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Abstract—Optimal power scheduling for distributed detection
in a Gaussian sensor network is addressed for both independent
and correlated observations. We assume amplify-and-forward
local processing at each node. The wireless link between sensors
and the fusion center is assumed to undergo fading and coeffi-
cients are assumed to be available at the transmitting sensors.
The objective is to minimize the total network power to achieve
a desired fusion error probability at the fusion center. For i.i.d.
observations, the optimal power allocation is derived analytically
in closed form. When observations are correlated, first, an easy to
optimize upper bound is derived for sufficiently small correlations
and the power allocation scheme is derived accordingly. Next, an
evolutionary computation technique based on Particle Swarm
Optimization is developed to find the optimal power allocation
for arbitrary correlations. The optimal power scheduling scheme
suggests that the sensors with poor observation quality and bad
channels should be inactive to save the total power expenditure
of the system. It is shown that the probability of fusion error
performance based on the optimal power allocation scheme out-
performs the uniform power allocation scheme especially when
either the number of sensors is large or the local observation
quality is good.

Index terms: Decentralized detection, correlated observa-
tions, data fusion, optimal power scheduling, particle swarm
optimization.

I. INTRODUCTION

Wireless sensor networks (WSNs) are ideal for a wide
variety of applications such as environmental monitoring,
smart factory instrumentation, intelligent transportation and
remote surveillance [1]–[3] due to their low cost and ease of
operation. Decentralized detection is becoming more attractive
in many WSN applications over the centralized approach since
it drastically reduces communication resource requirements.
In decentralized detection, each node in the network sends a
summary of its observation to the fusion center in contrast to
that in centralized detection [4], [5]. The local processing at
distributed nodes can be a form of lossy compression or simple
relaying. The fusion center makes use of partially processed
data from local nodes to make the final decision. Since
only a summary of observations is transmitted, decentralized
detection has the potential to extend the lifetime of the sensor
network, at the expense of some performance reduction.

The fusion performance of a decentralized detection system
in a low power WSN is limited by resource constraints, namely
power and bandwidth. In a typical WSN, communication and
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computing capabilities of sensor nodes can be limited due
to various design considerations such as small battery and
available bandwidth. For example, it may be impractical to
replace or recharge the batteries due to cost and operating
environment considerations. Therefore, power management is
considered to be a core issue in designing a WSN.

A. Related work

The problem of distributed detection and fusion under
resource constraints has been considered by many authors [6]–
[15]. These have studied the fusion performance under given
power or bandwidth constraints on the network. For example,
in [7], it was shown that when the network is subjected to a
joint power constraint, having identical sensor nodes (i.e. all
nodes using the same transmission scheme) is asymptotically
optimal for binary decentralized detection. When the whole
system is subjected to a total average power constraint, [10]
showed that it is better to combine as many not-so-good
local decisions as possible rather than relying on a few
very good local decisions in the case of deterministic signal
detection. Efficient node power allocation to achieve a required
fusion performance has been considered by [1], [16]–[18]. The
optimal power scheduling for distributed detection in a WSN
also has recently been considered in [16], where an optimal
power allocation scheme was developed with respect to the
so-called J-divergence performance index. They have shown
that the optimal power allocation is determined by the qualities
of the local decisions of the sensors and the communication
channels where the channels are assumed to be imperfect.
The optimal power scheduling scheme for the related problem
of decentralized estimation subject to a required target mean
squared error at the fusion center (with independent observa-
tions) was considered in [1] assuming quantized decisions at
local nodes. It was shown that the optimal power scheduling
scheme decreases the quantization resolutions of the nodes
correspond to bad channels or poor observation qualities.
In [18], the same problem was addressed with amplify-and-
forward processing at local nodes. It was shown in [18] that
such an analog forwarding scheme is optimal in the single
sensor case by Shannon’s separation principle. For the case of
multiple sensors the optimal power scheduling was derived in
[18] via convex optimization. It was also shown that optimal
power scheduling scheme improves the mean squared error
performance by a large margin compared to that achieved by
an uniform power allocation scheme. The minimum energy



decentralized estimation with correlated data was addressed
in [17]. They exploited knowledge of the noise covariance
matrix to select quantization levels at nodes that minimized
the power, while meeting a target mean-squared error.

B. Summary of Results

We address the problem of power allocation for detection
of a constant signal in a sensor network with independent
as well as correlated observations while keeping the fusion
error probability under a required threshold, with amplify-and-
forward local processing at sensor nodes. We consider a WSN
consisting of a fusion center and an n number of spatially
separated sensors. The distributed nodes collect observations
corrupted by Gaussian noise and perform amplify-and-forward
local processing to compute a local message that is transmitted
to the fusion center. The wireless channel between the nodes
and the fusion center is assumed to undergo fading.

First we consider the case where the local observations are
independent and derive the optimal power allocation scheme
analytically. For the correlated observations, we derive the
exact, as well as an upper bound to the fusion error prob-
ability that is easy to optimize when the local observation
correlations are sufficiently small and find analytically the
optimal power allocation scheme. Next, we use Particle Swarm
Optimization (PSO), which is a computation technique based
on the movement and intelligence of particles of a swarm,
to numerically find the optimal power allocation scheme for
arbitrarily correlated Gaussian observations.

