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Distributed Sequential Estimation
With Noisy, Correlated Observations

Sudharman K. Jayaweera, Member, IEEE, and Carlos Mosquera, Member, IEEE

Abstract—The problem of distributed sequential estimation of
a nonrandom parameter over noisy communication links is con-
sidered, with observations that are correlated spatially across the
sensor field. A recursive algorithm for updating the sequential es-
timator is derived assuming wide-sense stationary observations.
It is shown that the performance of the sequential estimator is a
trade-off between the quality of node observations and communi-
cation channels. A sufficient condition for the convergence of the
estimator variance is derived, and asymptotic expressions for vari-
ance when this condition is met are obtained for both iid and cor-
related observations.

Index Terms—Distributed estimation, distributed sequential es-
timation, sensor networks, sequential estimation.

I. INTRODUCTION

N THIS letter, we address a problem of distributed sequen-
I tial estimation of a nonrandom parameter. It is assumed that
a network of sensor nodes is linked via noisy communication
channels. Each node makes an observation that is statistically
related to a parameter 6 of interest. In addition, it receives the
estimator at the previous node in the network (assuming a partic-
ular predetermined ordering of nodes, for example) over a noisy
communication link. Each node forms an updated estimator by
combining these two observations optimally (in the sense of un-
biased linear estimators), before passing it on to the next node
down the network.

If retransmissions are allowed between two nodes, the
problem can be approximated by distributed estimation with
error-free links. Thus, our interest is when retransmissions be-
tween nodes are not allowed. This may be the case, for example,
when node power consumption is an important consideration.
Another situation in which our formulation could be justified is
in taking into account finite precision effects in encoding and
decoding, and quantization errors. We formulate this problem
based on best linear unbiased estimation (BLUE). In general,
we allow node observations to be spatially correlated. A re-
cursive algorithm for sequential updating of the estimator at
distributed nodes is derived. It is shown that due to the trade-off
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between channel and observation noise, sequential updating
may not always lead to improved estimator performance. A
sufficient condition for this to happen is given, and the asymp-
totic variance achieved by the distributed sequential estimator
is derived.

Although there is an extensive literature on distributed detec-
tion [1]-[3], sequential detection [4], [5], and distributed estima-
tion [6]—-[8], the problem of distributed sequential estimation,
especially over noisy communication channels, seems to have
received little attention. In this letter, our objective is to formu-
late this problem and analyze the estimator performance under
several interesting scenarios. A particular work that has consid-
ered distributed recursive estimation over adaptive networks is
[9]. However, it is to be noted that [9] differs from this letter in
several aspects. First and foremost, it does not consider noisy
communications between nodes, which is the main focus of this
letter. In addition, in this letter, we consider generally correlated
node observations.

II. SENSOR NET MODEL AND PROBLEM FORMULATION

We consider the problem of sequentially estimating a non-
random parameter f in an n-node distributed sensor system. The
observation at the kth sensor, fork = 0,1,2,---,n—1, is mod-
eled as wy, = 6 + vy, where observation noise vy, is assumed to
be a sequence of possibly non-iid, zero-mean random variables
with variances (7,%, and 6 is the fixed parameter of interest to be
estimated. It is assumed that each node forms its estimator se-
quentially (in a predetermined order) and forwards its estimator
to the next node in the network. The next node forms an up-
dated estimator of # by combining its own observation with the
noise-corrupted estimator of the previous node received over a
noisy communication link. Denoting the noise corrupted esti-
mator of the previous node received at the kth node by ¥y, the
augmented observation vector at the kth node can be written as

_|we| 0 + vy,
= [ZI/J B |:ék—1(zk—1) +mj M

where 8, (z1) and nj, denote the BLUE at node k based on the
augmented observation z; and the zero-mean, additive commu-
nication (receiver) noise with variance o2, respectively. It is as-
sumed that communication noise ny is a sequence of iid random
variables that is independent of vy, for all k. For completeness, it
should be noted that zg = z9 = wo = 0+wvp. It follows from the
unbiasedness of the BLUE estimator 6y, _1(zj_1) at node k — 1
that E{z;} = 16, where 1 denotes the vector [1,1]7.

