(gl

School of Computer and Communication Sciences P
Communication systems section FEDERALE DE LAUSANNE

& &
A4 a4

Microelectronic Systems Laboratory

Y M

2002 Winter Semester Project

Implementation of DES
Algorithm Using FPGA
Technology

Student: Arnaud Lagger
Assistant: Ilhan Hatirnaz

Professor: Yusuf Leblebici

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

INTRODUCTION 4
OVERVIEW OF CRYPTOGRAPHY 5
SYMMETRIC-KEY ENCRYPTION 5
DATA ENCRYPTION STANDARD (DES) 6
Examples of modern equipments which use DES encryption 11
METHOD 12
TooLs 12
Software 12
Hardware 12
DESIGN FLOW 14
UNDERSTANDING THE CODE 16
COMPONENTS 17
desenc 17
keysched 17

P 17
roundfunc 18

FP 18
FAST DESIGN 19
OPTIMIZATIONS 19
SIMULATION PROCESS 21
SYNTHESIS PROCESS 22
PLACE & ROUTE 25
FPGA 26
SMALL DESIGN 27
SIMULATION PROCESS 30
SYNTHESIS PROCESS 31
PLACE & ROUTE 32
FPGA 33
CONCLUSION 34
ACKNOWLEDGEMENTS 35
REFERENCES 36
BOOKS AND ARTICLES 36
'WEB SITES 36
APPENDIXES 37
FIGURES FOR FAST DESIGN 37
Figure la 37
Figure 2a 38
Figure 3a 39
Figure 4a 40
Figure 5a 41
Figure 6a 42
FIGURES FOR SMALL DESIGN 43
Figure 1b 43
Figure 2b 44
Figure 3b 45
Figure 4b 46
Figure 5b 47
EXCERPTS OF THE VHDL CODE 48

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Fast design 48
Small design 66

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Introduction

DES is probably one of the best known cryptographic algorithms, and has been
widely used since its introduction in 1976 (and is still used today despite the fact that
he doesn’t offer a sufficient level of security).

The goal of this project is to continue the work of a student who worked on a
pipelined VHDL implementation of the DES algorithm. Two architectures are studied
for this project: one which is the fastest possible and another one which results in the
less area than the first architecture on the FPGA. The meaning of speed for this
project is the throughput (number of bits processed per second) and the meaning of
area is number of CLB’s (Configurable Logic Block).

Before building our design, we need an overview of cryptography, followed by a
description of the DES algorithm. We will see then what and how will realise this
project. The next step will be to analyze the components used in both design. So at
this point, we will be ready to build the fast design going through the design flow
(simulation, synthesis, place & route and tests on FPGA). After that, the small design
will be built.

The appendixes at the end of the report contain all the figures and the main part of
the VHDL code.

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Overview of cryptography

Before going into depth about this project, we shall explain some basic concepts
about cryptography and particularly about DES, because we will use this algorithm.

Remark: all the figures in this section are taken from the excellent course of Prof.
Christof Paar (see [1] for more details).

Symmetric-key encryption

Symmetric-key (or private-key) encryption can be simply illustrated with the
schematic below.

Alice and Bob want to communicate over an un-secure channel, but Oscar is trying to
read the message. So Alice and Bob must use a crypto system to prevent Oscar
from reading the message.

Encryption Decrvption | X
el di})

1
k 4@ Secure Channel .

key
Lienerator

Symmetric-key schematic

x is called the plaintext, y the ciphertext and k the key. The function e performs the
encryption on the plaintext using the key and the function d decrypts the ciphertext
using the same key. Thus, Alice and Bob must own the same key. They should not
use the un-secure, since Oscar is able to retrieve all the data through this channel
(the functions e and f are also known by Oscar). So the key must be exchanged
through a secure channel.

We can also introduce some others definitions that will characterize the algorithm
used:

o P={X1, X2, . . ., Xp} IS the plaintext space
* C={y1, Y2 ..., Yp}is the ciphertext space

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

o H={ky, ko, ..., kp} is the key space
» The encryption function ey : P-> C (ew(X)=y)
* The decryption function dii : C-> P2 (dii(y)=X)

The functions ey and dy; are inverse function for the same key: dii(y) = dii(exi(X)) = X

Data Encryption Standard (DES)

DES is the most popular symmetric-key algorithm. It was standardized in 1977 but
expired in 1998.

DES is a block cipher, which means that during the encryption process, the plaintext
is broken into fixed length blocks and each block is encrypted at the same time. One
block is 64 bits and the key is 64 bits wide (but only 56 bits are used).

So we can in a more formally manner describe the algorithm like this:

« P=C={01,2,...,2%1}
« A£={01,2,...,2°%1}

» each x; has 64 bits

» each kj has 56 bits

This description is not complete without the encryption function (ex) and the
decryption function (dy).

The principle of DES encryption is made of an initial permutation, followed by 16
rounds and ended by a final permutation, as we can see in the next figure:

N gl Initial Erervption | seeo..... Encryplion | Final I |
Permutation L6 Permutation
~ I |
LY 1 1

DES block schematic

Here is a more detailed version of this illustration:

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Message X kev K

i

Imgial Pernmstagion
IP(X)

4% '

7 Translorm [

K 1 * A

round |

]

7 Translorm I6

round ko

Final Permmsiation

B (R, Lig)

Cipher Y = DES, (X)

Feistel Network

The above figure is called the Feistel network. We can see the key-scheduling part at
the right which is responsible to give a new 48 bits sub key for each round. Inside
each round, the right part of the data is simply swapped while the left part is xored
with the result of the f-function applied to the left part.

Now take a closer look at the core of the DES algorithm: the f-function.

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Expansion

E(R_,)

: condusion: obscurcs I
- ciphorext/cloariext I
- 1 |
1 |

relationship

> f-function

L., §¥4=32
-1 - - 2 222mE==s=s=—=
. -1

. s P I
~
‘\ Permtation P |

f-function

As we can see, the data coming to the f-function goes first through an expansion
block and is then xored with the sub key. After that, the data arrives at the S-boxes,
which are look-up tables. The next step is a simple permutation and finally, the
resulting data is xored with the left part.

At this moment, we must find out how the key-scheduling achieves to build the sub
keys.

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

K1] pC 0

K 16

4%

PC -2

45

5y

Sy

key-scheduling

We saw before that the key is initially 64 bits wide. But in the algorithm, only 56 bits
are really used. So we can notice in the above figure that the component PC-1
removes these 8 bits to have the correct size. PC-1 also permutes the other bits.
Then, at each step the key is shifted on the left one or two times. Before delivering
the sub key, the component PC-2 reduce and permutes the 56 bits shifted key.

Now that we had a good overview of the encryption function (ex), we can take look at
the decryption function (dy).

The decryption process is very similar as the encryption one, as we observe in the
next schematic:

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Cipher ¥ = DES{X) Kev K
#:-4 f i
/]
Imtinl Permutation ¥
P PC-1
f i
| /]
A% ¥
;j Transform i

™

e

.

ff Transform |
K
Fimal Permutation
Ip-!
X = DES (Y} =DES " (DES(X))
decryption

Obviously, the decryption is very similar to the encryption. Only the key-scheduling is
reversed.

Additionally, we must highlight that there are four standardized modes of operation of
DES: ECB (Electronic Codebook mode), CBC (Cipher Block Chaining mode), CFB
(Cipher Feedback mode) and OFB (Output Feedback mode). We won't detail all the
modes of operation; we just need to know that in our project, we will use the ECB
mode (for a detailed description of DES, see [2]). In ECB mode, each plaintext block
is encrypted independently with the block cipher.

Before going straight into the project, let’s take a look at today’s applications of DES.

-10 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Examples of modern equipments which use DES encryption

DES has expired in 1998 and has thus been replaced by stronger encryption
algorithms, like AES. But DES is although still widely used if we don’t need a high
level of security.

Modern applications of DES cover a wide variety of applications, such as secure
internet (ssl), electronic financial transactions, remote access servers, cable
modems, secure video surveillance and encrypted data storage.

B = |

Ethernet Bridge 10/100 Mbps which use DES

Despite the fact that DES is considered un-secure, there is a way to enhance it. By
encrypting three times successively, we get an adequate level of security, even for
sensitive data. This method is called Triple DES.

The major drawback of Triple DES is the speed which is much lower than other
modern algorithm like AES.