As we will show, according to the optimal power allocation
scheme that conserves total power spent by the whole WSN,
the nodes with poor observation quality and/or bad channels
are turned off while the other nodes transmit locally processed
data to the fusion center. We will show that when local signal-
to-noise ratio (SNR) is large, only a small number of nodes
needs to be active to achieve the required fusion error perfor-
mance while a relatively large number of nodes should be ac-
tive when local SNR is small. We also observe that the optimal
power allocation scheme has considerably better performance
over the uniform power allocation scheme specifically when
the number of nodes in the network is large. It is also verified
that the results obtained via PSO-based numerical method
closely match with analytical results under the same network
conditions when the observations are i.i.d.. We also investigate
the performance of the analytical power allocation scheme
derived under the conditionally independent assumption in a
network with correlated observations. It can be seen that for
large correlations, the conditionally independent assumption
degrades the energy performance significantly compared to the
performance of PSO-based method for correlated observations.

The remainder of this paper is organized as follows: Section
II formulates the fusion problem. In Section III the optimal
fusion performance is analyzed. The proposed optimal power
allocation schemes are discussed in Section IV. Section V
gives the performance results and finally concluding remarks
are given in Section VI.

II. DATA FUSION PROBLEM FORMULATION

We consider a binary hypothesis testing problem in an n-
node distributed wireless sensor network. The k-th sensor
observation under the two hypotheses is given by,

H0 : zk = vk; k = 1, 2, ...., n

H1 : zk = xk + vk; k = 1, 2, ..., n , (1)

where vk is zero-mean Gaussian observation noise with vari-
ance σ2

v and xk is the signal to be detected. In vector notation,
(1) becomes z = x + v where v is a zero mean Gaussian
n-vector of noise samples with covariance matrix Σv. In
general we consider spatially correlated observations, so that
Σv is not necessarily diagonal. We consider the detection of
a constant signal so that xk = m for all k (the results hold
straightforwardly for any deterministic signal). Let us define
the local signal-to-noise ratio γ0 = m2

σ2
v

. The prior probabilities
of the two hypotheses H1 and H0 are denoted by P (H1) = π1

and P (H0) = π0, respectively.
In this paper we assume that amplify-and-forward local

processing is used, according to which each node retransmits
an amplified version of its own observation to the fusion
center. Hence the local decisions sent to the fusion center
are, uk = gkzk; k = 1, 2, ...n, where gk is the amplifier
gain at node k. The received signal rk at the fusion center
under each hypothesis is given by; H0 : rk = nk; and
H1 : rk = hkgkxk + nk; for k = 1, 2, ...., n, where
nk = hkgkvk + wk, hk is the channel fading coefficient and
wk is the receiver noise that is assumed to be i.i.d. with mean
zero and variance σ2

w. Defining r = [r1, · · · , rn]T , we have,
r = Ax + n where A = diag(h1g1, h2g2, ...., hngn). The
detection problem at the fusion center can then be formulated
as,

H0 : r ∼ p0(r) = N (0,Σn)
H1 : r ∼ p1(r) = N (Am,Σn) (2)

where Σn = AΣvA + σ2
wI, m = me, e is the n-vector of

all ones and I is the n×n identity matrix. The log-likelihood
ratio (LLR) for the detection problem (2) can be written as,
T (r) = meT AΣ−1

n r − 1
2m2eT AΣ−1

n Ae. It is well known
that optimal fusion tests should be threshold tests on the above
LLR. Thus the optimal Bayesian decision rule at the fusion
center is given by,

δ(r) =
{

1 if T (r) ≥ ln τ
0 if T (r) < ln τ,

(3)

where τ is the threshold given by τ = π1
π0

(assuming minimum
probability of error Bayesian fusion).

III. ANALYSIS OF OPTIMAL FUSION PERFORMANCE

Note that,

H0 : T (r) ∼ N (− 1
2m2eTAΣ−1

n Ae, m2eTAΣ−1
n Ae

)

H1 : T (r) ∼ N (
1
2m2eTAΣ−1

n Ae, m2eTAΣ−1
n Ae

)
. (4)

The false alarm probability of the optimal detector at
the fusion center is Pf = P (T (r) > lnτ |H0) =



Q

(
lnτ+ 1

2 m2eTAΣ−1
n Ae

m
√

eTAΣ−1
n Ae

)
where Q-function is defined by

Q(x) = 1√
2π

∫∞
x

e−
ζ2

2 dζ. Similarly, the probability of
detection is given by PD = P (T (r) > lnτ |H1) =

Q

(
lnτ− 1

2 m2eTAΣ−1
n Ae

m
√

eTAΣ−1
n Ae

)
. Hence the probability of error at

the fusion center for a Bayesian optimal detector is given by

P (E) = Pfπ0 + (1− PD)π1 = Q

(
1
2

√
m2eTAΣ−1

n Ae
)

(5)

where the prior probabilities are assumed to be equal so that
τ = 1.

