
Comp. Organization DLX Comp. Arch II ECE 337

1 (December 7, 2011 9:39 am)

Pipelines Hazards

Structural hazards:

Structural hazards are those that occur because of resource conflicts

• Most common type: When a functional unit is not fully pipelined

The use of the functional unit requires more than one clock cycle

If an instruction follows an instruction that is using it, and the second

instruction also requires the resource, it must stall

• A second type involves resources that are shared between pipe stages

Occurs when two different instructions want to use the resource in

the same clock cycle

In this case, the lack of duplication of the resource does not allow all

combinations of instructions in the pipeline to execute

These stalls increase the CPI from the ideal pipelined value of 1

Comp. Organization DLX Comp. Arch II ECE 337

2 (December 7, 2011 9:39 am)

Structural Hazards

Example 1:

For cost-saving reasons, a CPU may be designed with a single interface

to memory

This interface is always used during IF

It is also used during MEM for Load or Store operations

When a Load or Store gets to the MEM stage, the instruction in the IF

stage must be stalled
Clock Number

1 2 3 4 5 6 7 8 9

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

stall

Comp. Organization DLX Comp. Arch II ECE 337

3 (December 7, 2011 9:39 am)

Structural Hazards

Example 2: Consider branches with complex conditions:

Let’s modify DLX pipeline to allow branches that:

• First perform a comparison (during the EX cycle)

• And then the address calculation if the branch was taken (during the

MEM cycle) -- which requires the ALU in the EXE stage

In such a case, the MEM cycle of a branch would interfere with the EX

cycle of the following instruction, causing a stall

In both cases, the problem could be solved with additional CPU hardware

In the first case, a second memory port

In the second case, an additional ALU

Therefore, structural hazards are caused solely by insufficient hardware

Comp. Organization DLX Comp. Arch II ECE 337

4 (December 7, 2011 9:39 am)

Structural Hazards

Machine withOUT structural hazards will always have a lower CPI

If this is the case, then why allow them?

• To reduce cost

i.e. adding split caches, requires twice the memory bandwidth

Also, a fully pipelined floating point multiplier costs lots of gates

It is not worth the cost if the hazard does not occur very often

• To reduce latency of the unit

Making functional units pipelined adds delay (pipeline overhead -> reg-

isters)

An unpipelined version may require fewer clocks per operation

Reducing latency has other performance benefits, as we will see

Comp. Organization DLX Comp. Arch II ECE 337

5 (December 7, 2011 9:39 am)

Data Hazards

Pipelining changes the relative timing of instructions by overlapping them in

time

This introduces possible hazards by reordering accesses

• To the register file (data hazards)

• To the program counter (control hazards)

Consider the code:

All of the instructions after ADD use the result of the ADD instruction

Since the standard DLX pipeline waits until WB to write the value back,

the SUB, AND and OR instructions read the wrong value

Also, the error may not be deterministic if an interrupt occurs between the

ADD and the AND, which would allow the ADD to write its result

ADD R1, R2, R3

SUB R4, R5, R1

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Comp. Organization DLX Comp. Arch II ECE 337

6 (December 7, 2011 9:39 am)

Data Hazards

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

ADD R1, R2, R3

XOR R10, R1, R11

IM

IM

Time in clk cycles

CC1 CC2 CC3 CC4 CC5 CC6

Reg DM Reg

Reg DM Reg

IM Reg DM

IM Reg

IM Reg

IM: Instruction mem
DM: Data mem

Comp. Organization DLX Comp. Arch II ECE 337

7 (December 7, 2011 9:39 am)

Data Hazards

Memory reference data hazards:

We used registers in our example

It is also possible for a pair of instructions to create a dependence by

writing and reading the same memory location

In DLX, however, we always keep the memory references in order, pre-

venting this type of hazard

Consider cache misses

These could cause memory references to get out of order if we

allowed the processor to continue to work on later instructions

For DLX, we stall in entire pipeline on cache misses

There are architectures that allow Load and Stores to be executed out

of order

Comp. Organization DLX Comp. Arch II ECE 337

8 (December 7, 2011 9:39 am)

Data Hazards

Types of data hazards:

Consider two instructions, A and B. - A occurs before B

Hazards are named according to the ordering that MUST be preserved

by the pipeline

• RAW (read after write)

B tries to read a register before A has written it and gets the old value

This is common, and forwarding helps to solve it

Instruction AInstruction B

Instruction stream

CPU

Instruction AInstruction B

writesreadstime

Comp. Organization DLX Comp. Arch II ECE 337

9 (December 7, 2011 9:39 am)

Data Hazards

Types of data hazards:

• WAW (write after write)

B tries to write an operand before A has written it

After instruction B has executed, the value of the register should be

B’s result, but A’s result is stored instead

This can only happen with pipelines that write values in more than

one stage, or in variable-length pipelines (i.e. FP pipelines)

It does not happen in our version of the DLX pipeline, but a modified

version might allow it

Instruction AInstruction B

writeswritestime

Comp. Organization DLX Comp. Arch II ECE 337

10 (December 7, 2011 9:39 am)

Data Hazards

Types of data hazards:

• WAR (write after read)

