Performance Regions

The propagation function for all copper media has the following regions

Since dB is already a logarithmic unit, this is a double log

In order of increasing frequency

- RC region
- LC region
- Skin-effect region
- Dielectric loss region
- Waveguide dispersion region

Performance Regions

Regions as a function of trace length

In lumped region, transmission line is short enough that it acts as a simple lumped circuit element.

Performance Regions

In the RC region, the inductive reactance, ωL , dwindles to insignificance in comparison to DC resistance -- only R and C matter in this region.

In LC region, inductive reactance exceeds DC resistance.

In skin effect region, *internal inductance* of conductors becomes significant compared to DC resistance, and forces a redistribution of current.

Dielectric-loss-limited region entered when dielectric losses become comparible to resistive losses.

The performance of transmission line depend on four factors

The factors are Z_C (characteristic impedance), H (the raw, **unloaded** one-way propagation function), Z_S (source impedance) and Z_L (load impedance).

We need to derive two parameters:

- The input impedance of the transmission line (with load), e.g., v_2/i_2
- The gain v_3/v_1

We need to derive these using a two-port analysis.

transmission matrix
$$\mathbf{A}$$

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix}$$

Shared common reference terminal

Transmission matrix A prescribe the actions of the circuit.

Each of the 4 elements is a function of frequency.

This form of the transmission matrix is amenable to *cascaded* systems.

Let's derive the **input impedance** and **gain** from the transmission matrix.

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix} \xrightarrow{\text{open circuit}} v_1 = a_{0,0}v_2 \longrightarrow Z_{\text{in, open}} = \frac{a_{0,0}}{a_{1,0}}$$

Input impedance is calculated first assuming the output circuit (v_2 , i_2) is open-circuited, i.e., $i_2 = 0$.

Input impedance with the output shorted to ground, i.e., $v_2 = 0$.

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix} \xrightarrow{\text{short circuit}} v_1 = a_{0,1}i_2 \\ v_2 = 0 \qquad i_1 = a_{1,1}i_2 \longrightarrow Z_{\text{in, short}} = \frac{a_{0,1}}{a_{1,1}}$$

For the first case (open-circuit), the voltage transfer function is

Voltage gain =
$$\frac{v_2}{v_1} = \frac{1}{a_{0,0}}$$

There are three *classic* forms of transmission matrices used for transmission lines: a **series impedance**.

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix}$$

A shunt impedance

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ z^{-1} & 1 \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix}$$

A transmission line

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} \left(\frac{H^{-1} + H}{2}\right) & \left(Z_C \frac{H^{-1} - H}{2}\right) \\ \left(\frac{1}{Z_C} \left(\frac{H^{-1} - H}{2}\right)\right) & \left(\frac{H^{-1} + H}{2}\right) \end{bmatrix} \begin{bmatrix} v_2 \\ i_2 \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_2 \end{bmatrix}$$

The series impedance and shunt impedance forms are easily derived from Kirchoff's laws.

The transmission line is derived in the following way.

The general form of solution for signals on a transmission line is composed of two traveling waves

One propagating to the right and one moving to the left.

One the right side, let the signal amplitudes be denoted by *a* and *b*.

The currents associated with these 2 wfms at that point must be $+a/Z_{C}$ and $-b/Z_{C}$.

The superposition of these waves represent the excursion of voltage and current

$$v_2 = a + b$$
 and $i_2 = \frac{a}{Z_C} - \frac{b}{Z_C}$

Solving for *a* and *b*

$$a = \frac{v_2 + Z_C i_2}{2}$$

$$b = \frac{v_2 - Z_C i_2}{2}$$

At the left end of the line, the same conditions hold, except that the amplitudes of the right- and left-traveling wfms must be adjusted to account for their propagation through the medium.

The amplitude of the left-traveling wfm is diminished by H, while the right-traveling wfm is *increased* by H^{-1} .

This ensures that it arrives at the right end at the correct amplitude *a*.

$$v_1 = aH^{-1} + bH$$

$$i_1 = \frac{a}{Z_C}H^{-1} - \frac{b}{Z_C}H$$

Summing the voltages and currents at the left end of the line

Substituting a and b into these equations to relate to v_2 and i_2

$$v_1 = \left(\frac{v_2 + Z_C i_2}{2}\right) H^{-1} + \left(\frac{v_2 - Z_C i_2}{2}\right) H$$

$$i_{2} = \left(\frac{v_{2} + Z_{C}i_{2}}{Z_{C}}\right) H^{-1} - \left(\frac{v_{2} - Z_{C}i_{2}}{Z_{C}}\right) H$$

Collecting terms associated with v_2 and i_2 yields the form that we showed earlier.

$$v_1 = \left(\frac{H^{-1} + H}{2}\right)v_2 + Z_C\left(\frac{H^{-1} - H}{2}\right)i_2$$

$$i_1 = \frac{1}{Z_C} \left(\frac{H^{-1} - H}{2} \right) v_2 + \left(\frac{H^{-1} + H}{2} \right) i_2$$

Input Impedance

The transmission line is modeled as a cascade of three 2-port circuits

The input impedance of the loaded transmission line is obtained from the cascaded combination of BC

$$BC = \begin{bmatrix} \left(\frac{H^{-1} + H}{2}\right) & \left(Z_C \frac{H^{-1} - H}{2}\right) \\ \left(\frac{1}{Z_C} \frac{H^{-1} - H}{2}\right) & \left(\frac{H^{-1} + H}{2}\right) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{Z_L} & 1 \end{bmatrix}$$