A. Uncorrelated Node Observations

If we denote the variance of the BLUE estimator ék atnode k
by Py and the 2 x 2 covariance matrix of zj, by Xy, it is easily

1070-9908/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on July 3, 2009 at 12:26 from IEEE Xplore. Restrictions apply.



742

seen that X2, = Cov (z) = diag(o?, Py—1 + o2). It follows
that the BLUE estimator [10] at node & is

Ty—1 2 2
N 1°Y, "2z, Pro1+0; o

oo = T = Tamy T am ™

3)

where, for brevity, we have defined G(k) = Py_1 + 02 + o}.

. 5oOA S
If we define the estimator error as 6}, = 0 (zr) — 6, then the
estimator error dynamics are governed by the following non-
constant coefficient difference equation:

2 2 2
s 0% S P11+ 07 o
O = o Op—1 + G Vg G(k)nk- “4)

The error variance Py, of the BLUE estimator at node £ is given
by

~1
1 1 1
P, = = + = 5
. 17y, 11 (Pk—l + o2 oi) )
which can be arranged as
(Pr—1 4 02) Po_1 — 020}

P,=PFP._1 —
, kot Pi_1+ 02+ 03

(6)

with the initialization P(0) = Var(fy) = o2. From (6), it can
be seen that P, < Pj_1 if and only if the kth node’s observation
quality is above a certain threshold, i.e.,

Py
Py < Py,_; if and only if 02 < <1-+ k21> Po_i. (D
g

C
This condition is of course a consequence of noisy communi-
cation channels. If the links between nodes were to be perfect,
regardless of the quality of the observation at each node, the up-
dated estimator would be better than that at the previous node.
1) iid Observations: An example that is of particular interest
is the identical observation variances across all nodes, o7 = o3
for all k. Note that even in this case, the estimator dynamics are
still governed by a nonconstant coefficient difference equation.
It is however easy to show that in this case, P, < Pj_1 for all
k > 1 (see Appendix A). Since sequence { Py } is lower bounded
by zero, then as k tends to infinity, the asymptotic variance con-
verges to P, = P,_1 = P... Hence, from (6), we can show that

02 0'2
Po=5 /1442 -1]. 8
2 < + o2 ) ®)

(&

It is easy to verify that P, < o7, as it should be. It is also of
interest to note that

P~ o2 ©)

1o,
P~ .00 <1__°'_).
200

if 02 >0 -

if 02 < of (10)
Intuitively, (9) says that when the communication channel is un-
reliable, the performance attained is determined mainly by node
observation quality. In other words, we essentially disregard the
previous nodes estimate received through the unreliable link.
On the other hand, (10) states that when the channel is reliable
(compared to the uncertainty in node observations), the asymp-
totically achievable performance is given by the geometric mean
of the two uncertainties, o2 and o2. Fig. 1 shows the conver-
gence of the estimator variance P, to the asymptotic P, in (8)
for iid observations.
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Variance of the distributed sequential estimator
20 . . . -

non-iid: oi =10

181 -~ iidio? =10

Kk => e

Fig. 1. Distributed sequential estimator error variance P and its convergence
with iid versus non-iid observations (62 = 1).

