
LAB Assignment #4 for CMPE 415

Assigned: Fri., Nov 8th, 2007
Due: Thur., Nov 15th, 2007

Description: Revise the LABVIEW and Verilog code from Labs #2 and #3 to
read an entire file (LABVIEW) of 32 bit integers, transfer them to the FPGA
and back.

This labbuildsontheprevioustwo labsandcompletesthebasiswork for theproject.TheVerilog
codeyouhavewrittenfor LAB #2reads8-bits.Thefirst revisionyou’ll needto makeis to expand
this to 32-bits. Once you have this working, you’ll then create a memory CORE, using the core
generatortool with ISE9.2i. I will goover this in classonNov. 8thafterthedemo.Youshouldset
thesizeof thememoryto be32-bitsby 128words(note:we’ll latermodify this to belarger).You
will generate a single port memory which has 5 inputs,addr (address),din (data in),we (write
enable),clk (clock)anddout (dataout). It will operatesynchronouslywith theclock, i.e., to write
a value, set the value ofdi andaddr and enablewe. If you’ve configured your memory core to be
sensitize to the rising edge of clk, then on the next rising edge, the values you’ve placed ondin
will be written to memory at the address given byaddr. The written value will also simulta-
neously show up on the output of the memory, dout. To read a word from memory, set theaddr
and strobe the clock. It’s that simple.

Youalsoneedto modify theLABVIEW codeto readafile of integers,oneperline andwrite each
of thevaluesasasequenceof bits to theparallelport,1 bit ata time,asyou’vedonefor LAB #3.
You’ll also need to modify the read back portion to read a set of 32-bit integers. You should
dependonly on theDataValidFr omFPGA to determinewhenthelastvaluehasbeentransferred
from theFPGA.Althoughin thisexerciseyouaresimply transferringthedatabackandforth, for
the project, you will process the data once it is loaded into the memory on the FPGA. The pro-
cessing operation (to be decided) is likely to change the number of values that you will need to
send back to LABVIEW. Therefore, you will need to use theDataValidFr omFPGA signal from
the FPGA to determine when the transfer is complete.

In my Verilog code, I added a fifth state to handle a memory address issue in the transition from
reading data (state1) and writing it back (state4). State0 still the initialization state and state1 the
read data state. I now have state2 and state3 to create two cycles of delay before reaching state4,
which transfers data back. You may not need to add a state, and I may end up dropping this extra
state once I add the code that does the processing since presumably this will take multiple clock
cycles to complete. See my timing diagram for more information.



The front panel of my VI is shown below. It is nearly identical to the front panel from LAB #3.

Difference include a filename widget to allow the user to enter a path name to the data file. The
data in and out arrays have been expanded to 32-bits and I’ve created arrays for the integer repre-
sentations of the data.

YOU MUST USE THE SAME transparport.ucf and transparport.xcf files that I provided for
LAB#3.

The Core Generator:
In order to create a memory on the FPGA, you will use the core generator application. Here are
the steps to follow:

1) Under ‘programs/ISE 9.2i/accessories’, click on ‘CORE Generator’
2) Select ‘new project’ under the file menu
3) Enter a name and directory
4) In theCGPform, selectSpartian2, xc2s200,fg200,-6. UndertheGenTab,select‘Verilog’
and ISE for vendor. Click Ok.
5) Expand Basic Elements in the list on left in CORE Generator, then Memory Elements
6) Select Single Port Block
7) Click Customize, type 32 for Width and 128 for Depth, click next, click next again
8) Choose the polarity for the Clk, write enable pins, etc.
9) Click Generate

Once the CORE Generator finishes, move the files to your FSM project directory, e.g., transto-
fromFPGA, or whatever you called it. The filename with extension ‘.veo’ has a template for the
module that you can cut-and-paste into your verilog file with the FSM. You’ll need to change the
namesin parenthesisto matchthoseyouusein yourcode.In ISE,Add sourceto addthefile with
the ‘.v’ extension. That’s it...



Laboratory Report Requirements:

1) Turn in a commented copy of your LABVIEW code.
3) Prepare to demonstrate that both the LABVIEW code and the FPGA can communicate prop-
erly.

Each of you MUST work on it independently and turn in a separate report, i.e., this is NOT a
group project.

Grading:
60% LABVIEW code correctly specifies desired functionality.
10% Meaningful comments in LABVIEW code.
30% Successful hardware demonstration.