- 11 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Method

Tools

Software

ModelSim

ModelSim 5.5 is a tool to simulate VHDL file and is used to verify the behaviour of the
code. A test bench file is very useful to check immediately and automatically if the
design is working as expected.

FPGA Compiler Il

The next step is to synthesize the code using FPGA Compiler Il. In fact, Synopsys
(FPGA analyzer) was originally utilised, but was replaced by FPGA Compiller II. The
reason of this change is that FPGA Compiler Il is a much more recent software than
Synopsys, therefore we can expect better performances.

Leonardo Spectrum 2002

In complement of FPGA Compiler I, | decided to try another synthesizer in parallel to
compare.

Xilinx ISE

The final step is to place and route the synthesized code with Xilinx ISE.

ISE means Integrated Software Environment. It provides a lot of tools to accomplish
each step of the design process from design entry to download the design to the
FPGA. A synthesizer (XST) is part of these tools.

One of the others ISE’s tools is called Impact and is used to download the bit
generated file directly to the FPGA.

Hardware

Spartan I

The FPGA we used in our project is a Spartan Il XC2S200 package PQ208. This
FPGA is integrated into the board Digilab 2 (see the picture below).

S 12 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Digilab 2

Here are some main characteristics about our FPGA:

characteristic value

System Gates 200’000
Logic Cells 5'292
Slices 2352
1/O 140

As we observe these results, we can imagine that this FPGA will provide enough
space for this project.

The original implementation was tested with a Xilinx 40150XVPG559 which provides
more space and 1/O.

Logic analyzer

The last step in this project consists of testing the FPGA itself. As the numbers of
pins used will be too high to test with an oscilloscope, we will use a special test
equipment called a Logic analyzer. A logic analyzer is a device that can generate the
input we want (with the pattern generator) and retrieve the output and display them
(the analyzer part).

-13 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Design flow

The original files were given in VHDL. These files were provided by a student who
wanted to improve (and test) his knowledge in VHDL and cryptography.

As we will see later, initially some mistakes had to be corrected and some
improvements were needed.

The next steps are summarized in the design flow chart below, using the tools we
mentioned above:

VHDL code

Simulate

Synthesize

Place & Route

Testing with
Logic analyzer

Design flow chart

The goal of this project is to optimize in 2 ways: area (less gates as possible) or
speed (maximum throughput). Then, we will have two designs: one called fast design
and another one called small design.

- 14 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

But before starting working on those designs, we should understand the supplied
code which will be useful for both designs.

-15 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Understanding the code

Before going through the design flow, a verification on the supplied code is required.
There were 2 files given for this project. The first one, called “pipelined-des.vhdl”,
contains the implementation of the DES processor. The other one, called
“testbenchl.vhdl”, contains a benchmark which will be used in the simulation
process.

As the name says, “pipelined-des.vhdl” is a 16 stages pipelined version of a DES
processor. This is a structural code which uses 16 rounds.

By reading and analyzing the file, we can write a first schematic about how the code
works.

A

roundl

A

round2

(ONONe)

A

roundl16

Structure of the code

This figure corresponds to what we learnt in the description of the DES algorithm.
The components at the beginning and at the end are respectively, initial permutation
and final permutation (as we saw in the overview of DES).

If we compile the code immediately as-is, we notice that there are several errors.
Putting all the components in one file was not a good idea and ModelSim refuses to
compile the code like this.

So the first action was to split the supplied code in the different components. We also
had to do some modifications (add the library and the declaration of the components
used) to make the code work.

- 16 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Furthermore, the file was not written in standard VHDL. For instance, the operator
“rol” used in the key scheduling doesn’t work with std_logic_vector and there were
some type ambiguities in the S-boxes files.

Now we can more easily describe the function of each component.

Components

desenc

This is the top design. It comprises 4 components:

» keysched (key scheduling)
* ip (initial permutation)
e roundfunc (round function)
+ fp (final permutation)

We will know detail the function of these components (and their subcomponents).

keysched

This is the key scheduling part. It includes 2 components:

* pcl (permuted choice 1)
* Ppc2 (permuted choice 2)

PC1 and PC2 both are permuting bits components. PC1 discards 8 bits from the key
(which is originally 64 bits wide). In practice, these 8 bits are used to check if the key
has not been altered (with a parity check).

PC2 also discards some bits to reduce the number of bits from 56 to 48.

The keysched component applies first PC1 then shifts one or two times one sub key
after one sub key. Then at the end PC2 is applied at the end.

This leads to this observation: all the sub keys are created in a row.

The component keysched (and his subcomponents) is using only wiring resources,
because it is made of permuting and shifting operations only. So this part will be
executed very fast and no optimizations would have any effect.

IP

The initial permutation is only a matter of swapping the bits of the input (the
plaintext). So we can already affirm that this component will not require logical
resource (only wiring).

_17 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

roundfunc

This is the round function, repeated 16 times as stated in the top design. Itis in fact a
structural design which connects the following components together:

* Xp (expansion)

e desxorl (xor 1)

e sl,s2,s3, s4, s5, s6, s7, s8 (S-boxes)
* PP (p-permutation)

e desxor2 (xor 2)

Xp stands for expansion, since its behaviour is to expand the number of bits from 32
to 48 bits (so this is implemented with only wiring resources). desxorl is a giant 48
bits xor gate which xor the sub key and the expanded input of the round function.
Then we see the 8 S-boxes that are in fact look-up tables. The registers necessary
for the pipeline are also integrated in the S-boxes.

pp is P permutation, so bits swapping.

Finally, another xor (desxor2) is responsible to xor the result of the P permutation
with the left part of the preceding round.

FP

The final permutation is the inverse of the initial permutation.

So we can conclude that a lot of the components are made only of wiring resources.
So there won’t be any effort in logic optimization on these components.
The only components that will use logical resources:

¢ desxorl
+ desxor2
* the S-boxes

- 18-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Fast design

We studied all the components in details so we can build first our fast design. But
before doing that, we will add optimizations to the VHDL code to reach an even
higher speed.

Optimizations

desxorl and desxor2 can not be logically optimized because they are using the basic
xor functions.

Now let’s focus on the S-boxes. They correspond to a large case in VHDL, which will
be implemented in look-up tables in the FPGA.

We can use the following figure to explain how the pipeline architecture works:

Ri Ro Ri Ro Ri

Li Lo Li Lo Li

Original pipeline architecture

The S-boxes which contain the registers are highlighted in grey on the figure above.
As the registers are 4 bits wide (size of the output that needs to be saved) and as we
have 8 S-boxes, we get 32 bits memorized in each stage (one stage = one round). It
may look a bit strange because we have 64 bits to transmit between each stage. But
if we consider the DES algorithm, the left part of the next round is the right part of the
preceding one. So only half of the information needs to be stored. By doing this way,
the author of the code privileged an architecture optimized for area, as we store only
32 bits instead of 64 bits. But this approach leads to a less efficient design in term of
speed. To prove this affirmation, we need to examine the critical path (which
determines actually the clock rate).

The critical path in a pipelined design is the longest path between two stages (that is,
between two registers). We will characterize it using the figure above. Subsequently
we have two paths to consider:

1. Start from the register, go through the f-function, go from ro to ri and arrive at
the next register.

-19-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

2. Start from the register, go through the f-function, go from ro to li, go to lo, then
to li from the next round, go through the f-function, go from ro to ri and finally
arrive at the next register.

We conclude that the second path is the longest one and can be reduced a lot.
Indeed, the second path has the longest distance to run, but above all, it's going
twice through the f-function (and the xor that has been merged in the f-function in the
above figure for sake of simplicity).

Here we introduce a second register that will reduce the critical path to one stage
(that is, one round). We will put the two registers at the end of the round. Therefore
we expect to have a great boost of speed.

An useful modification to the design is to add a reset pin. This is really easy to
implement and this won’t have a big impact on final performances.

Another point which needs to be studied is the problem of the I/Os. As we saw
before, the FPGA (Spartan-2) has only 140 1/0Os. And we have:

* 64 bits for the plain text
* 64 bits for the key

* 1 bit for the reset

» 1 bit for the clock

* 64 bits for the cipher

The sum is 194 1/0Os! So we need to reduce the numbers of I/Os. One of the way to
do this is to use a converter which will load a portion of the data during some clock
cycles and then deliver the full data (and so on repeatedly). We can thus split the
inputs (key and plain text) like this:

» 16 bits for the plain text
* 16 bits for the key

» 1 bit for the reset

» 1 bit for the clock

* 64 bits for the cipher

The sum is now 98 so our design fit in the FPGA (for the 1/0Os).

