
CMPE 415 Project Description 12/17/07

Term Project for CMPE415
(UPDATE: 11/19/07)

DUE DATE: For part1, which computesONLY theDFT of the time domainwaveform.(If you
stop here, then the maximum grade you can get is 75%).
DUE DATE: For complete project: (Last day of class).

Thelaboratoriesserve to provide a vital pieceof theproject,thatrelatedto transferringdatafrom
your computerto a memoryblock within the FPGA.The projectbuilds on the LABVIEW and
Verilog code you’ve written for LAB #4.

Your FSM of LAB #4 hasa statethat representsa transitionbetweentheprocessof transferring
datato theFPGAandtheprocessof transferringit back.Theprojectinvolvesperforminganoper-
ationon thedatabeforesendingit back.In particular, you will implementa waveformfilter oper-
ation using a discrete fourier transform (DFT).

The low passfilter acceptsas input a time domainwaveform, e.g., the voltagewaveform mea-
suredon thepower supplyasa circuit switches.A waveformis definedby anarrayof (x,y) pairs,
whereeachx valuecorrespondsto a specifictime valueandthecorrespondingy valueis a digi-
tized sampleof the signal’s voltageat that time instance.We will assumethat the digitalization
processsampledthesignalusinga constanttime interval suchthat thedeltat betweeneachsam-
ple is the samefor all points in the waveform. The assumptionsimplifies the low passfilter
design, i.e., only the y data values need to be transferred to the FPGA.

The (x,y) pairsrepresentingthe waveformsthat I give you asexampleswill be pairsof floating
point numbers.Your LABVIEW codefrom LAB #4 readintegersfrom a file. Thefile format is
changedfor theprojectto includetwo numbersper line separatedby a spaceor tab,eachrepre-
sentedin scientificnotation.Therefore,you needto modify this code.Also, a filter valuewill fol-
low the(x,y) pairsin thefile, i.e., it will bethelastvaluein thefile ona line by itself. Its datatype
is integer.

Onceyou have thedatavaluepairsreadin usingLABVIEW (asfloatingpoint numbers),you’ll
needto scalethey datato convert thefloatingpointnumbersto 8-bit integers.Oneapproachis to
multiply eachof the y valuesby a constant.This simpleapproachmay not make full useof the
entirerangethat 16-bit integersprovide, from -127 to 127.The properway to scalethe floating
point valuesis to parse thearrayidentifying thelargestandsmallestvalues.This givestherange
of theoriginaldata.Theratioof theintegerrangeto floatingpoint rangegivesascalingfactorthat
you canuseto multiply eachof thefloatingpoint values.To make this work, you’ll alsoneedto
computeanoffset thatneedsto beaddedto thescaledy valuein orderto centerthewaveformin
therangeof integers.Whencompleted,thesmallestandlargestfloatingpointy valueswill mapto
the smallest and largest integer values given above. See formula below.

At this point you have the(x,y) valuesof thewaveformstoredin floatingpoint formatandthey
valuestranslatedto 8-bit integers.OncetheFPGAprocessesthedata(to bedescribed),you will
needto know thex delta(time interval betweeneachconsecutive value)andthe range(you can
assumethefirst x valueis 0 to representtime0 if you like).Youcandothisbeforeyoutransferthe

CMPE 415 Project Description 12/17/07

y data to the FPGA or you can do it afterwards (you can also do it in parallel with the FPGA for
bonus points).

The code that you have written for LAB #4 is designed to transfer 32-bit values. You can modify
it to transfer the 8-bit signed values or you can leave it as is (the high order 24 bits will be all zeros
(positive number) or all ones (negative number)). You need to regenerate you memory core to
either allocate space for 1024 32-bit values or you can generate three separate cores, one with 512
32-bit values for the time domain data and 2 for the frequency domain data (real and imag -- see
below), each with 256 32-bit values.

The data transferred to the FPGA is the time domain data, i.e, the 8-bit integer y values that you
created in LABVIEW. Following these 512 8-bit y values, you need to send one additional value,
the number of high frequency components to eliminate in the filter operation (more on this soon).
You should save this value in a special register instead of storing it in memory.