A. Independent Local Observations
When the node observations are uncorrelated the noise co-

variance matrix Σv is simply Σv = σ2
vI. Then the probability

of fusion error in (5) is simplified to,

P (E) = Q


1

2
m

√√√√
n∑

k=1

h2
kg2

k

h2
kg2

kσ2
v + σ2

w


 . (6)

It is interesting to note that lim
g2

k→∞,k=1,...,n

∑n
k=1

h2
kg2

k

h2
kg2

kσ2
v+σ2

w
=

n
σ2

v
so that the probability of fusion error has a performance

floor:

lim
g2

k→∞,k=1,...,n
P (E) → Q

(√
nγ0

2

)
. (7)

Therefore, for a fixed n the probability of fusion error is
ultimately limited by the observation quality at local sensor
nodes regardless of the quality of the wireless channel.

B. Correlated Observation Noise
It is not straightforward to evaluate Σ−1

n in (5) analytically
in closed form for a general Σv when the observations are
correlated. In the following we consider a specific sensor
network model and obtain an upper bound for P (E) in (5)
that is valid for small correlations. To that end let us assume
a 1-D sensor network in which adjacent nodes are separated
by an equal distance d and correlation between nodes i and j

is proportional to ρ
d|i−j|
0 where |ρ0| ≤ 1. Letting ρd

0 = ρ, Σv

can be written as

Σv = σ2
v




1 ρ . . . ρn−2 ρn−1

ρ 1 . . . ρn−3 ρn−2

. . . . . . .
ρn−1 ρn−2 . . . ρ 1


 . (8)

Note that, when ρ is sufficiently small, we may approximate
(8) by its tri-diagonal version by dropping second and higher
order terms of ρ. Recall, from Bergstrom’s inequality [19] that,
for any two positive definite matrices P and Q

eTP−1e ≥ (eT(P + Q)−1e)(eTQ−1e)
eTQ−1e− eT(P + Q)−1e

. (9)

Since m2eTAΣ−1
n Ae = m2eT(Σv + σ2

wA−2)−1e, let P =
(Σv + σ2

wA−2) and define the matrix Q such that

Q = σ2
v




1 −ρ . . −ρn−2 −ρn−1

−ρ 1 . . −ρn−3 −ρn−2

. . . . . .
−ρn−1 −ρn−2 . . −ρ 1


 .

For small enough ρ it can be shown that eTQe > 0. In fact,
when Σv has the tri-diagonal structure (implying only the
adjacent node observations are correlated), it can be shown
that for any |ρ| < n

2(n−1) , we will have eTQe > 0. In general,
if Σv is as in (8), this will be true for small enough ρ. Note
that while noise covariance matrix (8) is an idealization, it can
be used in many applications, such as traffic monitoring or
in industrial monitoring, where the sensors are approximately
equally spaced. The tri-diagonal version of (8) is a reasonable
approximation when the correlation coefficient ρ is small,
since then the second and higher order terms of ρ in (8) are
negligible. From (9) it can be shown that,

eT(Σv + σ2
wA−2)−1e ≥


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



−1

, (10)

where D = eTQ−1e. From (5) and (10), we then have the
following upper bound for the fusion error probability when
the observations are correlated and ρ is sufficiently small:

P (E) ≤ Q


m

2


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



− 1

2

. (11)

When ρ = 0 we have D = n/σ2
v . Then

lim
g2

k→∞,k=1,...,n


 1

∑n
k=1

h2
k

g2
k

2h2
k

g2
k

σ2
v+σ2

w

− 1
D



−1

= n
σ2

v
.

That is, the fusion error probability bound (11) also has a
performance floor of Q

(√
nγ0

2

)
as in (7), when local amplifier

gains are large. Thus both the exact fusion error probability
and the proposed bound exhibit the same performance in the
case of i.i.d. observations at least when the channel SNR
quality is good.

IV. OPTIMAL POWER ALLOCATION

In the following, we first derive the optimal power allocation
scheme that minimizes the total power spent by the whole
sensor network subjected to a threshold on the fusion error
probability when local observations are i.i.d.. Next, we propose
a numerical method based on PSO to find the optimal power
allocation when local observations are arbitrarily correlated. In
this case, we also obtain an analytical optimal power allocation
scheme that minimizes the fusion error probability bound in
(11) subjected to a required threshold for sufficiently small ρ
values. We show that according to these optimal schemes the
nodes with poor observation quality and/or bad channels are
inactivated to save the total power of the system.

In general, the power allocation problem can be formulated
as,

min
gk≥0,k=1,··· ,n

∑n
k=1 g2

k such that

P (E) = Q
(

1
2

√
m2eTAΣ−1

n Ae
)
≤ ε and

gk ≥ 0; k = 1, 2, · · · , n , (12)

where ε is the required fusion error probability at the fusion
center.