Therefore, two converters will be added to the design which will take 4 clock cycles to
gather the required 64 bits for the plain text and the key. The behaviour of a
converter is very similar to a serial to parallel converter except that in our case, we
convert block of several bits to a larger block. In fact only 3 clock cycles are needed
for this operation, because at the third clock cycle, the incoming data is concatenated
with the stored data.

A signal added to the design called “load_data” informs the converters that a new
key/plain text is passed at the inputs of the design.

The addition of these converters implies that we need to consider two designs: one
with the converters that will be implemented on our FPGA and the other one without
the converters which will not be implemented on a FPGA, but compared with the
original design.

-20 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

A further point to explore would be to implement the S-boxes with ROM elements.
The FPGA has some areas reserved for those elements, as seen on the next figure:

Oooooooooodood oooooooodoOn
o HOOOEN00 OUROOODO0OD0L o

== _ |JUOOOO A | s
| — | — |
I | || I I | - I | I | I %E
o = ([[] 1 1 1] =

0| &] 1] ==
o/ 5 — — ClBs . — — — — CLBs .—— é /O
ac—| o o |30
o =T | N | | |) O O || | | | == s |
O Bl 1 1 1 1 11 1 10
O 10O
| — L | [| IS | SN | SN (S | NN) B | — | — |
O Bl 1 1 I I] 10
| | — | — |
O]l < L L L L L L L L L L < %E
| | — - 1 | 1 17 1 | 1] -

o & BN] ¥ |C3O
[l o L I | . |
i ={ M| I O = =1
= IR .=
O 10
O | I I I | | — 10

o OO0 OUOCORO00000L o
}H:IEIEIEIEIEIEIEIDEI o o o o o o
O LOGIC

Block RAM on the Spartan Il

Rom would be better implemented in the Block RAM instead of using the CLB'’s, but
in this project we won’t go that far. It would be interesting to use this technique if we
want a fully optimized design. This would of course reduce the number of CLB'’s used
but it may also speed-up the implementation.

So for this project, we will trust the synthesizer to have the best implementation of the
S-boxes.

We are now ready to test our optimized design.

Simulation process

To make the simulation of the design easier, one file was provided: testbenchl.vhd.
The principle of this test bench is a black box that uses the top design (desenc), give
it some predefined simulation vectors (the plain text, the key and the clock) and verify
if the output (the cipher) corresponds to the valid cipher.

The test bench gives in fact a new plain text and a new key every 16 clock cycles
and compare the output at the end with the associated cipher.

-21 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Our pipeline architecture gives one block of cipher (64 bits) every clock cycle, except
at the beginning when the pipeline need to be filled (during 16 clock cycles because
we have 16 stages), so there is a latency of 16 clock cycles.

We could therefore write another test bench that gives one plain text during 16 clock
cycle and then one plain text each clock cycle, but this wouldn’t be handy. Indeed
with the supplied test bench, we can immediately compare the key and the plain text
that have still the same value with the computed cipher (as we will see in the next
figures).

After that, we obtain this waveform:

0000000000000000 FFFFFFFFFFFFFFFF
I000000000000000 TEFFFEFFErEEECEE
BCABADESCTRTZAAT ACF248B80 1B 0B2E 3 D9EEE41EAZEDF

%)

a0 FCDEFAAZASD 13504

The first line in the figure is the plain text, the second one is the key, the third one is
the cipher, the fourth one is the clock and the last one is the reset.

The cipher is the one we expected. We can see that during the next cycles after the
first cipher, other ciphers are present, but they don’'t mean anything. Normally we will
give one cipher each clock cycle, so there wouldn’t be those “parasites cipher”.

Considering now the version with the converters, we must write another test bench
which gives 16 bits for the key and the plain text and which handle the signal
load_data.

This new test bench gives those results:

0o0o FEFF
0000 FFFF
SCARADESCTRTRIAY

Another line (the last one) was added which represents the load_data signal.
The given cipher is correct.

Since we verified the operation of our design, we can now go through the synthesis
process.

Synthesis process

Considering that we must compare the speed of our design with the original one but
that we will implement it on a different FPGA, we will synthesize twice, targeting the
two FPGAS separately.

The choice of using two synthesizers allows us to compare the result and choose the
best one.

-2

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Let's compare now our result with the original one. In fact, we know the results
because they were given in the header of the VHDL file as a comment.

* FPGA: Xilinx XC40150XV-PG559-09
* Max. predicted clock rate: 11.7MHz
» Size: about 4700 CLB’s

Now let’s run both synthesizer with our implementation and compare the results in
the next table:

Estimated Clock rate Area (CLB’s)
Sé;%'gl”na' 11.7 MHz 4700
Leonardo FPGA Compiler Il
Estimated Area (CLB’s) Estimated Area (CLB’s)
Clock rate Clock rate
| New design 32.7 MHz 3840 52 MHz 4864

So, the new design has a much higher speed. We can explain the difference of
speed with the two registers which almost multiply the clock rate by 2.

During the synthesis process, Leonardo gives some information. One of these is that
he infers ROM elements for the S-Boxes (see appendixes, figure 2a). It means that
he will implement a ROM, but using CLB’s. Perhaps in the original design, the S-
boxes have been implemented with multiplexers. That would also explain the
different amount of CLB’s and speed.

FPGA Compiler 1l produces a better result than Leonardo, achieving a higher
frequency, but uses more CLB’s (even more CLB’s than the original design). To
understand why, we must compare the two implementations (see figure 5a and 6a of
the appendixes). We immediately notice that the S-boxes are different: the version of
FPGA Compiler Il uses more CLB’s than Leonardo (the other components are
implemented identically). To be precise, Leonardo uses 20 CLB’s while FPGA
compiler uses only 28 CLB’s. Because we have 8 S-boxes per round and 16 rounds,
the difference is 8%(28-20)*16=1024 CLB’s. It explains exactly the difference of area
between both implementations: 4864-3840=1024.

We can thus conclude that FPGA compiler obtains a better speed because he found
a better way to implement the S-boxes. He used more CLB’s than Leonardo, but we
don’t care since we are optimizing for speed.

Another conclusion is that the implementation of the S-boxes are decisive to achieve
a high speed.

Finally, no logical resources are used in the components that needed only wiring
resources and no latches can be found. We can check too that there are 1024
registers, as expected (64 bits * 16 rounds = 1024 bits to store).

-23-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

The throughput is computed like this: frequency * 64 bits (because we have a block
cipher of 64 bits each clock cycle with this pipeline implementation). So in our case
we have:

» 748.8 Mbits/s for the original design
* 2092.8 Mbits/s for the new design synthesized by Leonardo
» 3328 Mbits/s for the new design synthesized by FPGA Compiler

So we get a 344% faster design than the original one, with our design synthesized by
FPGA Compiler I1'!

Now let’s focus on the design we will use on the Spartan Il (which has 2 converters).

Leonardo FPGA Compiler Il
Estimated Area (CLB’s) Estimated Area (CLB’s)
Clock rate Clock rate
Fast design 83.1 MHz 3336 (=1668 156 MHz 3330
slices)

(Remark: we choose speed grade -5 and maximum effort for delay)

Two types of converters were tested: one which is state machine of 4 states and
another one which have a counter. Here is the VHDL code of the second one (the
main part of the code):

process(cl k)
vari able counter : integer :=0;
begi n

if (clk'event and clk ='1") then

i f(load_data="1") then

counter := O;

menory <= input & nmenory(1l to 32);
end if;

if(counter > 2) then
output <= menory & input;

el se

menmory <= input & nenmory(1l to 32);
end if;
counter := counter +1

end if;

end process

If we choose the state machine, we get a clock rate 5% faster than the one with the
counter (with less area). Obviously, we will prefer the converter with the state
machine.

This time Leonardo and FPGA Compiler Il got exactly the same implementation of
the round (S-boxes with 16 CLB’s). The only difference of amount is due to the
converters (FPGA compiler uses 1 CLB while Leonardo uses 4).

