Programmable Logic Devices Verilog State Machines CMPE 415

fBehaVioral Models of FSMs h
Two basic forms of Finite State Machines

Inputs Outputs
—> -
Next State and Output /
Combinational Logic
— e State
Register Asynchronous
N\ and subject to
clock glitches in the
inputs
Mealy
Synchronous \
Inputs Outputs
Next state
— Output
—| Combinational Logic State - Combi}faﬁonal .
Register Loo:
N ogic
clock
Moore

J

“ UMBC I (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(Behavioral Models of FSMs)
There are two descriptive styles of FSMs.

o Explicit: declares a state register to encode the machine’s state. A behavior
explicitly assigns values to the state register to govern the state transitions.

e Implicit: uses multiple event controls within a cyclic behavior to implicitly
describe an evolution of states.

Explicit FSMs, several styles are possible:

module FSM_stylel (...);
input ...;
output ...;
parameter size = ...,
reg [size-1 : 0] state, next_state;

assign the_outputs = ... // a function of state and inputs
assign next_state = ... // a function of state and inputs.

always @ (negedge reset or posedge clk)
if (reset == 1’b0) state <= start_state;
else state <= next_state;

endmodule

J
2 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs A
A second style replaces the continuous assignment generating the next_state

with asynchronous (combinational) behavior:

module FSM_style2 (...);
input ...;
output ...;
parameter size = ...;
reg [size-1 : 0] state, next_state;

assign the_outputs = ... // a function of state and inputs

always @ (state or the_inputs)
// decode next_state with case or if stmt

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state <= start_state;
else state <= next_state; //Non-blocking or procedural assignment

endmodule

This latter style can exploit the case stmt and other procedural constructs for
descriptions that are complex.

Note that in both styles, the outputs are asynchronous.

J
3 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs A
It may be desired to register the outputs, and make them synchronous:

module FSM_style3 (...);
input ...;
output ...;
parameter size = ...;
reg [size-1 : 0] state, next_state;

always @ (state or the_inputs)
/ / decode next_state with case or if stmt

always @ (negedge reset or posedge clk)
if (reset == 1'b0) state <= start_state;
else begin
state <= next_state;

outputs <= some_value (inputs, next_state);
end
endmodule

State machines can be represented in
e Tabular format (state transition table)

e Graphical format (state transition graph)
* Algorithmic state machine (ASM) chart

J
4 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder)
Adds operands A =a,,_a,,»...apand B = b,,_1b,,_»...by, one bit pair at a time.

A
Y a

»| shift register >

S
Adder —» shift register
FSM g
—— b ¥

| shift register >
‘ Sum=A +B
B

Clk

The values of A and B are loaded in parallel mode into the shift registers.

At each rising edge, the contents of all shift registers are shifted to the right
one bit.

This saves the current bit-pair sum, s, and fetches the next pair of bits for
the adder.

J

% UMBC : o607

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder: Mealy version)

Two states will be used, G and H, to handle the carry bit alternatives.

(ab/s) Meal

(11/0) e
(00/0) (01/0)
(01/1) (10/0)
(10/1) (11/1)

~

(00/1)
Only one FF needed.
Output depends on both the state and present value of a and b.

a S
—> >
b Y y
e Full D Q
adder | carry-out
—
Clk
D
reset \'%

J

UMBC 6 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder: Mealy version)
Shift register with enable:

module shift reg(in_reg, par_load, enable, in_bit, Clk, out_reg);
parameter n = §;
input [n-1:0] in_reg;
input par_load, enable, in_bit, Clk;
output reg [n-1:0] out_reg;
integer k;
always @ (posedge Clk)
if (par_load) / / Parallel load

out_reg <=1n_reg; _
else if (enable) // Shift when enabled

begin
for(k=n-1; k>0, k=k-1)
out_reg[k-1] <= out_regl[k];
out_reg[n-1] <= in_bit;

end
endmodule

J
7 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder: Mealy version)
Serial Adder:
module serial_adder(A, B, Reset, Clk, Sum);
input [7:0] A, B;
input Reset, Clk
output wire [7:0] Sum;
reg [3:0] Cnt;
reg sbit, cur_state, next_state;
wire [7:0] QA, QB;
wire Run;
parameter G = 1'b0, H = 1'b1;
shift_reg shift A(A, Reset, 1'b1, 1'b0, Clk, QA);
shift_reg shift B(B, Reset, 1'b1, 1'b0, Clk, QB);
shift_reg shift sum(8b0, Reset, Run, sbit, Clk, Sum);
Instantiates three shift registers -- are loaded in parallel when Reset asserted.
The sum (third) shift_reg shifts when Run == 1 (drives enable in
shift_reg), which happens on the first Clk AFTER Reset == 0.
This allows output combo logic (next slide) time to compute s.
O)
s UMBC 3 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder: Mealy version)
Serial Adder:

always @QA, QB, cur_state) // Output and next state combo logic
case (cur_state)

