
Comp. Organization ISA ECE 337

1 (October 17, 2011 1:13 pm)

Overview

The ISA is defined as how the machine appears to a (machine level) program-

mer, or more importantly, the compiler

In order to write the compiler, we have to know what addressing modes,

what registers, and what data types and instructions are available

Let’s first consider the taxonomy of Instruction Set Architectures (ISA)

Taxonomy of ISAs:

Stack Architecture:

Operands are implicitly on the top of the stack

Accumulator Architecture:

One operand is implicitly in the ‘accumulator register’

Comp. Organization ISA ECE 337

2 (October 17, 2011 1:13 pm)

Taxonomy of ISAs

General Purpose Register (GPR) Architecture: Three general types:

• Memory-memory:

May have 2 or 3 operands in memory (old VAX model)

• Register-memory:

Operations occur between register and memory -- usually 2 oper-

ands, one in a register (src and dest) and one in memory (src only)

• Load-store:

Data must be explicitly moved between registers and memory

ALU operations use register operands only

Usually 3 operands, all in registers.

Stack Mem-mem Reg-regAccum Reg-mem

Push A

Push B

Add

Pop C

Load A

Add B

Store C

Add C, A, B Load R1, A

Add R1, B

Store C, R1

Load R1, A

Load R2, B

Add R3, R1, R2

Store C, R3

Comp. Organization ISA ECE 337

3 (October 17, 2011 1:13 pm)

Taxonomy of ISAs

Why are GPR ISAs so popular?

• Registers are MUCH faster than memory

• Compiler can use them effectively to:

 Evaluate expressions

 Hold variables

 Pass parameters

Two instruction set characteristics divide GPRs:

The number of ALU operands (2 or 3)

The number of operands that may be memory addresses (0-3)

Comp. Organization ISA ECE 337

4 (October 17, 2011 1:13 pm)

ISA Metrics

• Instruction density:

How much space does a program require?

 Mem-mem and Reg-mem: good instruction density

• Instruction count:

How many instructions are necessary for a specific task?

Reg-reg usually have large instruction counts compared to Mem-

mem and Reg-mem

• Instruction complexity:

How much decoding is necessary to interpret an instruction?

Mem-mem most complex, Reg-reg simplest

• Instruction length:

Is length dependent on the type of instruction and addressing mode?

Mem-mem instruction length can be variable and usually longer than

Reg-reg due to memory operands

Reg-reg instructions are usually fixed in length

Comp. Organization ISA ECE 337

5 (October 17, 2011 1:13 pm)

Memory addressing

How is a memory address interpreted?

What byte is specified by the address ?

Two conventions for byte ordering:

• Big Endian: The address of the “word” is the address of the most signifi-

cant (biggest) byte

• Little Endian: The address of the “word” is the address of the least signifi-

cant (littlest) byte

Problem: When word (binary) data is transferred between the two types of

machines, byte swapping is necessary

Alignment

On many machines, accesses to objects larger than a byte must be aligned. i.e.

A 4-byte integer must be stored at an address divisible by 4 for word

alignment

Why?

Misalignment complicates the hardware

Comp. Organization ISA ECE 337

6 (October 17, 2011 1:13 pm)

Addressing Modes

An addressing mode can specify a constant, a register or a location in mem-

ory

• Register: Operand is in a register

Add R4, R1

• Immediate: Operand is a constant encoded directly in the instruction

Add R4, #10

• Displacement: Memory address is computed by adding a constant (found in

the instruction) to the value in the register

Add R4, 100(R1)

• Indirect: Similar to displacement except the constant is 0

Add R4, (R1)

• Indexed: Two registers are added together to get the memory address

Add R3, (R1 + R2)

Comp. Organization ISA ECE 337

7 (October 17, 2011 1:13 pm)

Addressing Modes

• Direct/Absolute: The memory address is contained directly in the instruction

Add R1, (1001)

• Auto-increment/decrement: The value in a register is either incremented/dec-

remented, either before or after the register’s value is used as a memory

address

Add R1, (R2)+

Add R1, -(R2)

• Scaling: Similar to indexed except that the index value may be implicitly

multiplied by a constant (2, 4 or 8) in order to access halfwords, words or

doublewords. Also, it contains an explicit constant

Add R1, 100(R2)[R3]

• Memory deferred: Allows additional levels of indirection

Add R1, @(R3)

Comp. Organization ISA ECE 337

8 (October 17, 2011 1:13 pm)

Addressing Modes

We skipped PC-relative addressing modes for the moment

These specify code addresses in control transfer instructions

Addressing mode impact:

• Can significantly reduce instruction count

• Add complexity to the hardware

• May increase the average number of clocks per instruction (CPI)

Comp. Organization ISA ECE 337

9 (October 17, 2011 1:13 pm)

Addressing Modes

Important addressing modes:

• Register: Provides the means to use the registers

• Displacement: Provides the means of implementing pointers

Add R4, 100(R1) where R1 holds the address of a data item

Issue: What is the appropriate displacement field size?

Important because it affects instruction length

Program analysis shows that:

12 bits capture ~75% of full 32-bit displacements found in programs

16 bits capture ~99% of full 32-bit displacements found in programs

Therefore, 12-16 bits is probably sufficient

Comp. Organization ISA ECE 337

10 (October 17, 2011 1:13 pm)

Addressing Modes

Important addressing modes:

• Immediate: Used in arithmetic operations (comparisons) and in moves

where a constant is needed in a register

Issue: What is the appropriate immediate field size?

