
Comp. Organization DLX Comp. Arch III ECE 337

1 (December 7, 2011 9:47 am)

Data Hazards

Compiler Scheduling

Pipeline scheduling or instruction scheduling: Compiler generates code

to eliminate hazard

Consider:

Assume loads have a latency of one clock cycle:

Both load interlocks eliminated

a = b + c;

d = e - f;

LW Rb, b

LW Rc, c

LW Re, e; Swapped with next to avoid stall.

ADD Ra, Rb, Rc

LW Rf, f

SW a, Ra; Store/Load exchanged to avoid stall.

SUB Rd, Re, Rf; Forwarded (Rd)

SW d, Rd

Comp. Organization DLX Comp. Arch III ECE 337

2 (December 7, 2011 9:47 am)

Data Hazards

Compiler Scheduling: Observations

Note that pipeline scheduling increases the number of registers used

Compiler algorithms that perform this optimization can do so easily for

code in basic blocks

Basic blocks are code sequences with no branches

If one instruction executes, they all do

Method is simple and effective for DLX with a latency for loads of 1

cycle

As latencies become longer, more aggressive strategies are needed

Comp. Organization DLX Comp. Arch III ECE 337

3 (December 7, 2011 9:47 am)

Data Hazards

Instruction Issue:

The process of letting an instruction move from ID to EX

For DLX integer pipe:

All data hazards can be checked during ID phase of pipe and instruc-

tion stalled if necessary (i.e. load interlock)

Forwarding always works for R-R instructions, but only sometimes

for loads

Situation Example code Action

Dependence requir-
ing stall

LW R1, 45(R2)
ADD R5, R1, R7

Comparators detect the use of R1
and stall the ADD before EX

Dependence over-
come by forwarding

LW R1, 45(R2)
ADD R5, R6, R7
SUB R8, R1, R7

Comparators detect use of R1 in
SUB and forward result of load to
ALU

Comp. Organization DLX Comp. Arch III ECE 337

4 (December 7, 2011 9:47 am)

Data Hazards

New DLX Datapath:

m
u

x

zero ?

Data
Mem

ID/EX EX/MEM MEM/WB

m
u

x

ALU

Comp. Organization DLX Comp. Arch III ECE 337

5 (December 7, 2011 9:47 am)

Control Hazards

These have a greater performance impact on DLX than data hazards

However, they are similar in that:

Since every instruction uses the PC in its first cycle (IF), this hazard always

occurs when an instruction writes the PC, (i.e. after a branch)

For DLX, the PC is not normally updated until the first half of WB (after

address calculation and comparison)

Data Control

Occur when 2 instructions overlap
such that their accesses to a particu-
lar register are reordered

Occur when 2 instructions accesses
to the PC are reordered and the first
instruction modifies the PC (RAW)

Comp. Organization DLX Comp. Arch III ECE 337

6 (December 7, 2011 9:47 am)

Control Hazards

Solutions:

• Simple: Stall the pipeline

This results in a 3 cycle stall for every branch

Note that if the branch is NOT taken, then the instruction in IF is the cor-

rect one

This can be taken advantage of

Analysis: With a 30% branch frequency and an ideal CPI of 1, this simple

solution achieves only about half of the ideal (1.9 CPI)!

Clock Number

1 2 3 4 5 6 7 8 9

Branch instr.

Branch successor

Branch successor + 1

Branch successor + 2

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

stall stall IF

IF ID EX

Why does this happen ?

Comp. Organization DLX Comp. Arch III ECE 337

7 (December 7, 2011 9:47 am)

Control Hazards

Solutions:

Reducing the branch penalty can be achieved by:

• Deciding whether or not the branch is taken earlier in the pipeline

• Computing the target address earlier in the pipeline

Note that these two methods have limited usefulness individually

i.e. It doesn’t help to know the target without knowing the outcome of

the branch

For the DLX:

BEQZ and BNEZ require testing a register

We can do this by moving the zero test unit into ID

Both PCs must be computed in order to take advantage of this (need an

extra adder)

Branch delay can be reduced to 1 cycle

Comp. Organization DLX Comp. Arch III ECE 337

8 (December 7, 2011 9:47 am)

Control Hazards

DLX Revised datapath:

What about data hazards? (ALU instruction followed by a branch?)

IF/ID

PC

4

Instr
Mem

IR

Sign
m

u
x

m
u

x

m
u

x

zero ?