Input Impedance

Multiplying

$$\begin{bmatrix} v_2 \\ i_2 \end{bmatrix} = \begin{bmatrix} \left(\frac{H^{-1} + H}{2}\right) + \frac{Z_C}{Z_L} \left(\frac{H^{-1} - H}{2}\right) & Z_C \left(\frac{H^{-1} - H}{2}\right) \\ \frac{1}{Z_C} \left(\frac{H^{-1} - H}{2}\right) + \frac{1}{Z_L} \left(\frac{H^{-1} + H}{2}\right) & \left(\frac{H^{-1} + H}{2}\right) \end{bmatrix} \begin{bmatrix} v_3 \\ i_3 \end{bmatrix}$$

The input impedance v_2/i_2 equals the ratio $\mathbf{BC_{0,0}}/\mathbf{BC_{1,0}}$ (with $i_3 = 0$).

$$Z_{\text{in, loaded}} = \frac{\left(\frac{H^{-1} + H}{2}\right) + \frac{Z_C}{Z_L} \left(\frac{H^{-1} - H}{2}\right)}{\frac{1}{Z_C} \left(\frac{H^{-1} - H}{2}\right) + \frac{1}{Z_L} \left(\frac{H^{-1} + H}{2}\right)}$$

Input Impedance

Input Impedance (after simplifying)

$$Z_{\text{in, loaded}} = Z_C \left(\frac{\left(\frac{H^{-1} + H}{2}\right) + \frac{Z_C}{Z_L} \left(\frac{H^{-1} - H}{2}\right)}{\left(\frac{H^{-1} - H}{2}\right) + \frac{Z_C}{Z_L} \left(\frac{H^{-1} + H}{2}\right)} \right)$$

Some interesting simplifications can be derived for special situations.

13

For
$$Z_L >> Z_C$$

For
$$Z_L >> Z_C$$

$$Z_{\text{in, open-circuit}} = Z_C \left(\frac{H^{-1} + H}{H^{-1} - H} \right)$$

Right-hand terms get small.

For
$$Z_L = Z_C$$

$$Z_{\text{in, end-terminated}} = Z_C$$

Right-hand terms go to unity.

For
$$Z_L << Z_C$$

$$Z_{\text{in, short-circuit}} = Z_C \left(\frac{H^{-1} - H}{H^{-1} + H} \right)$$

Left-hand terms get small.

Transfer Function

Gain or voltage transfer function, v_3/v_1 of the *loaded* transmission line is obtained from the cascaded combination of all three parts **ABC**.

$$ABC = \begin{bmatrix} 1 & Z_S \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{H^{-1} + H}{2}\right) & \left(Z_C \frac{H^{-1} - H}{2}\right) \\ \left(\frac{1}{Z_C} \frac{H^{-1} - H}{2}\right) & \left(\frac{H^{-1} + H}{2}\right) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{Z_L} & 1 \end{bmatrix}$$

The **voltage gain** $G_{FWD} = v_3/v_1$ is the inverse of the first element of **ABC**

$$\frac{v_3}{v_1} = \left[ABC_{0,0}\right]^{-1}$$

$$\frac{v_3}{v_1} = \left[\left(\frac{H^{-1} + H}{2}\right) + \frac{Z_C}{Z_L}\left(\frac{H^{-1} - H}{2}\right) + \frac{Z_S}{Z_C}\left(\frac{H^{-1} - H}{2}\right) + \frac{Z_S}{Z_L}\left(\frac{H^{-1} + H}{2}\right)\right]^{-1}$$

$$G_{\text{FWD}} = \frac{v_3}{v_1} = \frac{1}{\left[\left(\frac{H^{-1} + H}{2}\right)\left(1 + \frac{Z_S}{Z_L}\right) + \left(\frac{H^{-1} - H}{2}\right)\left(\frac{Z_S}{Z_C} + \frac{Z_C}{Z_L}\right)\right]}$$
 (Simplified)

Transfer Function

This gain expression is most useful for analyzing *lumped-element* and *RC-mode* transmission lines.

For the *LC-mode* and *skin-effect* regions, we'll use the following variation

$$G = \frac{1}{2} \frac{\left(1 - \left(\frac{Z_S - Z_C}{Z_S + Z_C}\right)\right) \left(1 + \left(\frac{Z_L - Z_C}{Z_L + Z_C}\right)\right)}{1 - H^2 \left(\frac{Z_S - Z_C}{Z_S + Z_C}\right) \left(\frac{Z_L - Z_C}{Z_L + Z_C}\right)} = \frac{1}{2} \frac{(1 - \Gamma_1)(1 + \Gamma_2)}{1 - H^2 \Gamma_1 \Gamma_2}$$

 Γ_1 is the **reflection coefficient** at the source end while Γ_2 is the reflection coefficient at the load end.

Our goal is to transmit signals between source and load *undistorted*.

Therefore, we must ensure the propagation functions (G's above) remain flat over the **band of frequencies** covering the bulk of the spectral content of the signal.

Transfer Function

The bulk of the useful spectral content of a random data sequence spans a range from DC up to

$$f_{\text{knee}} = \frac{0.5}{t_r} \,\text{Hz}$$

$$\omega_{\text{knee}} = 2\pi \frac{0.5}{t_r} \text{ rad/s}$$

An estimate of the **midpoint** of the spectral content associated with rising and falling edges is slightly less at

$$f_{\text{edge}} = \frac{0.35}{t_r} \,\text{Hz}$$