A. Optimal Power Allocation when Observations are i.i.d.

When local observations are i.i.d., the fusion error prob-
ability is given by (6). Hence, the first inequality in (12)

becomes β ≤
√∑n

k=1
h2

kg2
k

h2
kg2

kσ2
v+σ2

w
where we have defined

β = 2
mQ−1(ε). Since β is positive, the optimal power

allocation problem can thus be rewritten as,

min
gk≥0,k=1,··· ,n

∑n
k=1 g2

k, such that

β2 −∑n
k=1

h2
kg2

k

h2
kg2

kσ2
v+σ2

w
≤ 0, and

gk ≥ 0 for k = 1, 2, ..., n , (13)

The Lagrangian for the above problem is

G(L, λ0, µk) =
n∑

k=1

g2
k + λ0

[
β2 −

n∑

k=1

h2
kg2

k

h2
kg2

kσ2
v + σ2

w

]

+
n∑

k=1

µk(−gk) (14)

where λ0 ≥ 0 and µk ≥ 0 for k = 1, 2, .., n. Verifying KKT
conditions, it can be shown that the optimal solution for (13)
is given by,

g2
k =





σ2
w

h2
kσ2

v

[
hk

∑K1
j=1

1
hj

(K1−β2σ2
v) − 1

]
; if k < K1 and n > β2σ2

v

0 ; if k > K1 and n > β2σ2
v

infeasible ; if n < β2σ2
v

(15)

where K1 is found such that f(K1) < 1 and f(K1+1) ≥ 1 for
1 ≤ K1 ≤ n assuming, without loss of generality, h1 ≥ h2 ≥
· · · ≥ hn where f(k) = (k−β2σ2

v)

hk

∑k
j=1

1
hj

, 1 ≤ k ≤ n. The proof of

the uniqueness of such a K1 and the global optimality of the
solution (15) for the optimization problem (13) are shown in
the Appendix.

Since there is a feasible optimal solution only when n >
β2σ2

v , i.e. γ0 > 4
n (Q−1(Pe))2, this implies that we can not

achieve probability of errors below Q
(√

nγ0

2

)
. Note that this

is consistent with (7). The optimal solution for g2
k when

f(k) − 1 < 0 and n > β2σ2
v can be rewritten as

g2
k = σ2

w

h2
kσ2

v

(√
λ0hk

σw
− 1

)
, where

√
λ0 =

σw
∑K1

k=1
1

hk

K1−β2σ2
v

. Hence,
once the fusion center calculates λ0 and broadcasts it, each
node can determine its power distributively using λ0 as side
information.

B. Optimal Power Allocation when Observations are Corre-
lated via Particle Swarm Optimization

Since it is not possible to find a closed form optimal
solution for gk’s in (12) when observations are correlated, in
the following we solve it numerically. For that, we develop a
stochastic evolutionary computation technique based on PSO
[20]–[22]. Since PSO is not directly applicable for constrained
optimization problems, we first transform our constrained op-
timization problem in (12) into an unconstrained optimization
problem using the exterior penalty function approach [23],
[24].

1) Penalty function approach for constrained optimization:
Suppose that the optimization problem of interest is

min f(X) such that hj(X) ≤ 0; j = 1, · · · ,m. (16)

Then the exterior penalty function for the above minimization
problem can be formulated as [23], [24],

φ(X, rk) = f(X) + rk

m∑

j=1

(max[0, hj(X)])q
, (17)

where rk is a positive penalty parameter and q is a non-
negative constant. Usually, the value of q is chosen to be
2 in practice [23]. The exterior penalty function algorithm
that finds the optimal solution for the problem (16) can be
stated as below: (Note that subscript of X denotes the index
corresponding to penalty parameter while the superscript of
X denotes the iteration number of the minimization algorithm
for a particular penalty parameter).
• step 1: Set k = 1. Start from any initial solution X1

k and
a suitable value of rk = r1.

• step 2: Find the vector X∗
k that minimizes the function

given in (17).
• step 3: Test whether the point X∗

k satisfies all the
constraints. If X∗

k is feasible, it is the desired optimum
and hence terminate the procedure. Otherwise go to next
step.

• step 4: Choose the next value of the penalty parameter
according to the relation rk+1

rk
= c where c is a constant

greater than one and set X1
k+1 = X∗

k and k = k + 1. Go
to step 2.

Assuming that f(X) and hj(X), j = 1, 2, · · · ,m are con-
tinuous and that an optimal solution exists for (16), the
unconstrained minima X∗

k of (17) converge to the optimal
solution of the original problem f(X) as k →∞ and rk →∞
[23]. In order to ensure the existence of a global minimum
of φ(X, rk) in (17) for every positive value rk , φ(.) has to
be a strictly convex function of X. The following theorem,
the proof of which can be found in [23], gives the sufficient
conditions for φ(X, rk) to be strictly convex:

Theorem 1
If f(X) and hj(X), for j = 1, 2, · · · ,m are convex and at
least f(X) or either one of {hj(X)}m

j=1 is strictly convex,
then the function φ(X, rk) defined by (17) will be a strictly
convex function of X.

2) Particle swarm optimization: To evaluate optimal X∗
k

for each penalty parameter rk as required in the step 2 above,
we use the particle swarm optimization technique. A brief
overview of the particle swarm language is given in Table
I and more details can be found in [22].

In the following we give the algorithmic steps needed to
implement the PSO for a given problem:

(I). Define the solution space and the fitness function: Pick
the parameters that need to be optimized and give them
a reasonable range in which to search for the optimal
solution. The fitness function should exhibit a functional
dependence that is relative to the importance of each
characteristic being optimized.



