LAB Assignment #4 br CMPE 415

Assigned: Fri., Nw 8th, 2007
Due: Thur, Nov 15th, 2007

Description: Revise the LABVIEW and Verilog code from Labs #2 and #3 to
read an entire file (LABVIEW) of 32 bit integers, transfer them to the FPGA
and back.

Thislab builds ontheprevioustwo labsandcompleteghe basiswork for the project. The Verilog
codeyou have writtenfor LAB #2reads8-bits. Thefirst revisionyou’ll needto makeis to expand
this to 32-bits. Once you ha this working, youll then create a memory CORE, using the core
generatotool with ISE9.2i.1 will gooverthisin classon Nov. 8thafterthedemo.You shouldset
thesizeof thememoryto be 32-bitsby 128words(note:we’ll latermodify thisto belarger).You
will generate a single port memory which has 5 inpaddr (address)din (data in)we (write
enable)clk (clock) anddout (dataout). It will operatesynchronouslyvith theclock,i.e.,to write
a\alue, set thealue ofdi andaddr and enableve. If you've configured your memory core to be
sensitize to the rising edge of clk, then on thd nising edge, thealues yowe placed omlin

will be written to memory at the addressen byaddr. The written alue will also simulta-
neously sher up on the output of the memodput. To read a wrd from memoryset theaddr

and strobe the clock. #t'that simple.

You alsoneedto modify theLABVIEW codeto readafile of integers,oneperline andwrite each

of thevaluesasa sequencef bitsto the parallelport, 1 bit atatime, asyou've donefor LAB #3.

You'll also need to modify the read back portion to read a set of 32-lgenstevbu should
dependonly onthe DataValidFr omFPGA to determinevhenthelastvaluehasbeentransferred

from the FPGA.Althoughin this exerciseyou aresimply transferringghe databackandforth, for

the project, you will process the data once it is loaded into the memory on the FPGA. The pro-
cessing operation (to be decided) ihkto change the number ddlues that you will need to

send back to LABVIEWTherefore, you will need to use thataValidFr omFPGA signal from

the FPGA to determine when the transfer is complete.

In my Verilog code, | added a fifth state to handle a memory address issue in the transition from
reading data (statel) and writing it back (state4). StateO still the initialization state and statel the
read data state. | mohave state2 and state3 to create wycles of delay before reaching state4,
which transfers data backo may not need to add a state, and | may end up droppingttiais e
state once | add the code that does the processing since presumably thie willitgde clock

cycles to complete. See my timing diagram for more information.



The front panel of my VI is sken belaw. It is nearly identical to the front panel from LAB #3.

@
L)
®
-
e
e
@)
[
@
e
®
e
L
®
®
e
&
()
@
L
®
e
e
g.
®

) Bl

Lal; iEVVESitient Edition
Difference include a filename widget to allthe user to enter a path name to the data file. The
data in and out arrays Vebeen gpanded to 32-bits andve created arrays for the igtr repre-
sentations of the data.

YOU MUST USE THE SAME transparport.ucf and transparport.xcf files thavided for
LAB#3.

The Core Generator:
In order to create a memory on the FPGA, you will use the core generator application. Here are
the steps to foll:

1) Under ‘programs/ISE 9.2i/accessories’, click on ‘CORE Generator’

2) Select ‘nav project’ under the file menu

3) Enter a name and directory

4) In the CGPform, selectSpartiarn2, xc2s200fg200,-6. Underthe GenTab,selectVerilog’

and ISE for endor Click Ok.

5) Expand Basic Elements in the list on left in CORE Generthisn Memory Elements

6) Select Single Port Block

7) Click Customize, type 32 for Mth and 128 for Depth, click ®e click next again

8) Choose the polarity for the Clk, write enable pins, etc.

9) Click Generate
Once the CORE Generator finishesvethe files to your FSM project directpeyg., transto-
fromFPGA, or whateer you called it. The filename witlxtension ‘.\e0’ has a template for the
module that you can cut-and-paste into yanilgg file with the FSM. ¥u’'ll need to change the
namesn parenthesiso matchthoseyou usein your code.Iln ISE, Add sourceto addthefile with
the ".v’ extension. Thas it...



L aboratory Report Requirements:

1) Turn in acommented copy of your LABVIEW code.
3) Prepare to demonstrate that both the LABVIEW code and the FPGA can communicate prop-
erly.

Each of you MUST work on it independently and turn in a separate report, i.e., thisisNOT a
group project.

Grading:

60% LABVIEW code correctly specifies desired functionality.
10% Meaningful commentsin LABVIEW code.

30% Successful hardware demonstration.