The low pass filter you will implement transforms the y data from the time domain into the fre-
quency domain using an n-squared DFT. The C code for the DFT is given below:

As you can see, it’s fairly easy to write in C. (NOTE: The full transform actually needs num_pts/2
+ 1 points in the frequency domain, so we are not computing the highest frequency component
using this formulation. Also, the imag components should be negated but we fix with this later in
the inverse transform).

The y_data values are already scaled to be integers once they are transferred to the FPGA, so
these are fine (y_int). However, the sin and cos functions output values between -1.0 and 1.0 using
the C library routines. On the FPGA, there is no C library so we need to implement these func-
tions in hardware. Moreover, we don’t want to deal with floating point numbers, so we need spe-
cial functions that return integers instead of floating point values.

We will use the Core Generator to generate the sin and cos functions on the FPGA. Fortunately,
these functions are built so that they take integers as operands and return integers values. Our task

zero = (largest + smallest)/2;
mult = (largest - smallest)/(28- 2);

y_int[i] = (y_float[i] - zero)/mult;

Parse the floating point y values in LABVIEW, save largest and smallest values and
compute two constants:

To convert the array of floating point values to integers:

for (i = 0; i < num_pts; i++)
for (j = 0; j < num_pts/2; j++) // Num of frequencies 1/2 num y values

imag[j] += y_data[i] * sin(j*2*PI*i/num_pts);
real[j] += y_data[i] * cos(j*2*PI*i/num_pts);
{

}

CMPE 415 Project Description 12/17/07

hereis to understandhow to translatetheargumentsshown in theC codeto integersandhow to
interpret the integer returned by these functions.

TheCoreGeneratordefinestheinputargument,THETA, to thesinandcosfunctionsasfollows:θ

representstheargumentto thesin andcosfunctionsin theC code.THETA is the input thatyou

will provide whenyou invoke thesin andcosfunctions.Theconstants2 * pi/2THETA_WIDTH rep-
resent“2*PI/num_pts” in the C codeabove. This indicatesthat the coregeneratedsin andcos
functionsalreadyincorporatetheseconstantssoyou don’t needto worry aboutthem.Whenit is
all said and done,you will only be responsiblefor multiplying “j*i” and this will define the
THETA that you will use as input to the sin/cos core.

Theoutputof thesin andcosfunctionswill bea 14-bit signed integer. This integer representsa
fixedpointnumberwhendividedby theappropriateconstant.Theconstantthatyouwill divideby

is 212. You will performthis division onceyou have transferredthenumbersbackto LABVIEW
(don’t do the division on the FPGA). More on this later.

The14-bit valuesoutputfrom thesin andcosfunctionsneedto bemultipliedby they datavalues
(which arealso8-bits),asshown in theC codeabove.Theresultof themultiplication is a 22-bit
value(14+8).The ‘+=’ operationin the loopsabove will needno morethananadditional9 bits
becausethenumberof timesthe‘+=’ is performedis 512(2^9).Justto besafe,you will have32-
bits - 22-bits= 10-bits.This will guaranteethatno overflow will occur. Bearin mind that this is
theworstcase-- you will probablybeableto usey valueswith moreprecision(insteadof divid-

ing by 28-2 above,you maybeableto use212-2 instead-- I know this worksfor thetrianglewfm
that I’ve given you).

You needto definea setof parameterswhenrunningtheCoreGenerator, just asyou did for the
memory core. The parameters that I used are as follows:
Output width: 14
THETA input: 9
Function: sine and cosine
Memory Type: Distributed ROM

Input Options: Non-registered
Output: Non-registered
Output Symmetry: Symmetric

Oneway to performthefilter operationis to cleara setof valuesin the imagandrealarraysthat
you’ve justcomputedontheFPGA.For example,if thefilter valueis 10,thenthelast(high-order)
10 valuesof thesetwo arraysshouldbecleared,i.e., setto zero.Thefilter is completeby trans-
forming thedatabackto thetime domainusinga sequenceof operationsthataresimilar to those
shown above for the forward transform (see figure below for reverse transform)

Θ THETA
2 Π×

2
THETA_WIDTH

---×= in radians

CMPE 415 Project Description 12/17/07

Onestoppingpoint of the project(with a maximumgradeof 75%) is to computethe frequency
domainrepresentationandtransferit backto LABVIEW, i.e., don’t botherwith performingthe
filter operationatall. It is HIGHLY recommendedthatyoudo thisevenif youplanto do thefilter
portion so you candetermineif your Verilog codeis working properly. To verify, you cancom-
putethereal/imagfrequency domainvaluesusingLABVIEW andcompareit with theresultcom-
puted by the FPGA.