TABLE I
PSO TERMINOLOGY

Particle/Agent A Single individual in the swarm
Location/Position An agent’s n-dimensional coordinates which represent a solution to the problem

Swarm The entire collection of agents
Fitness A single number representing the goodness of a given solution
pbest The location in parameter space of the best fitness returned for a specific agent
gbest The location in parameter space of the best fitness returned in the entire swarm
Vmax The maximum allowed velocity in a given direction

We denote the swarm size by M . For each k in (17),
we perform a PSO optimization algorithm to find X∗

k.
For each k, let us define, Xk,m as the position vector
of the m-th particle; Pk,m as the pbest of the m-th
particle; Pk,gbest as the gbest of the swarm; φ(Xk,m, rk)
as the fitness value corresponding to the location Xk,m

of the m-th particle; φ(Pk,m, rk) as the fitness value
corresponding to the pbest Pk,m of the m-th particle;
φ(Pk,gbest, rk) as the fitness value corresponding to the
gbest of the swarm and Vk,m as velocity of the m-th
particle. The maximum number of iterations of PSO for
each k is set to S.

(II). If k = 1 (i.e. the penalty parameter is r1) initialize
the swarm locations randomly. Otherwise set the initial
positions of each particle to be the best pbest values for
k = k − 1.

• Initializing position: For k = 1 and for each particle
m, m = 1, · · · ,M , X1

k,m is chosen randomly. If
k > 1, then X1

k,m=PS
k−1,m where PS

k−1,m is the
pbest of the m-th particle for k = k− 1 at the S-th
iteration of PSO.

• Initializing pbest: Since its initial position is the
only location encountered by each particle at the
run’s start, this position becomes each particle’s
initial pbest. i.e. P1

k,m = X1
k,m.

• Initializing gbest: The first gbest is selected
as the initial pbest which gives the
best fitness value: P1

k,gbest=P1
k,m1

where
m1 = arg min1≤m≤M{φ(P1

k,m, rk)}.
• Initializing velocities: Initialize V1

k,m as zeros for
each particle m.

(III). Fly the particles through the solution space:
Each particle is then moved through the solution space.
The following steps are performed on each particle
individually.

• Evaluate the particle’s fitness value and compare
it with that of pbest and gbest. For each par-
ticle, if its fitness value is better than that of
the respective pbest for that particle or the global
gbest, then the appropriate locations are replaced
with the current location. i.e., in the s-th itera-
tion of the PSO, for each particle m, for m =
1, . . . ,M , if φ(Xs

k,m, rk) < φ(Ps
k,m, rk) then set

Ps
k,m = Xs

k,m. Set Ps
k,gbest = Ps

k,ms
where

ms = arg min1≤m≤M{φ(Ps
k,m, rk)}.

• Update the particle’s velocity: The velocity of the
particle is changed according to the relative loca-

tions of pbest and gbest. The particles are ”acceler-
ated” in the directions of the locations of best fitness
value according to the following equation [22], [25]:

Vs+1
k,m = X{(wVs

k,m + c1rand()(Ps
k,m −Xs

k,m)
+c2rand()(Ps

k,gbest −Xs
k,m))}, (18)

where X is the constriction factor that is used to
control and constrict velocities; w is the inertia
weight that determines to what extent the particle
remains along its original course unaffected by the
pull of pbest and gbest, c1 and c2 are positive
constants that determine the relative ”pull” of pbest
and gbest (in fact c1 determines how much the
particle is influenced by the memory of its best
location and c2 determines how much the particle is
influenced by the rest of the swarm) and the random
number function rand() returns a number between 0
and 1.

• Move the particle: Once the velocity has been
determined as in (18), move the particle to its next
location as Xs+1

k,m = Xs
k,m + ∆tVs+1

k,m. The velocity
is applied for a given time step ∆t.

(IV). Repetition: After the velocity and the position are up-
dated the process is repeated starting at step (III) until
the termination criteria are met. The termination criteria
can be a user-defined maximum iteration number or a
target fitness termination condition. In the latter case, the
PSO is run for the user-defined number of iterations,
but at any time if a solution is found that is greater
than or equal to the target fitness value, then PSO is
stopped at that point. In our work we set the maximum
iteration number (S) for PSO as defined before. Once the
termination criteria are met, the optimal solution X∗

k for
the unconstrained minimization problem (17) for given
k is PS

k,gbest.
To solve the optimization problem in (12) when the obser-
vations are correlated we define the exterior penalty function
as,

φ(g, rk) = f(g) + rk{(max[h1(g), 0])2 +
m∑

j=2

(max[hj(g), 0])2}, (19)

where f(g) =
∑n

i=1 g2
i , h1(g) = β2 − eTAΣ−1

n Ae and
hi+1(g) = −gi for i = 1, 2, · · · , n and g = [g1, · · · , gn]T .
Here we have m = n+1. When the observation noise is i.i.d,
it can be shown that φ(g, rk) is a strictly convex function



for gi ≥ σ2
w

3h2
i σ2

v
for i = 1, 2, · · · , n and also it can be seen

that when hi’s are small enough the convexity of φ(g, rk)
holds for gi ≥ 0, ensuring a global minimum for φ(g, rk).
We will assume that φ(g, rk) has a global minimum for each
rk even when the observation noise is correlated under above
conditions. Assuming that an optimal solution for (12) exists
and since f(g) and hj(g) for j = 1, 2, · · · ,m, are continuous,
as k → ∞ and rk → ∞ the unconstrained minima g∗k
of φ(g, rk) converge to the optimal solution of the original
problem (12).