-4 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

We can remark that the implementation is better on the Spartan Il because it requires
much less area than with the Xilinx XC40150XV.

But the difference between the two clock rates is very surprising. We should be able
to understand why they are so different during the place & route (where we will get
the final clock rate).

The throughputs are:

» 5318.4 Mbits/s for the design synthesized by Leonardo
* 9984 Mbits/s for the design synthesized by FPGA Compiler II

This is really impressive (several gigabits per second) and is a lot more than the
implementation with the other design.

We have now an optimized design, which functions correctly. We're therefore ready
to go through the place & route process.

Place & Route

Xilinx XC40150XV is not supported in the current version of Xilinx ISE, so we won't
be able to place & route (and retrieve the statistics about clock rate, area).

The first thing to do before running ISE is to build a constraint file. We need this file to
have the inputs (and outputs) all together at one socket of the board, so that the
connections from the logic analyzer to the board will be easier. This constraint file
contains directive to assign the 1/0Os of our design (pt, key, clk, reset and ct) to the
FPGA’s pins. We accomplish this by reading the reference manual of the FPGA
(Digilab 2) available on the manufacturer’s website:
http://www.digilentinc.com/assets/documents/d2_rm.pdf

At the end of the place & route, we get one bit generated file which will be
downloaded to the FPGA and also some information about our design.

Here are the results for the design synthesized by Leonardo (targeting the Spartan 2
device):

Leonardo FPGA Compiler Il
Clock rate Slices Clock Slices
rate
Fast
design 68.2 MHz 2025 62.3 2030

The final frequency has dropped a lot and Leonardo has this time synthesized a
better design. Although the difference between both clock rates is tiny. So the clock
rate given by FPGA Compiler Il at the end of the synthesis was too optimistic.

The final throughputs are:

-5

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

* 4364.8 Mbits/s for the design synthesized by Leonardo
» 3987.2 Mbits/s for the design synthesized by FPGA Compiler Il

We can also see that we are using about 86% of the total area of the FPGA.

FPGA

After having downloaded the bit generated-file to the FPGA, the next step is to use
logic analyzer to test directly on the FPGA. Unfortunately this step couldn’'t be
completed because a lot of problems with connections have occurred and time was
missing at the end.

- 26 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Small design

In order to obtain a design with the smallest possible area, we must change our
architecture. We had a pipelined architecture which is very efficient to achieve a high-
speed but now we want to use as low area as possible.

Obviously, the pipelined architecture is wasting a lot of area, as it is using 16 times
the same round. So the challenge is to find a way to use only one round and make
the data loop 16 times.

This idea can be implemented with a state machine. This leads to the following
figure:

A

Key processing

Round

—

reset

Control unit ok

FP

State machine

By doing this, we can reuse the same round components we had with the pipelined
architecture. The key scheduling must however be rewritten in a key processing unit
(we call this key processor, or key processing unit). Naturally, a control unit must be
included in the design. All these additional components will not cost a lot of area.

But we have also to include two multiplexers at the inputs of the round. As the inputs
are 64 bits wide, we will have two 32 bits multiplexers, which may cost a lot of area.
These two multiplexers either let the input of the design go through the round (load
new data), or take the output of the round to reinsert them in the round (loop).

Just after the round and before the final permutation, we have two output validers (ov
on the figure above). These components will keep the same output between each

-27-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

new data/key (every 16 clock cycles). We could use different methods like frequency
divider but the output valider are most likely the easiest solution with a low cost in
term of area.

We can imagine that we have a state machine of 16 states, but in reality we will have
17 (because we need one state to load the key). We will see that in detail later.

With this new architecture, we have a throughput divided by 17 (one cipher every 17
clock cycles instead of one cipher each clock cycle with the pipelined architecture). It
means that the performance of this architecture will be very low (but it isn’t important
since we privilege area).

Let’'s go now deeper into the description of this new design.
Control unit
As mentioned before, we have a state machine of 16 states.
The control unit is in charge of those tasks:
* request a new sub key each clock cycle (signal shift)
» tell the multiplexers if they must load new data or take the outputs of the round
(signal load_new_pt)
» tell the output validers to enable their outputs to the round’s current outputs
every 16 clock cycles (signal output_ok)
In reality, we need to give two pieces of information to the key processor: if we need

a new key or if we need to shift once, twice or none. Everything can be coded in a
single 3 bits vector (called shift) which can be realized as seen in this table below:

value action

000 no shift, no new key

001 no shift, new key

010 shift once, no new key

011 shift once, new key

100 shift twice, no new key

101 shift twice, new key

“ot hers” error => no shift, no new key

The least significant bit (bit located in the far right) indicates if a new key is needed,
while the middle bit tells if we want to shift once (1=yes, 0=no) and finally the most
significant bit tells to shift twice. Values like 111, 110 are impossible (there aren’t
states coded with 111 or 110).

The signal shift will be easily decoded using a case statement in the VHDL.

So here’s a rough description of the behaviour of the control component:

-8 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Init: load a new key, shift once
Key loading: load a new key, shift once, give the output (ct)
State 1: shift once

State 2: shift twice

State 3: shift twice

State 4: shift twice

State 5: shift twice

State 6: shift twice

State 7: shift twice

State 8: shift once

State 9: shift twice

State 10: shift twice

State 11: shift twice

State 12: shift twice

State 13: shift twice

State 14: shift twice

State 15: shift once

State 16: none

All the related instructions to the state are executed the next state (future state).

The state “key loading” is necessary, as the name says, to load the key before
beginning the loop. It may be possible to remove it but we had to modify the key
scheduling, so that it will use more logical resources. As the goal is to minimize the
amount of area, we won’t remove this state.

The behaviour of the control unit has been explained and we will now go on with the
key processing unit.

Key processing unit

We remember that in the pipelined architecture, we had a key scheduling
implemented with only wiring. This would not be the case with our small design.
Actually, the key processing unit give a new sub key each clock cycle, so it needs
some registers.

However, the components PC1 and PC2 remain being only wiring resources. So a
new component appears: shifter. The shifter simply shifts once or twice the stored
sub key. Consequently, we will have a 56 bits registers to store this key.

As we can see on the RTL schematic of the shifter on the figure 1b of the
appendixes, the logical components required are:

* multiplexers
» adecoder (to decode the shift signal)
* registers to store the key

Fullround unit

Full round is basically the name of the component which contains the round
components (the same we had in the fast design) plus the two output validers. As we

-29.

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

already described the round component in the fast design, no furthers explanations
are necessary.
The output validers (ov32) are realized using registers only.

The design of our new architecture is now ready to be tested.

Simulation process

For the simulation, we can use the original supplied test bench without modifications,
except that we need 17 clock cycles instead of 16.
After running the process, we get these results:

0000000000000000 FFFFFEFEFEFEFFFE
D000000000000000 FFFEEEEEFFRFEEEE
BCAB4DECTBIRAAT

The first line in the figure is the plain text, the second one is the key, the third one is
the cipher, the fourth one is the clock and the last one is the reset.

And at the next data:

FFEFFFFFFFEFFFEE qnnnnnnnnnnnngpu
FFFFFEFFFFFFFFFE 1000000000000007
BCARADEICTBT 2387 7I50BZ1GAEAE LSS

So our design works like a charm!

We saw in the fast design that the amount of pins on our FPGA forces us to reduce
the number of inputs/outputs of the design. The same remark applies here and we
must reuse the converter to reduce the pt and the key to 16 bits each.

After integrating the converters, we can re-simulate our modified design. Normally,
we need the required 17 clock cycles but we need now an additional 4 clock cycles
but we handle this situation differently with the test bench. Of course, the first data
will need 4 clock cycles to load, plus 1 for the INIT state, plus 17 for the design to
work. But we can load the next data while the design is computing the cipher. So we
can eliminate those 4 clock cycles and we get only 17 clock cycles instead of 21.
After having rewritten the test bench with these new considerations, we get those
results:

] FFFF
i FFFF

SCAB4DEICTBTPAAT

-30 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

We see clearly that the new data loading 4 clock cycles before the output (ct) is
given. Whereas the fast design suffers of the additional 4 clock cycles to load the
data, the small design can eliminate this problem.

Now that the design works, we are ready to synthesize.

Synthesis process

We already know how the round function will be implemented as we have the same
than the fast design.

