
Programmable Logic Devices Behavioral Constructs CMPE 415

1 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: initial and always
General rules distinguishing nets and registers:
• A net or register variable can be referenced anywhere in a module.
• A net variable can NOT be assigned to within a behavior; a register variable

can NOT be assigned to outside a behavior.
• A net variable can be an input, output or inout port, a register variable can

ONLY be used in an output port.

initial and always
Enable the designer to describe design at a high level of abstraction, i.e.,
as a sequence of operations, in a recipe-type fashion.

Contain procedural statements that execute sequentially, controlling activ-
ity flow and making assignments to register variables.

Unlike continuous assignment, a procedural statement is NOT sensitive to
the activity in the circuit.

Procedural statements affect the register variables ONLY when con-
trol is passed to them.

Programmable Logic Devices Behavioral Constructs CMPE 415

2 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: initial and always
initial and always

initial declares a one-shot sequential activity flow activated at tsim = 0.

Typically used by designers to initialize a simulation.

always declares a cyclic behavior also activated at tsim = 0.

Once the last stmt executes, control is passed again to the first stmt.

initial and always blocks execute concurrently with other structural and
continuous assignment stmts in the module.

There are three types of assignments within behaviors:
• Procedural assignment (=),
• Non-blocking assignment (<=)
• Procedural continuous assignment (assign)

Procedural assignments using ’=’ operator execute sequentially and are
called blocking assignments.

Programmable Logic Devices Behavioral Constructs CMPE 415

3 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Assignment
Verilog also provides a non-blocking procedural assignment construct, <=,
which does NOT block the execution of stmts that follow.

Non-blocking assignments execute in two steps
• First the RHS is evaluated and the simulator schedules the assignment at a

time determined by an optional intra-assignment delay or event control.

• At the end of the designated future time step, the actual assignment is car-
ried out.

Non-blocking stmts evaluate concurrently and their order is irrelavant.

initial
begin
A = 1;
B = 0;
...
A <= B; // Uses B = 0
B <= A; // Uses A = 1
end

initial
begin
A = 1;
B = 0;
...
B <= A; // Uses A = 1
A <= B; // Uses B = 0
end

// Execute first

Programmable Logic Devices Behavioral Constructs CMPE 415

4 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Assignment
In contrast

Non-blocking assignments are preferred in synthesis.
Warning: Synthesis tools do NOT support a mixture of blocking and non-
blocking assignments within the same behavior.

A procedural continuous assignment (PCA) creates a dynamic binding to a regis-
ter variable when the statement executes.

It uses "=" as in procedural assignment with the keyword assign.

WARNING: The Xilinx synthesis engine does not accept this Verilog con-
struct

initial
begin
A = 1;
B = 0;
...
A = B; // Uses B = 0
B = A; // Uses A = 0
end

initial
begin
A = 1;
B = 0;
...
B = A; // Uses A = 1
A = B; // Uses B = 1
end

Programmable Logic Devices Behavioral Constructs CMPE 415

5 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Event Control Operator
Synchronizes the execution of a procedural statement(s) to a change in value
of a variable in the sensitivity list.

We’ve seen these for sequential circuits synchronized to clock edges using
posedge and negedge, e.g., a D-flipflop, with synchronous set/reset.

WARNING: Do NOT assign within the behavior to the variable in the sensi-
tivity list.

module sync_df(data, clk, q, q_bar, set, reset)
input data, clk, set, reset;
output q, q_bar;
reg q;

assign q_bar = ~q;

always @(posedge clk)
begin

if (reset == 0) q = 0;
else if (set == 0) q = 1;
else q = data;

end
endmodule

Programmable Logic Devices Behavioral Constructs CMPE 415

6 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Event Control Operator
Asynchronous set/reset can be introduced easily using or.

