CMPE 415 Project Description 12/17/07

Term Project for CMPE415
(UPDATE: 11/19/07)

DUE DATE: For part1, which computeONLY the DFT of the time domainwaveform. (If you
stop here, then the maximum grade you can get is 75%).
DUE DATE: For complete project: (Last day of class).

Thelaboratoriesene to provide a vital pieceof the project,thatrelatedto transferringdatafrom
your computerto a memoryblock within the FPGA. The projectbuilds on the LABVIEW and
Verilog code yowe written for LAB #4.

Your FSM of LAB #4 hasa statethat represents transitionbetweenthe processof transferring
datato the FPGAandthe procesf transferringt back.The projectinvolvesperforminganoper-
ationon thedatabeforesendingt back.In particular youwill implementa waveformfilter oper-
ation using a discrete fourier transform (DFT).

The low passfilter acceptsasinput a time domainwaveform, e.g., the voltagewaveform mea-
suredon the power supplyasa circuit switches A waveformis definedby anarrayof (x,y) pairs,
whereeachx valuecorrespondso a specifictime valueandthe corresponding valueis a digi-
tized sampleof the signals voltageat that time instance We will assumehat the digitalization
processampledhe signalusinga constantime intenal suchthatthe deltat betweeneachsam-
ple is the samefor all pointsin the waveform. The assumptionsimplifies the low passfilter
design, i.e., only the y datales need to be transferred to the FPGA.

The (x,y) pairsrepresentinghe waveformsthat| give you asexampleswill be pairsof floating
point numbersYour LABVIEW codefrom LAB #4 readintegersfrom afile. Thefile formatis
changedor the projectto includetwo numbersperline separatedby a spaceor tab, eachrepre-
sentedn scientificnotation.Therefore you needto modify this code.Also, afilter valuewill fol-

low the (x,y) pairsin thefile, i.e.,it will bethelastvaluein thefile onaline by itself. Its datatype
is integer.

Onceyou have the datavalue pairsreadin usingLABVIEW (asfloating point numbers)you’ll
needto scalethey datato corvertthefloating point numbergo 8-bit integers.Oneapproachs to
multiply eachof they valuesby a constant.This simpleapproachmay not make full useof the
entirerangethat 16-bit integersprovide, from -127to 127. The properway to scalethe floating
point valuesis to parse the arrayidentifying the largestandsmallestvalues.This givesthe range
of theoriginal data.Theratio of theintegerrangeto floating pointrangegivesascalingfactorthat
you canuseto multiply eachof the floating point values.To make this work, you'll alsoneedto
computean offsetthatneedgo be addedto the scaledy valuein orderto centerthe waveformin
therangeof integers.Whencompletedthe smallestandlargestfloatingpointy valueswill mapto
the smallest and lgest intger \alues gien abee. See formula bela

At this point you have the (x,y) valuesof the waveform storedin floating point formatandthey
valuestranslatedo 8-bit integers.Oncethe FPGA processeshe data(to be described)you will

needto know the x delta(time interval betweeneachconsecutie value)andthe range(you can
assumehefirst x valueis 0 to representime O if youlike). You candothis beforeyoutransferthe

CMPE 415 Project Description 12/17/07

Parse the floating point y valuesin LABVIEW, save largest and smallest values and
compute two constants:

zero = (largest + smallest)/2;
mult = (largest - smallest)/(28- 2);

To convert the array of floating point values to integers:
y_int[i] = (y_float[i] - zero)/mult;

y datato the FPGA or you can do it afterwards (you can also do it in paralel with the FPGA Tor
bonus points).

The code that you have written for LAB #4 is designed to transfer 32-bit values. You can modify
it to transfer the 8-bit signed values or you can leave it asis (the high order 24 bitswill be all zeros
(positive number) or all ones (negative number)). You need to regenerate you memory core to
either allocate space for 1024 32-bit values or you can generate three separate cores, one with 512
32-bit values for the time domain data and 2 for the frequency domain data (real and imag -- see
below), each with 256 32-bit values.

The data transferred to the FPGA is the time domain data, i.e, the 8-bit integer y values that you
created in LABVIEW. Following these 512 8-bit y values, you need to send one additional value,
the number of high frequency components to eliminate in the filter operation (more on this soon).
You should save thisvalue in aspecial register instead of storing it in memory.