B tries to write a register before A has read it

In this case, A uses the new (incorrect) value

This type of hazard is rare because most pipelines read values early and

write results late

However, it might happen for a CPU that had complex addressing

modes. i.e. autoincrement

Instruction AInstruction B

readswritestime

Comp. Organization DLX Comp. Arch II ECE 337

11 (December 7, 2011 9:39 am)

Data Hazards

Types of data hazards:

• RAR (read after read)

This is NOT a hazard since the register value does NOT change

The order of the two reads is not important

Instruction AInstruction B

readsreadstime

Comp. Organization DLX Comp. Arch II ECE 337

12 (December 7, 2011 9:39 am)

Data Hazards

Fixing data hazards:

• Simple solution

The first thing that most pipelines do to avoid hazards is to write the reg-

ister file in the first half of the cycle and read it in the second half

Fixes the hazard shown in green

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

ADD R1, R2, R3

XOR R10, R1, R11

IM

IM

Time in clk cycles

CC1 CC2 CC3 CC4 CC5 CC6

Reg DM Reg

Reg DM Reg

IM Reg DM

IM Reg

IM Reg

IM: Instruction mem
DM: Data mem

Comp. Organization DLX Comp. Arch II ECE 337

13 (December 7, 2011 9:39 am)

Data Hazards

Fixing data hazards:

• Forwarding (also called bypassing and short-circuiting)

A key observation is that the necessary register value is often available

but is not in the right place, i.e. the register file

This occurs because of the structure of our pipeline

The fix: Allow the CPU to move a value directly from one instruction to

another without going through the register file

This is done by feeding back the data values from the pipeline registers to

the inputs of functional units behind them in the datapath

The values are forwarded to future instructions

Note that they are actually moving backward in the datapath

Comp. Organization DLX Comp. Arch II ECE 337

14 (December 7, 2011 9:39 am)

Data Hazards

Forwarding:

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

ADD R1, R2, R3

XOR R10, R1, R11

IM

IM

Time in clk cycles

CC1 CC2 CC3 CC4 CC5 CC6

Reg DM Reg

Reg DM Reg

IM Reg DM

IM Reg

IM Reg

Pipeline reg fed to ALU input latch

Control logic that selects
forwarded result or
pipeline register

Comp. Organization DLX Comp. Arch II ECE 337

15 (December 7, 2011 9:39 am)

Data Hazards

Fixing data hazards:

Note that forwarding is possible between:

• The output of one functional unit and the input of the same functional

unit (previous example)

• The output of one functional and the input of another functional unit:

In this case, the pipeline register values for R1 and R4 need forwarded to

the input of the ALU and data memory inputs

R1 (in EX/MEM) to the input of the ALU for the LW instruction

R1 (in MEM/WB) to the input of the ALU for the SW instruction

R4 (in MEM/WB) (from memory) to the input of DM for the SW

instruction (to memory)

ADD R1, R2, R3

LW R4, 0(R1)

SW 12(R1), R4

Comp. Organization DLX Comp. Arch II ECE 337

16 (December 7, 2011 9:39 am)

Data Hazards

Problematic data hazards:

Note that forwarding always works in the DLX pipeline for Reg-Reg

instructions (prevents stalls)

Because all Reg-Reg operations do the real work in the EX stage

This may not always be the case for other instructions,

i.e. Load instruction

Forwarding helps Loads, but it does NOT solve all the problems

The Load is not completed until after MEM, which is after the EX stage

that the following instruction completes

Note that the previous example worked because R4 was going

directly to memory and was not needed by the ALU

Sometimes no amount of forwarding can help, as with a Load followed

by an ALU operation

Comp. Organization DLX Comp. Arch II ECE 337

17 (December 7, 2011 9:39 am)

Data Hazards

For example, consider:

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

LW R1, 0(R2)
IM

IM

Time in clk cycles

CC1 CC2 CC3 CC4 CC5

Reg DM Reg

Reg DM

IM Reg

IM Reg
Can NOT move

backward in time !!!

Comp. Organization DLX Comp. Arch II ECE 337

18 (December 7, 2011 9:39 am)

Data Hazards

Stalling is necessary in this case for proper execution.

This is done with a pipeline interlock, which stalls the pipeline until the

hazard is cleared

This inserts a bubble into the pipeline just as the structural hazard did.

Just as with structural hazards, no instructions are started during the

cycle in which the bubble is inserted

This increases the number of cycles required and thus the CPI

Clock Number

1 2 3 4 5 6 7 8 9

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

IF ID EX MEM WB

IF ID stall EX MEM

IF stall ID EX MEM

IF ID EX MEM WBstall

WB

WB

Comp. Organization DLX Comp. Arch II ECE 337

19 (December 7, 2011 9:39 am)

Data Hazards

Example:

Assume 30% of the instructions are loads

Half the time, instruction following a load instruction depends on the

result of the load

If hazard causes a single cycle delay, how much faster is the ideal pipe-

line?

Solution:

Ratio of the CPIs.

CPI for instructions following the load is 1.5, since they stall half of the

time

Since loads are 30%, the effective CPI is:

0.7*1 + 0.3*1.5 = 1.15