3) Selection of parameter values for PSO: The parameter
set to be optimized is g = [g1, · · · , gn]T and we define
the solution space as [0,∞) for each parameter. To run the
PSO the population size was selected as 30 which has been
shown to be sufficient for many engineering problems [26].
Various values for inertia weight w have been suggested in
the literature. Since larger weights tend to encourage global
exploration and conversely smaller initial weights encourage
local exploitations, [27] has suggested to vary w linearly from
0.9 to 0.4 over the course of the run. On the other hand, [25]
suggested to gradually decrease w from 1.2 towards 0.1 over
the run of a PSO. We allowed w to vary between 0.9 to 0.4
linearly since it gave a fast convergence over 100 iterations. c1

and c2 were both set to 2.0 [22], [25]. The constriction factor
X was set to 0.73 [25].

One of the main advantage of the PSO based method is
that once the algorithm parameters are chosen as above, the
algorithm seems to work over a large range of variations in
problem parameters such as fading coefficients, n, ρ and ε.
On the other hand, the choice of step size and the initial
values for a conventional method such as Newton’s was
observed to depend heavily on the problem parameters. The
designer has to change the step sizes and the initial values
every time when the system parameters change. This becomes
especially problematic since fading coefficients are random.
Hence, although once proper choices have been made, the
Newton’s and the proposed PSO-based methods show almost
similar convergence properties, the PSO based method seems
much easier to use.

C. Power Allocation based on the Fusion Error Probability
Bound

When observations are correlated we may use the bound
(11) to obtain an approximate analytical solution to the power
allocation problem via

min
gk≥0,k=1,··· ,n

∑n
k=1 g2

k such that

q −∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w
≤ 0 and

gk ≥ 0; k = 1, 2, · · · , n , (20)

where q = ( 1
β2 + 1

D )−1 and, as before, β = 2Q−1(ε)
m (Note that,

q > 0 since D > 0). We can use the same method as in Section
IV-A to find the optimal solution for (20). Defining a function
f̃(k) = (k−2σ2

vq)

hk

∑k
j=1

1
hj

and assuming again, h1 ≥ h2 ≥ · · · ≥ hn

it can be shown that (due to space limitations we avoid details
but the steps are similar to that in Section IV-A), we can find
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Fig. 1. Total power Vs. probability of fusion error for independent
observations
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−Optimal total power=3.5218dB
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−Optimal total power=4.4441dB

Fig. 2. Optimal power values of sensor nodes Vs. number of sensors for
n = 20 and n = 50 when ε = 0.1 and γ0 = 10dB

a unique L1 such that f̃(L1) < 1 and f̃(L1 + 1) ≥ 1 for
1 ≤ L1 ≤ n. Then the solution to the problem (20) is given
by,

g2
k =





σ2
w

2h2
kσ2

v

[
hk

∑L1
j=1

1
hj

(L1−2σ2
vq) − 1

]
; if k < L1 & n > 2σ2

vq

0 ; if k > L1 & n > 2σ2
vq

infeasible; if n < 2σ2
vq

(21)

Note from (21) that to achieve the required fusion error
probability at the fusion center the total number of active
sensors should be greater than 2σ2

vq in the optimal solution.

V. PERFORMANCE RESULTS

In this section we illustrate performance gains possible with
the derived optimal power allocation scheme. We assume that
fading coefficients hk’s of the channel between sensors and
the fusion center are Rayleigh distributed with a unit mean.

The results on Figs. 1 to 4 correspond to the optimal power
allocation for i.i.d. observations. When observations are i.i.d.
the optimal total power is given by POpt. =

∑K1
k=1 g2

k where
g2

k’s are given in (15). The performance of the optimal scheme
is compared with that of the uniform power allocation scheme.
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Figure 1 shows the total network power versus fusion error
probability for different values of n. It can be seen that
when the number of sensors is increased then the energy
saving due to proposed optimal scheme is more significant
compared to uniform power allocation. This is because it is
more likely that there will be more channels with good channel
fading coefficients. By using those channels the network can
spend a smaller total power, while still ensuring the required
performance at the fusion center. The power allocation to meet
the same performance level with different n is shown in Fig.
2. From Fig. 1 it can also be seen that when the required
fusion error probability is not significantly low, the gain of
the optimal power allocation scheme over the uniform power
allocation scheme is high.

The number of active sensors versus total sensors in the
network for ε = 10−3 and ε = 10−5 with different γ0 values
is shown in Fig. 3. To achieve a given fusion error probability,
it can be seen that only a small number of active sensors is
needed when the local SNR is high. Fig. 3 also shows that a
relatively large number of active sensors are needed to achieve
lower fusion error probabilities compared to that of higher
fusion error probabilities. This explains the high performance
gain achieved at relatively higher fusion error probabilities as
shown in Fig. 1.