Onceyouhavetransferredthefrequency domaindatacomputedby theFPGAbackto LABVIEW,

you first divide eachof therealandimaginarycomponentsby 212. As mentionedabove, thesin/
coscoregenerates14-bit signedintegersthatrepresenttherange1.0 to -1.0,asshown in thefor-
mulabelow This division scalesthesin andcosvaluesreturnedby thesin/coscoreto this range.

The secondconversion involves y_int. We used‘y_int[i] = (y_float[i] - zero)/mult’ to convert
from float to int. Plugging in;

for (i = 0; i < num_pts; i++)
for (j = 0; j < num_pts/2; j++)

y_int[i] += real[j]*cos(j*2*PI*i/num_pts) + imag[j]*sin(j*2*PI*i/num_pts);

for (j = 1; j < num_pts/2; j++)

imag[j] *= 2/num_pts;
real[j] *= 2/num_pts;

{

}

real[0] /= num_pts;

for (i = 0; i < num_pts; i++)
y_int[i] = 0;

FPGA_cos_core = cos(i*j*2*PI/2THETA)*214 Core generates this value given
(i*j) as an argument.

real j[] y_int[i]
i j 2 π×××

n
----------------------------- 

 cos 4096××
i 0=

n 1–

∑=
This calc for each real -- 4096
is easily removed by division.
(Similar for imag components).

real j[] y_float[i] zero–
mult

-- 
  i j 2 π×××

n
----------------------------- 

 cos×
i 0=

n 1–

∑=

real j[] y_float[i]
mult

------------------------ 
  i j 2 π×××

n
----------------------------- 

 cos×
i 0=

n 1–

∑ zero
mult
----------- 

  i j 2 Π×××
n

------------------------------ 
 cos×

i 0=

n 1–

∑–=

Except for real[0], this sum is 0.
wheren is the number of
data points, e.g., 512.

CMPE 415 Project Description 12/17/07

Therefore, to convert back to float, you should NOT add the zero when applying the inverse for-
mula (except for real[0] explained below). Instead, just multiply each real[j] by ‘mult’ as shown
below.

For real[0] (the DC value of the DFT), you ALSO need to add the following constant:

Finally, to convert from real and imaginary values to magnitude and phase (the human readable
representation of the frequency domain data), use the following:

To create the x axis for the frequency domain mag and phase values, first define a fundamental
frequency as 1/(time range of time domain data). Each frequency component is labeled using:

You can use the LABVIEW express VI to plot the mag and phase spectra as waveforms.

SPECIAL NOTE: Be sure to run GXSTEST each time to power up your FPGA. You should see
the 7 segment display cycle through some digits at the end of the test and a ‘FPGA passed’ mes-
sage displayed. You then use GXSLOAD to transfer the bitfile generated by ISE to the FPGA.
Once you have done this, check to make sure the 7 segment display has ONLY the ‘dot’ illumi-
nated, none of the 7 segments should be illuminated. If they are, then the transfer process didn’t
work properly (I’ve had this happen occasionally). DO NOT start testing your code until this con-
dition holds, i.e., only the ‘dot’ is illuminated -- power cycle and reload if necesssary.

The grading criteria for the project given in the document “Details of laboratory grading criteria”
on my web page. There are lots of ways to earn extra credit. Please discuss these with me if and
when you are ready to move beyond the basic tasks associated with the project.

real[i] = real[i]*mult;
imag[i] = imag[i]*mult;

real[0] = real[0] + zero*num_pts;

for (i = 1; i < num_pts/2; i++)
{

mag[i] = sqrt(imag[i]*imag[i] + real[i]*real[i]);

mag[0] = real[0]/num_pts;

phase[i] = atan2(-imag[i], real[i])*180/PI;
}

phase[0] = 0;

imag[i] = imag[i]*2.0/num_pts;
real[i] = real[i]*2.0/num_pts;

for (i = 0; i < num_pts/2; i++)
freq[i] = i*fund_freq;

CMPE 415 Project Description 12/17/07

UPDATES WILL BE POSTED AS SOON AS THEY BECOME AVAILABLE (and highlighted
in this document). Please check this description periodically for changes!!!