G: begin // carry ==
sbit = QA[0] ~ QBJ0]; // Compute sum: a xor b
if (QA[0] & QBJ[0]) next_state=H; //carry=aandb
else next_state = G;

end

H: begin // carry ==
sbit = QA[0] ~” QBJ[0]; // sis 1 forab =00 or 11 (xnor)
if (~QA[0] & ~QBJ[0]) next_state = G; // carry is 0 again

else next_state = H; // only if ab = 00
end
default: begin sbit = 0; next_state = G; end

endcase
always @(posedge Clk) // Flip-flop v
if (Reset) cur_state <= G;
else cur_state <= next_state;
always @(posedge Clk) // Count down from 8 to 1, once for each bit

if (Reset) Cnt <= §; // Synchronous Reset
else if (Run) Cnt <=Cnt- 1;
assign Run = [Cnt; // Run =1 immediately AFTER first Clk
endmodule // Run = 0 after 8 more cycles (reduction or)

J
9 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Serial Adder: Mealy version)

Schematics:
i e
[

Block=serial_adder Sheet=1 Page=1

next_state logic fv 1

T ‘ E? _= | «—Up counter

A&B s U I | W

shift registers\

E e
= e | Sum shift
- . register

»
Data(0)>-

J
10 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Arbiter Circuit: Moore version)
The function of a arbiter is to control access by devices to a shared resource.
One one device can use the resource at a time.

All signals change only on the positive edge of Clk.

Each device has one input to the FSM, called a request, and the FSM produces
a separate output for each device called a grant.

Devices request service by asserting its request signal, and indicates comple-
tion by deasserting the request signal.

The FSM grants access according to a priority scheme (assuming the shared
resource is not already allocated to another device).

Consider a system designed to handle 3 devices, dev_1, dev_2 and dev_3, in
order of decreasing priority, i.e., dev_1 has highest priority.

Let r, represent the request signals and g, represent the grant signals

J
11 (10/16/07)

Programmable Logic Devices

Verilog State Machines

CMPE 415

State diagram

fFSMs: Arbiter Circuit: Moore version

\

J

Reset
4 states: e ‘ 000 V\I-{queft signals
Idle, gntl1, gnt2, gnt3 mryry
0 (\ Don't cares are given as x
XX
gntl/g; =
1xx
x0x 01x
xx0 001
gnt2/g, =1
x1x
Note: lower priority
devices canNOT be
‘overridden’ by higher
gnt3/gs =1 priority devices in
this FSM
' xx1
12 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415
\

fFSMs: Arbiter Circuit: Moore version

module arbiter_moore(r, Resetn, Clk, g);
input [1:3] r;
input Resetn, Clk
output wire [1:3] g;
reg [2:1]y, Y;
parameter Idel = 2’b00, gntl = 2'b01, gnt2 = 2’b10, gnt3 = 2'b1 1;
always @(r, y)
case (y)
Idle: casex (1) // Nested casex which uses x to
3'b000: Y = Idle; / / indicate don’t care.

3’blxx: Y = gntl; // Order of cases listed defines
3’b01x: Y = gnt2; // priority
3’b001: Y = gnt3;
default: Y = Idle;
endcase
gntl: if (r[1]) Y = gntl;
else Y = Idle;
gnt2: if (r[2]) Y = gnt2;
else Y = Idle;
gnt3: if (r[3]) Y = gnt3;
else Y = Idle;
default: Y = Idle;
endcase

J

\ ‘“ '"WUMBC 13 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Arbiter Circuit: Moore version)
Note this specification allows potential ‘starvation” of lower priority devices.
always @(posedge Clk)
if (Resetn == 0) y <=Idle;
elsey <=Y;
assign g[1] = (y == gnt1);
assign g[2] = (y == gnt2);
assign g[3] = (y == gnt3);
endmodule

Algorithmic state machines (ASMs) are more convenient for complex state
machines.

They use a flow chart style to show the evolution of states on the applica-
tion of input data over time.

ASMs use three elements:

e State box: rectangular boxes that represent the state of the machine between
clk events.

J

% UMBC ’ o607

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Algorithmic state machines)
e State box (cont.):

State name appears inside the box:

S_idle — To one or more decision boxes

Listed: state code and signals that are asserted when state box is entered.