However, we must check if the key processing unit, the control unit and the outputs
validers (integrated in the fullround) are implemented efficiently.

As we notice in the figure 3b in the annexes, the shifter (which is the only component
in the key scheduling using logical elements) is composed of registers (called FDE)
and of look-up tables (LUT).

Looking at the figure 5b we see that the control unit is made with registers (for the
states) and look-up tables.

Concerning the output validers, we learn from figure 4b that these components
contain only registers, as expected.

So the behaviour of our design has been efficiently implemented.

Let's take a look at the results:

Leonardo FPGA Compiler Il
Estimated Area (CLB’s) Estimated Area (CLB’s)
Clock rate Clock rate
Fast design 60.7 MHz 452 (=226 156 MHz 457
slices)

We saw that the clock rate is a little less than with the fast design. This is normal,
since we have a control unit, a key processing unit, output validers and some
multiplexers added. The throughput is dramatically reduced:

e 228.5 Mbits/s for the design synthesized by Leonardo
* 591 Mbits/s for the design synthesized by FPGA Compiler Il

There is an enormous difference with the clock rate between Leonardo and FPGA
Compiler 1l (as with the fast design targeting Spartan Il). And as previously, we will
need to check the results at the place & route to have a real idea of the frequency.

Since we are focused on area with this design, here is a summary of the area used
by the components.

_31 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Leonardo FPGA Compiler Il
component CLB’s % CLB’s %
Control unit 8 2% 9 2%

converter 0 0% 1 <1%
fullround 272 60% 272 60%
Key processor 172 38% 174 38%

There are some small differences of CLB’s between the two synthesized designs.
We also see that the key processor is using a lot of area, because of its shifter (which
require storing the sub key and some multiplexers to decide how to load/unload the

key).

The fullround is implemented exactly the same between the two synthesizers.

Place & Route

We can actually keep the constraint file (for allocating the pins) we wrote for the fast

design.

By running the place & route (with the design synthesized by Leonardo), we can
extract those final results:

Leonardo FPGA Compiler Il
Clock rate Slices Clock Slices
rate
) 79.3 MHz 313 82.6 323
design

Concerning Leonardo, we have a higher frequency and more area needed. FPGA
compiler gets a higher frequency than Leonardo but uses more area.

Finally, the two designs are very close. The one synthesized is the best in our case.

We can compute the throughput (clock rate * 64 / 17):

» 298.5 Mbits/s for the design synthesized by Leonardo
» 311 Mbits/s for the design synthesized by FPGA Compiler Il

So comparing the best fast and best small design, the area is divided by 6.3, the
clock is 16% higher and the throughput is divided by 13.4!

-32-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

FPGA

As with the fast design, no test could take place with the logic analyzer.

-33-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Conclusion

This project was very enriching, from the course of cryptographic engineering before
the beginning of the semester, through the tests with the softwares and finally the
work at the laboratory with sophisticated tools.

Despite the tests couldn’t take place with the logic analyzer, this brought some new
knowledge with such professional and interesting equipments.

We achieve however to two efficient designs which were working in simulation mode.

Some improvements for this project which have been discussed could be applied in a
future work.

-34 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Acknowledgements

Many thanks go to Ilhan Hatirnaz, who helped me solving many problems and who
was always available for me. | want also to thank Yusuf Leblebici who is a very
friendly professor! Alexandre Schmid was very helpful for me, too.

I’'m grateful to Alain Vachoux who gave me some advices for the VHDL files at the
beginning of the project.

The students also deserve some thanks, especially Pierre Feller who never hesitated
to spend some time to help me. Christian Studer was always nice and pleasant.

Finally, it was a pleasure to discover the great atmosphere of the LSM team and it
was very motivating to work there.

-35-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

References

Books and articles

[1] Christof Paar, “Applied Cryptography And Data Security” (Lecture Notes),
Ruhr-Universitat Bochum (http://www.crypto.ruhr-uni-bochum.de), May 2000.

[2] S.A. Vanstone A.J. Menezes, P.C. Oorschot, “Handbook of Applied
Cryptography”, CRC Press, 1997.

Web sites

[3] http://www.free-ip.com/DES/index.html (Free-DES implemantation)

[4] http://www.aci.net/kalliste/des.htm (The DES Algorithm lllustrated)

[5] http://mathweb.free.fr/crypto/moderne/des.php3 (La saga du DES)

- 36 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Appendixes

Figures for fast design

Figure 1a

=la
b[1:6] so[l:4]
=1

sla

tes_yxor b[1:6] so[1:4]

bix[1:] 52
bzw[1:A] =58

b3 [1:6] b[1:6] =a[1:4] |—

Fi[1:32] [1:43] bebe[1:6] =
k48] [l[1:48] bie[1:6] sEa

bifinc [1:6] b[1:6] za[l:4] l—

b7x[1:6] =6
bx[1:6] aTa

desxar b[1:6] s0[1:4] l—.

s7

=88
b[1:6] =of1:4]

58 regizterd2_left
R

reset [ke q[i:32] { ¥la[1:32]

clk D reset
=da |—4| rega2
b[1:6] so[l:4] |—| registers2 _right

=4 a[1:33]

=3a des_xor? | Ik q[1:3z] { rof1:32]
b [16] so[l] A0 2] q[laz] reset

=3 I[1:32] reqi:
li[1:32] [I Es0r2

RTL schematic of one round (by Leonardo)

-37 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 2a

X199
b[1:6] | >———1address[5:0]
—linclock q[3:0] | > so[1:4]
—outclock

rom 4 6 64 0

RTL schematic of one S-box (by Leonardo)

-38 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 3a
red_memory(151 _dup_0
5
afl:32] [> 0 . |
clk D »
E
reset [—w reset register32_left rounds
—
req_memory (32 dup_0
5
| [u] o |
| |
B
|
—
req_memory (3 | dup_0
5
| [u] |
| |
B
|
req_memory (304 dup_0
5
| [u] o |
| |
B
| |
red_memory (297 dup_0
T
| 2 [u] -
|
E
| |
req_memory{ 28] dup_0
T
| lu] o
|
]
T

RTL schematic of reg32 (by Leonardo)

-390 .

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 4a

req]_meman @1 dip_0

ck[s

—cE
—fLR of—
afla o
—fa=R

FOCE
fec]_memon 3 _dup |

—

—LE
—CLR o—
—fe=n

FOCE

e _meman =S dap_|

e

—E
—= LR o

Ii]

—fa=nR
FOZE

fe]_Mmemani2s_dup |
k-

—}E

—fGLR ofl—

—fa=A

FOZE

feg]_Memoni=T_dap |
k-

— |

—CE
—FELR o
Ii]

—=n
FOCE

[eg]_Mmemoni25 _dup |

—

—IcE
—FELR o

—joeh
FDCE

[eg]_Mmemonizs dup |

—

—cE
—FELR o

]

—jo=h
FOCE

feg_memonizf_dup |

—C

—=E
—= LR o—

]

—jE=R
FOCE

Block-level schematic view of reg32 (by Leonardo)

- 40 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Figure 5a

b[1:6]

=251

N ' . ' b[1:]

2 TS il I a z0[1:4]

Fa4_LUT
Block-level schematic view of one S-box (by Leonardo)

_4] -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 6a

%—h |
ey
g -
:;;%f“*"
-
=
Lﬂ 5 E:—D
==
:;ﬂé"“‘_'?