2) Non-Identical Observations With Monotonically In-
creasing Quality: A situation where the convergence of the
sequential estimator will be guaranteed with non-iid obser-
vations is when the sequence of observation noise variances
{o?} is a monotonically decreasing sequence such that
limy o0 U]% = ago. In that case, it is straightforward to show

that
o2 o2
P,=-= 1+4-22-1].
2 + o2

Comparison of (11) with (8) shows that sequential distributed
estimator’s achievable performance in this case is as if all the
observations were iid with the minimum observation noise vari-
ance o2, . Fig. 1 shows the variance of the distributed sequential
estimator as a function of the node index with non-iid obser-
vations with o2, = 10. The observation noise variances {7 }
were randomly drawn from the interval (02, 202, but ordered
to be a monotonically decreasing sequence. Also shown in Fig. 1
is the variance evolution if the observation were to be iid with
o = o2, . Fig. 1 confirms the asymptotic convergence obtained
above. The non-iid observations require more nodes for conver-
gence to the asymptotic performance as expected.

(11)

B. Correlated Node Observations

In practice, it is likely that node observations are spatially cor-
related. When this is the case, the optimal distributed sequential
estimator 0y_1(zx—1) = (1TE;_11zk_1/1TE;_111) obtained
at node £ — 1 becomes also correlated with the observation at
node k, leading to a nondiagonal covariance matrix X, at node
k

2
Sp=| 7k Tk k-1 12
k Thk—1 Pro1 402 (12

where we have defined
Tk k—m 2 [E{’Ukék_m} form=1,2,---,k (13)

with, as before, 0, = ék(zk) — 6. The sequential estimator at
node k can thus be obtained as

2
Ok — Tk,k—1

G'(k) Yk

2
5 Pp 1407 —1kk-1

o =T

wg + (14)
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where G’ (k) = Py_1 + 02 + 07 — 2y x—1. The variance Py of
the estimator 0 (z,) is P, = (02(Py_1+02)— r%’k_l)/G’(lc),
with the initialization Py = 03. As a result, the recursion for 0~k
becomes

~ 2 _ - P._ + 2 _ _
b= = G’Z/?)k et 72 Ga(k) =
2
Ok — Tkk—1
Gy (15

Hence, from (13) and (15), we have the following recursive ex-
pression for computing 7 ;1 at node k:

2
Ok_1 — Tk—1,k—2

Tk k-1 = G’(k — 1) Tk k—2
Poo+ 02 —rg_1-2
G'(k — 1) E{vkvk_l}. (16)

Without any further assumptions on the specific correlation
structure of the observations, computing 7 ;—; via (16)
requires a recursion that spans over all r;;_,, values for
m = 1,2,--- 7 foreach j = k,k — 1,---,1. However, in
Appendix B, we have shown that when v is a wide-sense
stationary (wss) sequence with identical variance o3 such that

E{okvk—m} = pmog = p" 03 (17)
(16) can be manipulated to obtain a recursive algorithm for com-
puting 7y ;1 at node k based only on the r;_1 ;2 computed
at the previous node k — 1. This leads to the following recursive
distributed sequential estimation algorithm.

1) Initialization:

éo(zo) =wo
Py = 0(2) and 70 = pag
2) For k =1,2,3,---:

G'(k) =02 + Po—1 + 03 — 27k k-1

) =
Py =Tt om0 gf@l) — %
P, = o (02 + Pem1) = 7851
G’ (k)
rerie = 5 (14 F(R) 0 + (L= F(k)) rapa] . (18)

Variance of the distributed sequential estimator
with correlated observations

10 T ‘ . .
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st ]
r ——p=09
o —-—p=05
o 6f ---p=01
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50 iid: k —> oo| |
4l ]
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2 1 1 1 1
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Fig. 2. Distributed sequential estimator error variance P, with correlated ob-
servations. o5 = 10 and 02 = 1.