For Moore machines, the state name appears on the outside in the upper
left and the asserted outputs are listed inside the box.

e Decision boxes: Determine the exit paths from the state boxes.

: 1 <e—Listed: inputs that are or become asserted
S_idle 0

* Conditional output boxes: Output signals that are asserted conditionally (Mealy

machines only).

The assertion of the output signal depends on the state and inputs

Here, the output depends on the state AND the value of the inputs.

J

w UMB C 15 (10/16/07)

Programmable Logic Devices Verilog State Machines

CMPE 415

(FSMs: Craps example

A version of craps

roll is an asynchronous

(roll_ agam) \rS _pause

[\ 1

C rolling) S_repeat

input

1 States are entered on

v

S win/

win

rising edge of clk
:reset>

A

Player roles the die with 3

possible outcomes:
a) Sum is 7 or 11, player wins

\

b) Sum is 2, 3, or 12, player loses

¢) Otherwise, sum is declared to
be the player’s point.

Needs to roll it again before
rolling a 7 to win

J

(10/16/07

)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Craps example)
The rolling unit generates (?random?) values for D_left and D_right synchro-

nously with clk.

The sum of D_left and D_right is computed immediately (synchronously)
with combinational logic but does NOT effect state transitions until the
NEXT rising edge of clk.

Output signals, win, lose, match, roll_again are asserted synchronously or
asynchronously depending on whether they depend on the input roll.

Pay particular attention to how signals are asserted and de-asserted!

next_state is computed by combinational logic using an always behavior
The sensitivity list includes the signals evaluated in the decision blocks,
e.g., roll, sum and match.

The description also includes a signal, save_point, that serves as a clk to a reg-
ister that saves the value of sum -- it is asynchronous.

J
17 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Craps example)

module Crap_shoot
(clk, reset, point, roll, win, match, lose, roll_again, rolling, blank, D_left, D_right,
sum);
input clk, reset, roll;
output win, lose, match, roll_again, rolling, blank;
output [3:0] point;
output [2:0] D_left, D_right;
output [3:0] sum;
parameter S_idle = 0;
parameter S_rolling = 1;
parameter S_pause = 2;
parameter S_repeat = 3;
parameter S_lose = 4;
parameter S_win = 5;

wire match, rolling, roll_again, win, lose, save_point;
reg [2:0] D_left, D_right;

wire [3:0] sum = D_left + D_right;

reg [2:0] state, next_state;

reg [3:0] point;

J
18 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Craps example)

// Rolling Unit

always @(posedge clk or posedge reset)
if (reset) begin D_left <= 1; D_right <= 1; end
else begin
if (D_left < 6) D_left <= D_left + 1; else D_left <= 1;
if (D_left == 6 && D_right < 6) D_right <= D_right + 1; else
if (D_left == 6 && D_right == 6) D_right <= 1;
end
// Scoring Unit / / synchronously set but asynchronously reset

assign match = (sum == point); /
assign roll_again = (state == S_pause && !roll);

assign rolling = ((state == S_rolling && roll) Il (state == S_repeat & & roll));
assign save_point = ((state == S_rolling) && !roll &&

sum !=2 &&
sum !=3 && ‘\
sum =12 && // save_point set asynchronously
sum =7 && / / because it depends on roll
sum !=11);

assign win = (state == S_win);

assign lose = (state == S_lose);

assign blank = (point < 2);

J
19 (10/16/07)

Programmable Logic Devices Verilog State Machines CMPE 415

(FSMs: Craps example)
/I Control Unit

always @(posedge save_point or posedge reset) // save_point serves as
if (reset) point <= 0; // 'clk’ for point register
else point <= sum; // -- asynchronous

always @ (posedge clk or posedge reset) o
if (reset) state <= S_idle; / / match can go low on rising edge of clk,
else state <= next_state: // changing next_state but this okay

/ / synchronous changes to these

always @ (state or sum or roll or match) // Slgnals are NOT immediately
case (state) / / realized in next_state
S_idle: if (roll) next_state <= S_rolling; else next_state <= S_idle;
S_rolling: if (roll) next_state <= S_rolling; else
if (sum == 2 |l sum == 3 |l sum == 12) next_state <= S_lose;
else
if (sum == 7 |l sum == 11) next_state <= S_win;
else next_state <= S_pause;
S_pause: if (roll) next_state <= S_repeat; else next_state <= S_pause;
S_repeat: if (roll) next_state <= S_repeat; else
if (match) next_state <= S_win; else
if (sum == 7) next_state <= S_lose; else next_state <= S_pause;
S _win: next_state <= S_win;
S lose: next_state <= S_lose;
endcase endmodule

J
20 (10/16/07)