- Sl

Block-level schematic view of one S-box (by FPGA Compiler II)

-4) -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figures for small design

Figure 1b

datapath
1k
e _c|
conmverter_key key_proc —pubulek cpisg——y ot[1:64]
1k 1k 1154
ey [1:16] D . puli:18] oubu[nsa]—L W3] H[1:S] | sel
[1] v_keil154] i 1:48]
ricad kevsched Tullround
conwerter
comverter_pt
o
pt[1:16] > PULIEIE] Ul 4]
el [— zontrol_unit L]
reset [- Joa_c| —hrioad
[m— Conwerter
1 loawl_p
I supul_ok
FhT1:3]
uriicesd_key
wrica_p |
cortrol

RTL schematic of the small design (by Leonardo)

-43 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 2b

!
z

i

e jj:‘ ;
It — '—Lj '

il owc] 1280 b g sy

R34 ol ey proc

E sl by
B, iz s hay_pas
e chitinc oo 7 ST e ary_pra

ut?f g Hog Mo | [B || P Hog Lo Ll Ll Lz Ll oy

chaland ol 2 sl o by prac

RTL schematic of shifter (by Leonardo)

_44 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Figure 3b

E]
)
2 P
4 AL
ta e sl Lo by e
1 AL S
— 1 sl L b by, s
— . re) e 7254 e oy by, pe
LI] — el bl ey e
I 3 iblsed omdl v
FOAT T il e bary e — 5w, o] T84 s o e by, s
e] I
roct T Lo basy_prs: FEE
AT s Lo bay, s .
- I 1|
— - | —
dhaied puk OO P i by e —
k| rar =
i] .
A -
1T L |
—t — | E
1 ’ L 3 el i
i]
I - o
—|
[ET1E]
TE)
E]

Block-level schematic view of shifter (by Leonardo)

_45 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Figure 4b

B -

o} i P _ i ety

[

[

[T

[

[

[

[

[T

el cn_riphaciacspact

[1

ot 5 o _righaclacnpschy

l
P ci S o _riphaciscapad

[1

[

[

[1

[

[T

[

Block-level schematic view of one output valider (by Leonardo)

- 46 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

Figure 5b

|0

LuT2 | oE0s
reg_g ks

las11 l__
l FDc | LUT+

LUT1

[loe_c1
I+ b= shi13]
k[reg_e =)

resel[—

FOC LUT+

reg_e @izl | e

LTz

A [oupul_ck
reg_e ks

FDC
reg_e@kis

FDOC
reg_e &kl &

FOC |0z
|oE0? | _ke=y
loed_pl

LUT3

LUT#+

-+ clk.coniral_unl |
reg_e =i

FOC 4+ & [0 O]conincl_unl|
=+ rexe Lconinol _url |

reg_e =kt

FOC

reg_e i

FOC

reg_k sk

FDC

Block-level schematic view of control unit (by Leonardo)

_47 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Excerpts of the VHDL code

Fast design

full pins version (without converters)

desenc.vhd

library ieee;

use ieee.std_logic_1164. al | ;

entity desenc is port

(

pt : in std_l ogic_vector (1l TO 64);
key : in std_l ogic_vector (1 TO 64);
ct : out std_l ogic_vector (1l TO 64);
reset in std_| ogi c;
clk : in std_logic

)

end desenc;

architecture behavior of desenc is

si gnal k1x, k2x, k3x, k4x, k5x, k6x, k7x, k8x, k9x, k10x, k11x, k12x, k13x, k14x, k15x, k16X
: std_logic_vector(1l to 48);

si gna

| Oxa, | 1x, 1 2x, | 3x, 1 4x,15x,16x,17x,18x,19x,110x, | 11x, | 12x, | 13x, | 14x, | 15x, | 16x
std_logic_vector(1l to 32);

si gna

rOxa, r 1x, r 2x, r 3x, r4x, r 5x, r6x, r 7x, r 8x, r 9x, r 10x, r 11x, r 12x, r 13x, r 14x, r 15x, r 16X
std_logic_vector(1l to 32);

conponent keysched
port (
key : in std_logic_vector(1l to 64);
k1x, k2x, k3x, k4x, kbx, k6x, k7x, k8x, k9x, k10x, k11x, k12x, k13x, k14x, k15x, k16x
out std_logic_vector(1l to 48)
)

end conponent;

conponent ip

port (
pt : in std_|logic_vector(l TO 64);
| Ox : out std_logic_vector(1l TO 32);
r Ox : out std_logic_vector(1 TO 32)
)

end conponent;

conmponent roundfunc

port (
clk : in std_| ogi c;
reset : in std_| ogi c;
li,ri in std_logic_vector(1l to 32);
k : in std_logic_vector(1l to 48);
lo,ro : out std_logic_vector(1l to 32)
)

_48 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

begi n

end conponent;

conponent fp
port (

l,r

ct

)

end conponent;

keyschedul i ng

k2x=>k2x,
k8x=>k8x,
kl1l4x=>k14x,

i perm
| Ox=>| Oxa

roundl

| i =>| Oxa,
round2

i =>]1x,
round3

| i =>]2x,
round4:

| i =>]3x,
r ound5

| i =>]4x,
round6

| i =>| 5x,
round?

| i =>| 6X,
round8
li=>|7x,
round9

| i =>| 8x,
roundl10

| i =>]9x,
roundll
i =>I10x,
roundl2
i =>] 11x,
roundl3
i =>] 12x,
roundl4
i =>l13x,
roundl5
i =>| 14x,
roundl6

| i =>| 15x,

fperm fp

end behavi or

ip.vhd

library ieee

k1x=>k1x,
k7x=>k7x,
k13x=>k13x,

>reset,
)
>reset,
)
>reset,
)
>reset,
)
>reset,
)
>reset,
)
>reset,
)
>reset,
)
>reset,
),
>r eset,
),
>r eset,
),
>r eset,
),
>r eset,
)E
>r eset,
),
>r eset,
),
>r eset,

),

in std_logic_vector(1l to 32);

out std_logic_vector(1l to 64)

keysched port map (key=>key,
k3x=>k3Xx, k4x=>k4x, k5x=>k5Xx, k6x=>k6X,
k9x=>k9x, k10x=>k10x, k1lx=>k1l1x, ki12x=>k12x,
k15x=>k15x, k16x=>k16x);

ip port map (pt =>pt,
r Ox=>r Oxa);
r oundf unc port nmap (cl k=>cl k, reset=
ri =>ro0oxa, k=>k1x, | o=>| 1x, ro=>r1x
r oundf unc port nmap (cl k=>cl k, reset=
ri=>rix, k=>k2x, | o=>| 2x, ro=>r 2X
r oundf unc port nmap (cl k=>cl k, reset=
ri=>r2x, k=>k3x, | o=>| 3x, r o=>r 3x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r3x, k=>k4x, | o=>| 4x, ro=>r 4x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r4x, k=>k5x, | o=>| 5x, r o=>r 5x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>rb5x, k=>k6Xx, | o=>| 6X, r o=>r 6X
r oundf unc port nmap (cl k=>cl k, reset=
ri =>ro6x, k=>k7x, | o=>| 7x, ro=>r7x
r oundf unc port nmap (cl k=>cl k, reset=
ri=>r7x, k=>k8x, | o=>| 8x, r o=>r 8x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r8x, k=>k9x, | o=>| 9x, r o=>r 9x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>rox, k=>k10x, | o=>| 10x, ro=>r 10x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r10x, k=>k11x, | o=>| 11x, ro=>r11x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r1lx, k=>k12x, | o=>| 12x, ro=>r12x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r12x, k=>k13x, | o=>| 13x, ro=>r 13x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r13x, k=>k14x, | o=>| 14x, ro=>r 14x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r14x, k=>k15x, | o=>| 15x, ro=>r 15x
r oundf unc port nmap (cl k=>cl k, reset=
ri =>r15x, k=>k16x, | o=>| 16X, ro=>r 16x
port nmap (1=>r16x, r=>| 16x, ct=>ct);

use ieee.std_l ogic_1164. al |

entity

ipis port

- 49 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

pt in std_|ogic_vector(l TO 64);
| Ox out std_logic_vector(1l TO 32);
r Ox out std_logic_vector(1l TO 32)