The above algorithm allows node & to update its sequential es-
timator based only on information received from node £ — 1.
Specifically, node k — 1 passes on its estimator 6,1 (zy_1) and
the associated statistics P,_q and 7y ;—1 to node k. It should
be noted that we are assuming that the second-order statistics
Py_1 and 7y 1 are received error-free. This is a reasonable
assumption when the statistics change slowly overtime so that
they need only to be exchanged periodically once in a block.
Note that, as long as second-order statistics of observations and
channel noise variances are fixed, these quantities stay fixed so
that they need to be exchanged only once. In that situation, these
quantities can be exchanged among nodes with extra protection
against noise, and since it is done once, the extra resources re-
quired can be neglected. It can also be shown that as £ — oo,
the final convergent estimator variance P is given by the solu-
tion to the coupled equations, shown at the bottom of the page,

where we have denoted 7, 2 limy o0 7k k—1. It can be shown
that when 03 < Jz, regardless of the value of p, the estimator
variance converges to P, — o3 as in the case of uncorrelated
observations, i.e.,

e 2 2 2 2
if of K 0. 7100 — poy and  Po, — 0.

Fig. 2 shows the variance P}, of the distributed sequential es-
timator in a network with correlated observations.

02 + Pt 03 = /(02 + Poc + 0)” — 4p03(2 — p) (02 + Prc)

2(2 - p)

— (02 = 2r) + /(02 = 200) + 4 (0203 — 12.)

2
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III. SUMMARY

In this letter, we considered the problem of distributed se-
quential estimation of a fixed parameter over noisy communica-
tion links. The performance of the optimal linear estimator was
shown to be limited by the relative values of channel and obser-
vation noise variances. In particular, a sufficient condition for
the convergence of the estimator variance with iid observations
was derived. In the case of correlated observations, a recursive
algorithm was provided to update the sequential estimator only
based on information obtained at the previous node.

APPENDIX A

When node observations are iid, i.e., 02 = o2, we will use

mathematical induction to show that P, < Pj,_q forall kK > 1.
Let fp = (1/P) — (1/Py_1) fork = 1,2, ---. Since Py = o}
and Py = (1/0F) + (1/Py + 02) = (1/08) + (1/0f + 02), it
follows that f; > 0. Now suppose that f > 0, implying that
P;_1 > Py. Then, from (5)

111 1
Poy1 P Py+o2 Pyi+02

fe1 =

By the principle of mathematical induction, then f;, > 0 for all
k > 1. In other words, P, < P,_; forall kK > 1.

APPENDIX B
DERIVATION OF ALGORITHM (18)
First note from (13) and (15) that, form =1,---,k — 1
o'(% — Tk—m,k—m—1
Tkk—m = G,(k — m) Tk,k—m—1
Py o1+ 02 — Th—m k—m—
e = ooy (19)

G'(k —m)

where G'(k —m) = 02 4+ Py_ym_1 + 02 — 27k —m k—m—1. We
can rearrange (19) as follows:
1 2
Thk-m = 3 (rk,kfmfl + mefo)
2

Py_ppo1+02—03
- (rk,k—m—l

2G'(k —m)

[(1-
+ (14 F(k—m)) pmag]

- meg)

F(k —m))ry k—m-1

[\3|’—‘

where F(k — m) 2 (Py_m—1 + 02 — 02)/G'(k — m). Back
substitution of 74k, foer =2,3,---,kinry ;1 and using
the fact that ry. o = E{vbo} = pro§ leads to
k—1

(1 — F(m

k—1 9
Pi%0
27

pk_og ) +

=1

Thk—1 = (1+ F(k—3))

(20)

)+plT"3(1+F(k_1))

+ M(1+F(k—1—j))
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X : (1-F(k -

m=1

m)). @21)

Now using the spatial correlation model p; = p? for all j, and
introducing a change of index m — m + 1, (21) can be manip-
ulated into

1-—F(k—=1))ppto? b2
g = (2 Ve S T (1 - pom))
m=1

k J+1
Z ]H 1+F(k—1—j))
H k—1-m))
gl k‘ 1))03_1_ (l_Fz(k_l))
P52 k—2
( =t [ (1= F(m)
k=2 j 2
+Y G Pk =1 4)
T
X (1-F(k—1-m))
=2+ F(k=1)0f + (1= F(k = 1)) re-1-2]

where the last step follows by comparison with (20).
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