In Figure 4 the total power versus the observation SNR γ0

is shown for n = 50 and n = 100 parameterized by different
fusion error probabilities. It can be seen that when the local
SNR is high it is enough to turn on a relatively smaller number
of nodes to achieve the same performance, thus decreasing the
total system power. Also it is observed that when γ0 is fixed,
the fusion error performance can be improved by having a
large number of nodes in the network.

In Fig. 5 we have considered the fusion performance with
correlated observations based on the fusion error probability
bound (11). The results are obtained assuming the observation
noise covariance matrix has the tri-diagonal structure of (8).
It can be seen that the optimal power allocation scheme under
the fusion error probability bound performs significantly better
than the uniform power allocation scheme based on either the
bound (11) or the exact fusion error probability (5).
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Fig. 5. Total power and the fusion error probability bound for correlated
observations; γ0 = 5dB, n = 100 and ρ = 0.1

Next we consider the performance results based on the
constrained-PSO algorithm. Note that we employed the PSO-
based method for each penalty parameter rk of the uncon-
strained optimization problem (19) until φ(g∗k, rk) → f(g∗k)
where g∗k = arg

gk

min φ(gk, rk). For a given rk the conver-

gence of PSO algorithm is shown in Fig. 6(a). The starting
penalty parameter r1 was set to 2, and was increased in
such a way that rk+1

rk
= 2. It was observed that for each

rk the PSO algorithm converges rapidly. The convergence
of unconstrained minimum of φ(g, rk) to the constrained
minimum of f(g) is shown in Fig. 6(b) in which the error
between the penalty function and the objective function at the
convergent point is 0.0023 after 7 iterations of rk. That is, with
a relatively smaller number of iterations, the unconstrained
minimum of the penalty function φ(g, rk) approaches to that
of the objective function f(g).

The comparison of g∗ obtained numerically (via PSO) and
analytically under the same network conditions are shown
in first two rows of the Table II for 10 nodes when the
observations are i.i.d.. It can be seen that the numerical results
closely match with the analytical solution. The third row of
Table II shows the optimal g∗ obtained numerically when
ρ = 0.1, n = 10, γ0 = 10dB and ε = 0.01. It shows that
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TABLE II
COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS WHEN ρ = 0,

γ0=10DB, ε=0.01, N=10

g∗: Analytical [1.6172, 1.5888, 1.5555, 1.4666, 1.4616,
(ρ = 0) 1.4107, 1.1231, 0, 0, 0]

g∗: Numerical [1.6163, 1.5696, 1.5548, 1.5014, 1.4501,
(ρ = 0) 1.4099, 1.1212, 0.0013, 0.0066, 0.0008]

g∗: Numerical [1.6717, 1.5867, 1.6112, 1.5034, 1.5285,
(ρ = 0.1) 1.4758, 1.3381, 0.3366, 0.0062, 0.0005]

when the observations are correlated the optimal solution for
(12) should turn off the sensors with poor channels similar to
the analytical solution for i.i.d observations. But it is seen that
then the sensors need more power when the observations are
correlated for the same n, γ0 and ε.

The dependance of the total network power (obtained via
constrained-PSO) on the required fusion error probability
when local observations are correlated is shown in Fig.
7 parameterized by ρ and γ0. Note that, the constrained-
PSO method is applicable for any arbitrary observation noise
correlation model. The results in Fig. 7 are based on the
noise covariance matrix in (8). It can be seen that the fusion

performance characteristics with respect to n and γ0 for
the correlated observations are similar to that with the i.i.d.
observations. Figure 7(b) shows that the network needs to
spend more power when the correlation coefficient of the
observations is high since then the new information added by
each additional sensor decreases resulting in degraded fusion
performance.

Figure 8 shows the results obtained from the constrained
PSO algorithm for different noise covariance models. In the
noise covariance matrix in model 1, the off-diagonal ele-
ments above the main diagonal (or below the main diagonal)
are generated according to a uniform distribution on [0,1].
Model 2 refers to the noise covariance matrix Σv such that
(Σv)i,j = σ2

vρ for i 6= j and (Σv)i,j = σ2
v for i = j.

Model 3 refers to (8) and Model 4 is its tri-diagonal version.
ρ = 0.1 for models 2, 3 and 4. As observed earlier, for small
ρ we may approximate model 3 by model 4. As in model
2, if the observation correlation is the same among all the
sensors then the system needs more power to achieve the
same performance compared to models 3 and 4 in which the
correlations decrease as separation between sensors increases.
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It can also be seen that when the correlation coefficients
are randomly selected between 0 and 1 as in model 1, the
required power is significantly higher than that of other noise
covariance models considered with small ρ values.

In Fig. 9 the results based on PSO method were compared to
the results obtained assuming i.i.d. observations for different
correlation profiles. Dashed line plots are corresponding to
the model 1 and the solid line plots are corresponding to
the noise model 3 with different ρ values as described above.
With model 1, it can be seen from Fig. 9 that the assumption
of conditional independence degrades the energy performance
significantly. With the noise Model 3, which may be more
realistic in practice, it can be seen from Fig. 9 that for large ρ
values the PSO-based method has a better performance over
the power allocation assuming i.i.d. observations (as given
in Section IV.A). On the other hand, when ρ is small, the
assumption of conditional independence might not lead to
severe performance penalties, although actual observations are
correlated. However, as observation correlations increase, the
energy penalty becomes more significant.