The low pass filter you will implement transforms the y data from the time domain into the fre-
guency domain using an n-squared DFT. The C code for the DFT is given below:

for (j=0;j <num_pts/2; j++) // Num of frequencies 1/2 numy values
for (1 =0; 1 <num_pts; i++)

{
red[j] +=y_datdi] * cos(j*2* PI*i/num_pts);
imag[j] +=y_data[i] * sin(j* 2*PI*i/num_pts);
}

Asyou can seg, it'sfairly easy towritein C. (NOTE: Thefull transform actually needs num_pts/2
+ 1 points in the frequency domain, so we are not computing the highest frequency component
using this formulation. Also, the imag components should be negated but we fix with this later in
the inverse transform).

The y_data values are already scaled to be integers once they are transferred to the FPGA, so
these are fine (y_int). However, the sin and cos functions output values between -1.0 and 1.0 using
the C library routines. On the FPGA, there is no C library so we need to implement these func-
tions in hardware. Moreover, we don’'t want to deal with floating point numbers, so we need spe-
cia functions that return integers instead of floating point values.

We will use the Core Generator to generate the sin and cos functions on the FPGA. Fortunately,
these functions are built so that they take integers as operands and return integers values. Our task

CMPE 415 Project Description 12/17/07

hereis to understandhow to translatethe argumentsshown in the C codeto integersandhow to
interpret the intger returned by these functions.

TheCoreGeneratodefinegheinputargument, THETA, to thesinandcosfunctionsasfollows: 8

_ 2x[1 . .
© = THETA x 2THETA_WIDTH in radians

representshe argumentto the sin andcosfunctionsin the C code. THETA is theinput thatyou

will provide whenyou invoke the sin andcosfunctions.The constant® * pi/2THETA_WIDTH o
resent*2*Pl/num_pts”in the C codeabove. This indicatesthat the core generatedin and cos
functionsalreadyincorporatetheseconstantso you don’t needto worry aboutthem.Whenit is
all said and done,you will only be responsiblefor multiplying “j*i” and this will definethe
THETA that you will use as input to the sin/cos core.

The outputof the sin andcosfunctionswill be a 14-bit signed integer. This integerrepresents
fixedpointnumbemwhendividedby theappropriateconstantThe constanthatyouwill divide by

is 212 You will performthis division onceyou have transferredhe numbersbackto LABVIEW
(don't do the dvision on the FPGA). More on this later

The 14-bitvaluesoutputfrom the sin andcosfunctionsneedto be multiplied by they datavalues
(which arealso8-bits),asshavn in the C codeabove. Theresultof the multiplicationis a 22-bit
value (14+8).The‘+=" operationin theloopsabore will needno morethanan additional9 bits
becausehe numberof timesthe‘+=" is performeds 512 (29). Justto be safe,you will have 32-
bits - 22-bits= 10-bits. This will guaranteeghatno overflow will occur Bearin mind thatthis is
theworstcase-- you will probablybe ableto usey valueswith more precision(insteadof divid-

ing by 28-2 above, you maybeableto use21%-2 instead-- | know this works for thetrianglewfm
that I've given you).

You needto definea setof parametersvhenrunningthe Core Generatgrjust asyou did for the
memory core. The parameters that | used are asvillo

Output width: 14

THETA input: 9

Function: sine and cosine

Memory Type: Distrituted FOM

Input Options: Non-rgistered
Output: Non-rgistered
Output Symmetry: Symmetric

Oneway to performthefilter operationis to cleara setof valuesin theimagandreal arraysthat
you've justcomputedbnthe FPGA.For example,if thefilter valueis 10, thenthelast(high-order)
10 valuesof thesetwo arraysshouldbe cleared,.e., setto zero. Thefilter is completeby trans-
forming the databackto thetime domainusinga sequencef operationghataresimilar to those
shavn abave for the forvard transform (see figure beldor reverse transform)

CMPE 415 Project Description 12/17/07

real[0] /= num_pts;
for (j=1;] < num_pts/2; j++)

imag([j] *= 2/num_pts;
real[j] *= 2/num_pts;