Important because it affects instruction length

Program analysis shows that:

Most immediate values are less than 8 bits

However, large immediates are sometimes used, most often in

address calculations

Therefore, 8-16 bits is probably sufficient

Integer programs use immediates quite often (up to 1/3 of all instruc-

tions) while floating point programs use them less often (1/10)

Other addressing modes are certainly useful, but are they worth the chip

space and design complexity?

Comp. Organization ISA ECE 337

11 (October 17, 2011 1:13 pm)

Instruction Set Operations

Arithmetic/Logical: Integer ALU ops

ADD, AND, SUB, OR

Load/Stores: Data transfer between memory and registers

LOAD, STORE (Reg-reg), MOVE (Mem-mem)

Control: Instructions to change the program execution sequence

BEQZ, BNEQ, JMP, CALL, RETURN, TRAP

System: OS instructions, virtual memory management instructions

INT

Floating Point:

FADD, FMULT

Decimal: Support for BCD

String: Special instruction optimized for handling ASCII character strings

Graphics: Pixel operations, compression and decompression

Comp. Organization ISA ECE 337

12 (October 17, 2011 1:13 pm)

Instruction Set Operations

All machines generally provide a full set of operations for the first three cate-

gories

All machines MUST provide instruction support for basic system functions

Floating point instructions are optional but are commonly provided

Decimal and string instructions are optional but are disappearing in recent

ISAs

They can be easily emulated by sequences of simpler instructions

Graphic instructions are optional

Remember MAKE THE COMMON CASE FAST?

ALU and Load/Store instructions represent a significant portion of the

instruction mix and therefore should execute quickly

Comp. Organization ISA ECE 337

13 (October 17, 2011 1:13 pm)

Instruction Set Operations

Control Flow instructions:

Four types are identifiable:

• Conditional branches

• Jumps

• Procedure Calls

• Procedure Returns

Program analysis shows that Conditional branches dominate (> 80%)

The destination address must always be specified

In most cases, it is given explicitly in the instruction

Comp. Organization ISA ECE 337

14 (October 17, 2011 1:13 pm)

Control Flow Operations

Addressing Modes:

PC-relative: Most common

Constant in instruction gives the offset to be added to the PC

Adv:

Since target is often near the current instruction, the displacement

can be small, requiring few address bits

Allows relocatable (position independent) code

Indirect (jump to the address given by a register)

For procedure returns and indirect jumps for which the address is not

known at compile time

Register indirect jumps useful for three important features:

• Case or switch statements

• Dynamic shared libraries

• Virtual functions

Absolute (jump to location in memory) -- not commonly used

Comp. Organization ISA ECE 337

15 (October 17, 2011 1:13 pm)

Control Flow Operations

Conditional branches:

Issue: What is the appropriate field size for the offset?

Important because it affects instruction length and encoding

Observations:

• Most frequent branches for integer programs are targets 4 to 7 instruc-

tions away (for DLX). This suggests a small offset field is sufficient

• Most non-loop branches (up to 75% of all branches) are forward

However, they are hard to “predict” and optimize

• Most loop branches are backward

Backward branches are usually taken, since they are usually part of

loops

Comp. Organization ISA ECE 337

16 (October 17, 2011 1:13 pm)

Control Flow Operations

Conditional branches: Methods of testing the condition:

• Condition Codes (CC):

Special bits are set by ALU operations as a side effect

Adv:

Reduces instruction count - it’s done for free

Disadv:

Extra state that must be implemented

More importantly, it constrains the ordering of instructions (no inter-

vening instructions allowed (that set the CC) between the instruc-

tion that sets the CC and the branch that tests the CC)

• Condition register:

Comparisons leave result in a register, which is tested later

Subroutines:

Include control transfer and return + some state saving

Comp. Organization ISA ECE 337

17 (October 17, 2011 1:13 pm)

Encoding an Instruction Set

An architect more interested in code size will pick variable encoding

• Allows virtually all addressing modes in all operations

• This style is best when there are lots of addressing modes and opera-

tions

• Instruction differ significantly in the amount of work performed

An architect more interested in simplifying instruction decoding in the CPU

will pick fixed encoding

• Operation and addressing mode encoded into the opcode

Compilers and Architecture
What features of an architecture lead to high quality code?

What “makes it easy” to write efficient compilers for an architecture ?

Comp. Organization ISA ECE 337

18 (October 17, 2011 1:13 pm)

Compilers and Architecture

Structure of optimizing compilers:

Instruction set properties that help the compiler writer:

• Regularity:

The 3 primary components of an instruction set; operations, data types

and addressing modes should be orthogonal (independent).

Front end

High level optimizations

Global optimizers

Code generation

Language
Dependent

Machine
Dependent

Transforms high level language into
a common intermediate form.

Procedure inlining and loop
transformations (unrolling).

Register allocation, common
subexpression elimination, etc.

Generates assembly or machine
language. Machine dependent
optimizations (i.e. filling delay slots,
instruction reordering.)

Comp. Organization ISA ECE 337

19 (October 17, 2011 1:13 pm)

Compilers and Architecture

• Regularity: (continued)

Consider operations and addressing modes:

They are orthogonal if any address mode can be used for any opera-

tion

No dependencies, i.e. MOV instruction applicable only to register

mode or even worse, to only a subset of the registers

• Provide primitives, not solutions:

Providing special features that “match” language constructs is NOT a

good idea

These features may be good only for a certain language

And, worse, they may match but do more or less than what’s required

• Simplify trade-offs among alternatives:

If there are 20 ways to implement an instruction sequence, it makes it

difficult for the compiler writer to choose which is the most efficient

