol. 1, no. 2, pp. 41–59, Autumn 1996.

[13] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and
cooperative MIMO techniques in sensor networks,” IEEE J. Sel. Areas
Commun., vol. 22, no. 6, pp. 1089–1098, Oct. 2004.

[14] S. K. Jayaweera, “Virtual MIMO-based cooperative communication for
energy-constrained wireless sensor networks,” IEEE Trans. Wireless
Commun., vol. 5, no. 5, pp. 984–989, May 2006.

[15] A. Sendonaris, E. Erkip, and B. Aazhang, “Increasing uplink capacity
via user cooperation diversity,” in Proc. IEEE Int. Symp. Inf. Theory,
Cambridge, MA, Aug. 1998, p. 156.

[16] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation
diversity—Part I: System description,” IEEE Trans. Commun., vol. 51,
no. 11, pp. 1927–1938, Nov. 2003.

[17] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation
diversity—Part II: Implementation aspects and performance analysis,”
IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.

[18] J. Laneman and G. Wornell, “Exploiting distributed spatial diversity
in wireless networks,” in Proc. 38th Allerton Conf. Commun., Control,
Comput., Monticello, IL, Oct. 2000, pp. 1–10.

[19] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in
wireless networks: Efficient protocols and outage behavior,” IEEE Trans.
Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[20] A. Host-Madsen, “Capacity bounds for cooperative diversity,” IEEE
Trans. Inf. Theory, vol. 52, no. 4, pp. 1522–1544, Apr. 2006.

[21] A. Stefanov and E. Erkip, “Cooperative information transmission in wire-
less networks,” in Proc. Asian-Eur. ITW, Breisach, Germany, Jun. 2002,
pp. 90–93.

[22] M. C. Valenti and B. Zhao, “Capacity approaching distributed turbo codes
for the relay channel,” in Proc. 57th IEEE VTC—Spring, Jeju, Korea,
Apr. 2003.

[23] S. Wei, D. L. Goeckel, and M. C. Valenti, “Asynchronous cooperative
diversity,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1547–1557,
Jun. 2006.

[24] J. Laneman and G. Wornell, “Distributed space–time-coded protocols for
exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[25] G. Scutari and S. Barbarossa, “Distributed space–time coding for regen-
erative relay networks,” IEEE Trans. Wireless Commun., vol. 4, no. 5,
pp. 2387–2399, Sep. 2005.

[26] A. D. Murugan, P. K. Gopala, and H. E. Gamal, “Correlated sources
over wireless channels: Cooperative source-channel coding,” IEEE J. Sel.
Areas Commun., vol. 22, no. 6, pp. 988–998, Aug. 2004.

[27] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity
theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9,
pp. 3037–3063, Sep. 2005.

[28] M. Gastpar and M. Vetterli, “On the capacity of large Gaussian re-
lay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 765–779,
Mar. 2005.

[29] A. Host-Madsen and J. Zhang, “Capacity bounds and power allocation
for wireless relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 6,
pp. 2020–2040, Jun. 2005.

[30] D. Slepian and J. K. Wolf, “Noiseless encoding of correlated informa-
tion sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480,
Jul. 1973.

[31] S. K. Jayaweera, “Energy efficient virtual MIMO-based cooperative com-
munications for wireless sensor networks,” in Proc. 2nd ICISIP, Chennai,
India, Jan. 2005, pp. 1–6.

[32] S. K. Jayaweera, “An energy-efficient virtual MIMO communications
architecture based on V-BLAST processing for distributed wireless sen-
sor networks,” in Proc. 1st IEEE Int. Conf. SECON, Santa Clara, CA,
Oct. 2004, pp. 299–308.

[33] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-
Hall, 1996.

[34] G. L. Stüber, Principles of Mobile Communication. Norwell, MA:
Kluwer, 1996.

[35] M. Dohler, E. Lefranc, and H. Aghvami, “Space–time block codes for
virtual antenna arrays,” in Proc. PIMRC, Lisbon, Portugal, Sep. 2002,
pp. 414–417.

Sudharman K. Jayaweera (S’01–M’03) received
the B.E. degree (with First Class Honors) in electri-
cal and electronic engineering from the University of
Melbourne, Melbourne, Vic., Australia, in 1997 and
the M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, in 2001
and 2003, respectively.

From 1998 to August 1999, he was with the U.S.
Wireless Corporation, San Ramon, CA, as a member
of the Wireless Signal Processing Algorithms Devel-
opment Group, where he was involved in developing

wireless geolocation and tracking algorithms. From 2003 to 2006, he was an
Assistant Professor in electrical engineering with the Department of Electrical
and Computer Engineering, Wichita State University, Wichita, KS. He is
currently an Assistant Professor in electrical engineering with the Depart-
ment of Electrical and Computer Engineering, University of New Mexico,
Albuquerque. His research interests include wireless communications, statis-
tical signal processing, information theory, and wireless sensor networks.

Dr. Jayaweera currently serves as the Associate Editor of EURASIP Journal
of Applied Signal Processing.

Madhavi L. Chebolu received the B.E. degree (with
First Class Honors) in electronics and telecommu-
nications engineering from Jawaharlal Technologi-
cal University, Hyderabad, India, in 2001 and M.S.
degree in electrical and computer engineering from
Wichita State University, Wichita, KS, in 2005.

From 2002 to 2003, she was a Lecturer with
the Electronics and Communications Engineering
Department, Godavari Institute of Engineering and
Technology, Rajahmundry, India. She is currently a
Network Engineer with AT&T, Middletown, NJ. Her

current research interests include wireless communications, wireless sensor
networks, and computer networking.

Rakesh K. Donapati received the B.E. degree (First
Class, with Distinction) in electronics and communi-
cations engineering from the University of Madras,
Chennai, India, in 2004 and M.S. degree in electrical
engineering from Wichita State University, Wichita,
KS, in 2006.

He is currently a member of the Radio Test Set
(RTS) Development Group with Aeroflex Test Solu-
tions, Wichita, where he is involved in the develop-
ment of hand-held communications and digital radio
test sets. His research interests are in the areas of

wireless communications, signal processing, and wireless sensor networks.