So far we have assumed that transmitting nodes and the
fusion center have the knowledge of exact channel fading
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Fig. 10. PSO: Total power Vs. fusion error probability for with the estimation
error of the fading coefficients at the fusion center. n = 20, γ0 = 10dB, ρ =
0.1, ε = 0.1

coefficients. In practice, the fusion center has only estimates
ĥk’s of channel coefficients. Let us assume that ĥk = hk + δk

where estimation error δk ∼ N (0, σ2
δ ) and σ2

δ is the estimation
error variance. The affect of the estimation error on the optimal
power allocation is shown in Fig. 10 with different σδ values.
It can be seen that for small estimation errors the performance
results do not change significantly.

VI. CONCLUSION

In this paper we addressed the problem of optimal power
scheduling while meeting a target fusion error probability,
for data fusion in a wireless sensor network with i.i.d. as
well as correlated observations. When observations are i.i.d.,
we derived the optimal power allocation scheme analytically.
For correlated observations, we derived an easy to optimize
upper bound for the fusion error probability that is valid for
sufficiently small data correlations. When the observations
are arbitrary correlated, we also proposed an evolutionary
computation technique based on PSO to evaluate the optimal
power levels in the system. We showed that according to
the optimal power allocation strategy the sensors with poor
observation and/or channel quality must be turned off to save
the total power spent by the system. Moreover, when the local
observation quality is very good it is sufficient to collect data
from only a small number of sensors out of the total available
nodes in the network (keeping others turned off). We also
noted that in the case of i.i.d. observations the derived optimal
power scheduling scheme can be implemented distributively
with only a small feedback from the fusion center. From
numerical results based on constrained-PSO, we observed that
the optimal power allocation scheme provides significant total
energy savings over that of the uniform power allocation
scheme especially when the number of nodes in the system
is large or when the local observation quality is good. Also
the PSO based method has significantly better performance
compared to power allocation assuming observations are in-
dependent, especially for relatively high correlations.



APPENDIX

Uniqueness of K1: In the following, we show the existence
of a unique K1, where 1 ≤ K1 ≤ n such that f(K1) < 1

and f(K1 + 1) ≥ 1 where f(k) =
(k−β2σ2

v
)

hk

∑k
j=1

1
hj

, 1 ≤ k ≤ n

and we have assumed h1 ≥ h2 ≥ · · · ≥ hn. When k = 1,
f(1) = (1−β2σ2

v)

h1
1

h1

< 1 So, f(k) > 1 is not possible for all k =

1, 2, · · · , n. Therefore there are two possibilities: (I). f(k) < 1
for all 1 ≤ k ≤ n: In this case we set K1 = n. (II).There exists
a unique K1 such that f(K1) < 1 and f(K1 + 1) ≥ 1, where
1 ≤ K1 ≤ n.

The uniqueness of K1 implies that for any k ≥ K1 + 1, we
should have that f(k) ≥ 1. This can be proved by showing
that if f(k) ≥ 1, then f(k + 1) ≥ 1. When f(k) ≥ 1, it
implies that

f(k + 1) =
(k − β2σ2

v) + 1

(hk

∑k
j=1

1
hj

+ 1) + (hk+1 − hk)
∑k

j=1
1
hj

(22)

The second term of the denominator of (22) is negative or
equal to zero since we have assumed that hk+1 ≤ hk. Hence
f(k + 1) ≥ (k−β2σ2

v)+1

hk

∑k
j=1

1
hj

+1
> 1 as required.

Uniqueness of the minimum of (13) : The uniqueness
follows from the fact that, (15) is the only solution that
satisfies the KKT conditions of the problem (13). Remaining
is to show that the optimal solution (15) corresponds to
a global minimum. To prove that, we will show that the
Hessian matrix of the Lagrangian (14) is positive definite at the
optimal solution. It can be seen that the Hessian matrix (H)
of (14) is diagonal with Hk,k = 2 + 2λ0h

2
kσ2

w
(3g2

kh2
kσ2

v−σ2
w)

(g2
kh2

kσ2
v+σ2

w)3

for k = 1, 2, · · · , n. As in (15), when n > β2σ2
v and

f(k) − 1 < 0, optimal g2
k = σ2

w

h2
kσ2

v

[
hk

∑K1
j=1

1
hj

(K1−β2σ2
v) − 1

]
. Then

Hk,k = 2
[
1−

(
4hK1

hk
f(K1)− 3

)]
> 0, since f(K1) < 1

and hK1 ≤ hk. When n > β2σ2
v and f(k) − 1 > 0, optimal

g2
k = 0 and then Hk,k = 2

[
1−

(
hk

hK1f(K1)

)2
]

> 0, since

then f(K1) > 1 (that is k ≥ K1) and therefore hk ≤ hK1 .
That is Hk,k > 0 for k = 1, 2, · · · , n implies H a positive
definite matrix.
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