For latches.

module asynch_df(data, clk, q, q_bar, set, reset)
input data, clk, set, reset;
output q, q_bar;
reg q;
assign q_bar = ~q;
always @(negedge set or negedge reset or posedge clk)

begin
if (reset == 0) q = 0;
else if (set == 0) q = 1;
else q = data;

end
endmodule

module t_latch(q_out, enable, data)
input enable, data;
output q_out;
reg q_out;
always @(enable or data)

begin
if (enable) q_out = data;

end
endmodule

Programmable Logic Devices Behavioral Constructs CMPE 415

7 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Event Control Operator
The event_expression can be repeated a specified number of times:
module repeater;

reg clk;
reg reg_a, reg_b;

initial
clk = 0;

initial begin
#5 reg_a = 1;
#10 reg_a = 0;
#5 reg_a = 1;
#20 reg_a = 0;

end
always

#5 clk ~= clk;

initial
#100 $finish;

initial begin
#10 reg_b = repeat (5) @(posedge clk) reg_a;

end
endmodule

Note that t_sim = 55, reg_b get the
value reg_a had at t_sim = 10, not
the value at t_sim = 55.

100 20 30 40 50 60 70 80

// temp = reg_b;
//@ (posedge clk); @ (posedge clk); @ (posedge clk);
//@ (posedge clk); @ (posedge clk);
// reg_a = temp;

Programmable Logic Devices Behavioral Constructs CMPE 415

8 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Activity Flow Control
These types of statements modify the activity flow within a behavior.
• ?...:, case, if (conditional)
• repeat, for, while, forever (loop)
• wait (suspend)
• fork ... join (branch)
• disable (terminate)

Conditional Operator (? ... :)
Discussed previously when used with continuous assignment stmts --
can also be used with procedural stmts.

module mux_behavior (y_out, clock, reset, sel, a, b);
input clock, reset, sel;
input [15:0] a, b;
output [15:0] y_out;
reg [15:0] y_out;
always @ (posedge clock or negedge reset)

if (reset == 0) y_out = 0;
else y_out = (sel) ? a + b : a - b;

endmodule

Programmable Logic Devices Behavioral Constructs CMPE 415

9 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Activity Flow Control
The case expression is evaluated in Verilog’s 4-value logic system.

The case stmt requires an exact bitwise match.

The other two variants of the case treat don’t care situations.
casex ignores values in those bit positions of the case expression or
case_item that have the value "x" or "z" -- matches anything, 0, 1, x or z.

casez ignores any bit position of the case expression or case_item that have
value "z". It also uses "?" as an explicit don’t care.

For simulation, the default case is optional.

For synthesis, be sure to cover all possible combinations of the expression in
the case_item list (or use default) to avoid unwanted latches.

always @(decode_pulse)
casez (instruction_word)

16’b0000_????_????_????:; // Null stmt for no-op.

Programmable Logic Devices Behavioral Constructs CMPE 415

10 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Activity Flow Control
Verilog has 4 loops mechanisms, repeat, for, while and forever

for and while work as they do for std programming languages.

Repeat executes a stmt or block a specified number of times.
When reached, expression is evaluated to determine the number of itera-
tions.

The forever loop is unconditional and is terminated via a disable stmt.

disable can also be used to terminate a for, repeat or while loop.

...
word_address = 0;
repeat (memory_size)

begin
memory[word_address] = 0;
word_address = word_address + 1;
end

...

Programmable Logic Devices Behavioral Constructs CMPE 415

11 (10/9/07)UMBCU M B C

U
N

IV
E

R
SI

T
Y

 O
F

 M
ARYLAND BALTIM

O
R

E
 C

O
U

N
TY

1 9 6 6

Behavioral Descriptions: Activity Flow Control
Clocks and pulse-trains in testbenches are easily implemented using forever
loops:

NOTE: do NOT confuse always and forever stmts
The always construct declares a concurrent behavior, that can NOT be
nested and becomes active at the beginning of simulation.

The forever loop is a computational activity, that can be nested and does
not execute until it is reached within an activity flow.

parameter half_cycle = 50;
initial

begin : clock_loop
clock = 0;
forever
begin

#half_cycle clock = 1;
#half_cycle clock = 0;

end
end

initial
#350 disable clock_loop;