}
for (1=0;i<num_pts;i++)
y int[i]=0

for (i=0;i<num_pts; i++)
for (j =0;j < num_pts/2; j++)
y_int[i] += real[j]*cos(*2*PI*i/num_pts) + imag[j]*sin(j*2*PI*i/num_pts);

One sstoppingpoint of the project(with a maximumgradeof 75%)is to computethe frequeny
domainrepresentatiomndtransferit backto LABVIEW, i.e., don't botherwith performingthe
filter operatiomatall. It is HIGHLY recommendethatyou do this evenif you planto dothefilter
portion so you candeterminef your Verilog codeis working properly To verify, you cancom-
putethereal/imagfrequeny domainvaluesusingLABVIEW andcomparet with theresultcom-
puted by the FPGA.

Onceyou have transferredhefrequeny domaindatacomputeddy the FPGAbackto LABVIEW,

you first divide eachof the realandimaginarycomponentdy 212 As mentionedabove, the sin/
coscoregenerated4-bit signedintegersthatrepresentherangel.0to -1.0,asshown in thefor-
mulabelow This division scaleghe sin andcosvaluesreturnedby the sin/coscoreto this range.

FPGA_cos_core = cos(i*j*2*PI/Z1ETAyx2 14 Core generates thisiue gien
(i*j) as an agument.

2 X T[D This calc for each real -- 4096
x 4096 s easily remued by dvision.
(Similar for imag components).

real j] = z y_int[i] x cosD

The secondcorversioninvolvesy_int. We used'y_int[i] = (y_float[i] - zero)/mult’ to corvert
from float to int. Plugging in;

. float[i] —zer X 2 X
real j] = Ey nEL]JIt qjx cosD X TE
i —
- D/float[llm DXJXZXT[D DXJx2><I'ID
realj] = Z O mut O %0 n 2 S0 O

wheren is the number of - :
data points, e.g., 512. Except for real[0], this sum is 0.

CMPE 415 Project Description 12/17/07

Therefore, to convert back to float, you should NOT add the zero when applying the inverse for-
mula (except for real[0] explained below). Instead, just multiply each real[j] by ‘mult’ as shown
below.

real[i] = real[i]* mult;

imag[i] = imag[i]* mult;

For real[0] (the DC value of the DFT), you AL SO need to add the following constant:
real[O] = real[0] + zero* num_pts;

Finally, to convert from real and imaginary values to magnitude and phase (the human readable
representation of the frequency domain data), use the following:

mag[0] = real[0]/num_pts;
phase[0] = 0;
for (i=1;i <num_ptg/2; i++)

i{mag[i] = imag[i]*2.0/num_pts;

real[i] = real[i]*2.0/num_pts,

mag[i] = sgrt(imag[i]*imagf[i] + real[i]*real[i]);
phase]i] = atan2(-imag([i], real[i])* 180/PI;

}

To create the x axis for the frequency domain mag and phase values, first define a fundamental
frequency as 1/(time range of time domain data). Each frequency component is labeled using:

for (1 =0; i <num_ptg/2; i++)
freg[i] = i*fund_freq;

You can use the LABVIEW express V1 to plot the mag and phase spectra as waveforms.

SPECIAL NOTE: Be sure to run GXSTEST each time to power up your FPGA. You should see
the 7 segment display cycle through some digits at the end of the test and a ‘ FPGA passed’ mes-
sage displayed. You then use GXSLOAD to transfer the bitfile generated by ISE to the FPGA.
Once you have done this, check to make sure the 7 segment display has ONLY the ‘dot’ illumi-
nated, none of the 7 segments should be illuminated. If they are, then the transfer process didn’t
work properly (I've had this happen occasionally). DO NOT start testing your code until this con-
dition holds, i.e., only the ‘dot’ isilluminated -- power cycle and reload if necesssary.

The grading criteriafor the project given in the document “Details of |aboratory grading criteria’
on my web page. There are lots of ways to earn extra credit. Please discuss these with me if and
when you are ready to move beyond the basic tasks associated with the project.

CMPE 415 Project Description 12/17/07

UPDATES WILL BE POSTED AS SOON AS THEY BECOME AVAILABLE (and highlighted
in this document). Please check this description periodically for changes!!!