Data
Mem

Reg
File

ID/EX

 Ex

EX/MEM MEM/WB

Comp. Organization DLX Comp. Arch III ECE 337

9 (December 7, 2011 9:47 am)

Control Hazards

Branch Behavior: Observations using SPEC subset on DLX:

These are dynamic frequencies - not static frequencies:

What matters is executions, not the number of times the instructions

occur in the programs

• Conditional branches are much more common:

Conditional outnumber unconditional about 3-4 to 1

14% to 16% is normal for integer benchmarks (FP benchmarks are much

more varied at 3%-12%)

• Forward branches more common:

Forward branches outnumber backwards 3 to 1

Frequency of taken branches:

67% of conditional branches are taken on average

60% of the forward and 85% of the backward branches

Comp. Organization DLX Comp. Arch III ECE 337

10 (December 7, 2011 9:47 am)

Control Hazards

Reducing branch penalties (static prediction schemes):

Assume we moved the address calculation and decision of whether to

take the branch back into ID

Therefore, if the comparison is to zero, we know the address and the

decision at the end of ID

If comparing one register to another, we wait until after EX to decide if

the branch is taken

Comp. Organization DLX Comp. Arch III ECE 337

11 (December 7, 2011 9:47 am)

Control Hazards

Reducing branch penalties (static prediction schemes):

• Simple: Freeze/flush the pipeline:

This method always flushes the pipeline of instructions up until the

branch destination and condition are known.

Branch penalty is fixed and cannot be reduced by software (the com-

piler.)

• Treat every branch as not taken (predict-not-taken):

Continue to fetch instructions.

Flush the pipeline if the branch is taken.

Note that successor instructions can NOT change the state of the

machine (or, if they do, we must be able to restore the state if branch is

taken).

This results in a 1 cycle stall for DLX since the decision (for zero com-

pares) is known after ID.

Comp. Organization DLX Comp. Arch III ECE 337

12 (December 7, 2011 9:47 am)

Control Hazards

Reducing branch penalties (static prediction schemes):

• Treat every branch as taken (predict-taken)

Wait until the target address is computed and then fetch instructions

using the new PC value.

Flush the pipeline if the branch is NOT taken.

For DLX, this doesn’t do much good since BOTH the branch target

address and the decision (for zero compares) is known after ID.

If the decision is delayed until EX (i.e. Reg-reg compares for DLX), this

method may help.

Comp. Organization DLX Comp. Arch III ECE 337

13 (December 7, 2011 9:47 am)

Control Hazards

Reducing branch penalties (static prediction schemes):

• Delayed branch

An execution cycle with a branch delay of length n is:

Note that the instruction(s) in the branch delay slot(s) after the branch

are always executed.

The compiler should try to put a “useful” instruction here.

If none are available, then a “no-op” is inserted in the delay slot.

This improves performance by letting the CPU do useful work while

waiting for the branch target and condition to be determined.

branch instruction

sequential successor1

sequential successor2

...
sequential successorn

branch target if taken

Branch delay slots

Comp. Organization DLX Comp. Arch III ECE 337

14 (December 7, 2011 9:47 am)

Control Hazards

Delayed branch: DLX has a one branch-delay slot.

Possible compiler scheduling optimizations:

For schemes b and c,

It must be O.K. to execute the SUB instruction if the prediction is wrong.

Or the hardware must provide a way of cancelling the instruction.

From before (best)

ADD R1, R2, R3

if(R2 == 0) then

delay slot

if(R2 == 0) then

ADD R1, R2, R3

Becomes

SUB R4, R5, R6

if(R1 == 0) then

ADD R1, R2, R3

delay slot

SUB R4, R5, R6

ADD R1, R2, R3
if(R1 == 0) then

SUB R4, R5, R6

From target From fall through

ADD R1, R2, R3

if(R1 == 0) then

delay slot

SUB R4, R5, R6

ADD R1, R2, R3

if(R1 == 0) then

SUB R4, R5, R6

Why is this copied ?(a) (b) (c)

Comp. Organization DLX Comp. Arch III ECE 337

15 (December 7, 2011 9:47 am)

Control Hazards

Delayed branch:

Limitations to the usefulness of this approach:

• There are restrictions on the instructions that are scheduled into the

delay slots (i.e. data dependencies.)

• The compiler’s ability to predict accurately whether or not a branch is

taken determines how much useful work is actually done.

Many machines have introduced a cancelling or nullifying branch instruc-

tion.

Includes the direction that the branch is predicted to go.

If branch is predicted incorrectly, CPU turns the instruction in the

branch delay slot into a no-op.

For machines with a branch delay of 1 (i.e. DLX), the compiler can go

along way towards improving performance.

However, for longer branch delays, it gets more difficult to fill the delay

slots with useful work.