)i
end ip;

architecture behavior of ipis
begi n

| Ox(1) <=pt (58);

| Ox(4) <=pt (34);
| 0x(5) <=pt (26) ;

| Ox(8) <=pt(2);
| 0x(9) <=pt (60) ;
| Ox(13) <=pt (28);
| 0x(17) <=pt (62);
| 0x(21) <=pt (30);
| Ox(25) <=pt (64);
| Ox(29) <=pt (32);

| 0x(2) <=pt (50); | Ox(3) <=pt (42);

| Ox(6) <=pt (18); | Ox(7) <=pt (10);

| Ox(10) <=pt (52); | Ox(11) <=pt (44);
| Ox(14) <=pt (20); | Ox(15) <=pt (12);
| Ox(18) <=pt (54); | Ox(19) <=pt (46);
| Ox(22) <=pt (22); | Ox(23) <=pt (14);
| Ox(26) <=pt (56); | Ox(27) <=pt (48);
| Ox(30) <=pt (24); | Ox(31) <=pt (16);

| 0x(12) <=pt (36);
| Ox(16) <=pt (4);

| 0x(20) <=pt (38);

| 0x(24) <=pt (6);

| Ox(28) <=pt (40);

| 0x(32) <=pt (8);

rox(1) <=pt(57);

r Ox(4) <=pt (33);
r Ox(5) <=pt (25);

rox(8) <=pt(1);
r Ox(9) <=pt (59);

r Ox(2) <=pt (49); rox(3) <=pt (41);

r Ox(6) <=pt (17); rox(7)<=pt(9);

r 0x(10) <=pt (51); rox(11) <=pt(43); rox(12) <=pt (35);

rox(13) <=pt (27);
rox(17)<=pt(61);
rox(21) <=pt(29);
r Ox(25) <=pt (63) ;
r0x(29) <=pt (31);

rox(14)<=pt(19);
r Ox(18) <=pt (53);
rox(22)<=pt(21);
r Ox(26) <=pt (55) ;
r Ox(30) <=pt (23);

end behavi or;

fp.vhd

library ieee;

use ieee.std_logic_1164. al |;

entity fp is port

in
out

l,r
ct

)
end fp;

rox(15) <=pt (11);
r 0x(19) <=pt (45);
rox(23) <=pt (13);
rox(27)<=pt(47);
rox(31) <=pt (15);

std_logic_vector(1l to 32);
std_logic_vector(1l to 64)

architecture behaviour of fpis

begi n
ct(1)<=r(8); ct(2)<=l(8);

ct(9)<=r(7);
ct (14) <=1 (23);

ct(17)<=r(6); ct(18)<=I(6);

ct (22) <=1 (22);

ct (25)<=r(5); ct(26)<=I(5);

ct (30) <=1 (21);

ct (33)<=r(4);ct(34)<=I(4);

ct (38) <=1 (20);

ct(41)<=r(3);ct(42)<=I(3);

ct (46) <=l (19);

ct (49)<=r(2); ct(50)<=I(2);

ct (54) <=1 (18);

ct(57)<=r(1);ct(58)<=I(1);

ct (62) <=l (17)

ct (10) <=1 (7):

rOx(16) <=pt (3);
r 0x(20) <=pt (37);
rox(24)<=pt(5);
r Ox(28) <=pt (39);
rox(32)<=pt(7);

ct(3)<=r(16); ct(4)<=l (16); ct(5)<=r(24);ct(6)<=l(24);
ct(7)<=r(32);ct(8)<=l(32);

ct(11) <=r(15);
ct (15) <=r(31);
ct (19) <=r (14);
ct (23)<=r(30);
ct (27)<=r(13);
ct(31)<=r(29);
ct (35)<=r(12);
ct (39) <=r(28);
ct (43) <=r(11);
ct (47) <=r (27);
ct (51) <=r(10);
ct (55) <=r(26);

ct(12) <=1 (15);
ct(16) <=l (31);
ct (20) <=l (14);
ct(24)<=I(30);
ct (28) <=l (13);
ct(32)<=1(29);
ct (36) <=l (12)
ct (40) <=l (28)
ct (44) <=l (11);
ct (48) <=l (27);
ct (52) <=l (10)
ct (56) <=l (26)

ct (13) <=r(23);
ct(21) <=r(22);
ct (29) <=r(21);
ct (37) <=r(20);
ct (45) <=r(19);

ct (53)<=r(18);

ct (59)<=r(9); ct(60)<=l(9);ct(61)<=r(17);

ct (63) <=r(25)

; ct (64) <=I (25)

-50 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

end;

keysched.vhd

library ieee;
use ieee.std_logic_1164. al |;
entity keysched is port

key : in std_logic_vector(1l to 64);
k1x, k2x, k3x, k4x, kbx, k6x, k7x, k8x, k9x, k10x, k11x, k12x, k13x, k14x, k15x, k16x
out std_logic_vector(1l to 48)
)
end keysched,;

architecture behavi our of keysched is
si gnal

c0x, c1x, c2x, c3x, c4x, c5x%, c6x, c7x, c8x, c9x, c10x, c11x, c12x, c13x, c1l4x, c15x, c16x
std_logic_vector(1l to 28);
si gnal

dOx, d1x, d2x, d3x, d4x, d5x, d6x, d7x, d8x, d9x, d10x, d11x, d12x, d13x, d14x, d15x, d16x
std_logic_vector(1l to 28);

conmponent pcl
port (
key : in std_|ogic_vector(l TO 64);
c0x, dOx : out std_logic_vector(1l TO 28)
)

end conponent;

conmponent pc2
port (
c,d . in std_logic_vector(l TO 28);
k . out std_logic_vector(1l TO 48)
)

end conponent;
begi n
pc_1: pcl port map (key=>key, cOx=>cO0x, dOx=>dOx);

c1lx<=To_St dLogi cVector(to_bitvector(cOx) rol 1);
d1x<=To_St dLogi cVector(to_bi tvector(dOx) rol 1);
c2x<=To_St dLogi cVector(to_bi tvector(clx) rol 1);
d2x<=To_St dLogi cVector (to_bi tvector(dlx) rol 1);
c3x<=To_St dLogi cVector(to_bi tvector(c2x) rol 2);
d3x<=To_St dLogi cVector (to_bi tvector(d2x) rol 2);
c4x<=To_St dLogi cVector(to_bi tvector(c3x) rol 2);
d4x<=To_St dLogi cVector (to_bi tvector(d3x) rol 2);
c5x<=To_St dLogi cVector (to_bi tvector(c4x) rol 2);
d5x<=To_St dLogi cVector (to_bi tvector(d4x) rol 2);
c6x<=To_St dLogi cVector(to_bi tvector(c5x) rol 2);
d6x<=To_St dLogi cVect or (to_bi tvector (d5x) rol 2);
c7x<=To_St dLogi cVector(to_bi tvector(c6x) rol 2);
d7x<=To_St dLogi cVector (to_bi tvector(d6x) rol 2);
c8x<=To_St dLogi cVector(to_bi tvector(c7x) rol 2);
d8x<=To_St dLogi cVector(to_bi tvector(d7x) rol 2);
c9x<=To_St dLogi cVector (to_bi tvector(c8x) rol 1);
d9x<=To_St dLogi cVector (to_bi tvector(d8x) rol 1);
c10x<=To_St dLogi cVector(to_bitvector(c9x) rol 2);
d10x<=To_St dLogi cVector(to_bitvector(d9x) rol 2);

-51 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

clix<=To_StdLogi cVector(to_bitvector(cl0x) rol 2);
d11x<=To_StdLogi cVector(to_bitvector(di0x) rol 2);
c1l2x<=To_StdLogi cVector(to_bitvector(cllix) rol 2);
d12x<=To_St dLogi cVector(to_bitvector(dlix) rol 2);
c13x<=To_StdLogi cVector(to_bitvector(cl2x) rol 2);
d13x<=To_StdLogi cVector(to_bitvector(di2x) rol 2);
cl4x<=To_StdLogi cVector(to_bitvector(cl3x) rol 2);
d14x<=To_StdLogi cVector(to_bitvector(di3x) rol 2);
c15x<=To_StdLogi cVector(to_bitvector(cl4x) rol 2);
d15x<=To_St dLogi cVector(to_bitvector(dil4x) rol 2);
c16x<=To_StdLogi cVector(to_bitvector(cl5x) rol 1);
d16x<=To_St dLogi cVector(to_bitvector(di5x) rol 1);

pc2x1: pc2 port map (c=>clx, d=>d1x, k=>k1x);
pc2x2: pc2 port map (c=>Cc2X, d=>d2x, k=>k2x) ;
pc2x3: pc2 port map (c=>c3X, d=>d3x, k=>k3x) ;
pc2x4: pc2 port map (c=>c4x, d=>d4x, k=>k4x) ;
pc2x5: pc2 port map (c=>c5X, d=>d5x, k=>k5x) ;
pc2x6: pc2 port map (c=>C6X, d=>d6x, k=>k6x) ;
pc2x7: pc2 port map (c=>C7X, d=>d7x, k=>k7x) ;
pc2x8: pc2 port map (c=>c8x, d=>d8x, k=>k8x) ;
pc2x9: pc2 port map (c=>c9x, d=>d9x, k=>k9x) ;
pc2x10: pc2 port map (c=>c10x, d=>d10x, k=>k10x);
pc2x11: pc2 port map (c=>c1llx, d=>d11x, k=>k11x);
pc2x12: pc2 port map (c=>c12x, d=>d12x, k=>k12x);
pc2x13: pc2 port map (c=>c13x, d=>d13x, k=>k13x);
pc2x14: pc2 port map (c=>c14x, d=>d14x, k=>k14x);
pc2x15: pc2 port map (c=>Cc15x, d=>d15x, k=>k 15x);
pc2x16: pc2 port map (c=>C16xX, d=>d16x, k=>k16x);

end behavi our;

roundfunc.vhd

library ieee;

use ieee.std_logic_1164. al | ;

entity roundfunc is port

(
clk : in std_| ogi c;
reset : in std_| ogi c;
li,ri in std_logic_vector(1l to 32);
k : in std_logic_vector(1l to 48);
lo,ro : out std_logic_vector(1l to 32)

)

end roundfunc;

architecture behavi our of roundfunc is
si gnal xp_to_xor : std_logic_vector(1l to 48);
si gnal blx, b2x, b3x, b4x, b5x, b6x, b7x, b8x
: std_logic_vector(1 to 6);
si gnal solx, so2x, so3x, so4x, so5x, so6x, So7x, S08x
std_logic_vector(1 to 4);

signal ppo,r_toreg32,| toreg32 std_logic_vector(1l to 32);
conmponent xp
port (
ri . in std_logic_vector(1l TO 32);
e . out std_logic_vector(1l TO 48)
)

end conponent;

-52-

Semester project

Arnaud Lagger

Implementation of DES Algorithm Using FPGA Technology

conmponent desxor 1
port (

: in std_|ogic_vector(l TO 48);
blx b2x b3x, b4x, b5x, b6x, b7x, b8x

K
)

end conponent;

conponent s1

out std_l ogi c_vector
in std_|l ogic_vector

(1 TO 6);
(1 TO 48)

port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conmponent s2
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conponent s3
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conmponent s4
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conponent s5
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conponent s6
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conmponent s7
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)
end conponent;
conponent s8
port (
in std_logic_vector(1 to 6);
SO out std_logic_vector(1 to 4)
)

end conponent;

conponent pp

-53-

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

port (

s01x, s02X, s03x, S04x, S05X, s06X, SO7X, S08X

: in std_logic_vector(1 to 4);
ppo : out std_logic_vector(1l to 32)
)
end conponent;
conmponent desxor 2
port (
d, | : in std_logic_vector(1l to 32);
q : out std_logic_vector(1l to 32)
)
end conponent;
conmponent reg32
port (
a s in std_l ogic_vector (1 to 32);
q . out std_l ogic_vector (1 to 32);
reset in std_| ogi c;
clk : in std_l ogi c
)
end conponent;
begi n
xpensi on: Xp port map (
e=>xp_to_xor);
des_xor1: desxor 1 port map
blx=>b1lx, b2x=>b2x, b3x=>b3Xx, b4x=>b4x,
b7x=>b7x, b8x=>b8x);
sla: sl port map (
)
s2a: s2 port map (
)
s3a: s3 port map (
)
s4da: s4 port map (
)
sba: s5 port map (
)
sb6a: s6 port map (
)
s7a: s7 port map (
)
s8a: s8 port map (
)
pperm pp port map (
S03X=>s03x, S04x=>s04x, S05x=>s05X, S06x=>S06X,
ppo=>ppo)
des_xor 2: desxor 2 port map
I =>li, g=>r_toreg32);
| _toreg32<=ri
register32_left: reg32 port map
reset=>reset, clk=>clk);
regi ster32_right: reg32 port map
reset=>reset, clk=>clk);
end;
sl.vhd
library ieee;

ri=>ri,

(e=>xp_t o_xor, k=>k,
b5x=>b5Xx, b6x=>b6X,
b=>b1x, S0=>s01x
b=>b2x, S0=>S02X
b=>b3x, S0=>s03X
b=>b4x, S0=>504X
b=>b5x, S0=>s05xX
b=>b6Xx, S0=>S06X
b=>b7x, S0=>S07X
b=>b8x, S0=>s08X

s01x=>so0lx,
SO7X=>S07X,

S02X=>S02X,
s08x=>s08x,

(d=>ppo,

(a=>l _toreg32, g=>lo,

(a=>r_toreg32, g=>ro

-54 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

use ieee.std_logic_1164. al |;

entity sl is port
(

b

SO
)

end s1i;

in

out

ar chi tecture behavi our

begi n

process(b)

begi n

case b is
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

" 000000"
"000010"
"000100"
"000110"
"001000"
"001010"
"001100"
"001110"
" 010000"
"010010"
"010100"
"010110"
"011000"
"011010"
"011100"
"011110"
" 000001"
"000011"
"000101"
"000111"
"001001"
"001011"
"001101"
"001111"
"010001"
"010011"
"010101"
"010111"
"011001"
"011011"
"011101"
"011111"
"100000"
"100010"
"100100"
"100110"
"101000"
"101010"
"101100"
"101110"
"110000"
"110010"
"110100"
"110110"
"111000"
"111010"
"111100"
"111110"
"100001"
"100011"
"100101"

std_logic_vector(1 to 6);
std_logic_vector(1 to 4)

slis

so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi
so<=To_St dLogi

cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector (Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector (Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'

QO TQULWNQO TITTINNARDRRERWITQTOALREANDRNTOQNQQUIO Y WRT TNRAR®D
R e L W W e e g

-55-

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

when
when
when
when
when
when
when
when
when
when
when
when

end case;
end process
end;

xp.vhd

library ieee;

"100111"
"101001"
"101011"
"101101"
"101111"
"110001"
"110011"
"110101"
"110111"
"111001"
"111011"
"111101"
when ot her s=>

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog
so<=To_StdLog

use ieee.std_logic_1164. al |;

entity xp is port

cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'
cVector(Bit_Vector'

ri . in std_logic_vector(1l TO 32);
e : out std_logic_vector(1l TO 48));

end xp;

architecture behavior of xp is

begi n

e(1)<=ri(32);e(2)<=ri(1);
e(7)<=ri(4);
e(10)<=ri(7);e(11)<=ri(8);e(12)<=ri(9);e(13)<=ri(8);
e(14)<=ri(9); e(15)<=ri (10);

e(6) <=ri (5);
e(9) <=ri (6);

e(17)<=ri (12);
e(21)<=ri(14);
e(25)<=ri (16);
e(29)<=ri(20);
e(33)<=ri(22);
e(37)<=ri(24);
e(41)<=ri(28);
e(45)<=ri (30);

end behavi or;

desxorl.vhd

library ieee;

e(3)<=r
e(8) <=r

e(18)<=ri(13);
e(22)<=ri(15);
e(26)<=ri(17);
e(30)<=ri(21);
e(34)<=ri(23);
e(38)<=ri(25);
e(42)<=ri(29);
e(46)<=ri (31);

use ieee.std_logic_1164. al | ;

entity desxorl is port

(

e

K
)

end desxor 1l

bix, b2x, b3x, b

i(2);
i(5);

e(4) <=ri(3);

e(16)<=ri(11);
e(19)<=ri(12);
e(23)<=ri(16);
e(27)<=ri(18);
e(31)<=ri(20);
e(35)<=ri(24);
e(39)<=ri(26);
e(43)<=ri(28);
e(47)<=ri(32);

in std_|ogic_vector(l TO 48);
4x, b5x, b6x, b7x, b8x

out std_| ogic_vector
in std_|l ogic_vector

archi tecture behavi or

signal XX
begi n

XX<=k xor e;

bix<=XX(1 to 6);

of desxorl is

(1 TO 6);
(1 TO 48)

std_logic_vector(1 to 48);

QARQY D WITUNR QRN
N e N N

e(5) <=ri (4);

e(20)<=ri (13);
e(24)<=ri (17);
e(28)<=ri(19);
e(32)<=ri(21);
e(36)<=ri(25);
e(40)<=ri (27);
e(44)<=ri(29);
e(48)<=ri(1);

- 56 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

b2x<=XX(7 to 12);
b3x<=XX(13 to 18);
b4x<=XX(19 to 24);
b5x<=XX(25 to 30);
b6x<=XX(31 to 36);
b7x<=XX(37 to 42);
b8x<=XX(43 to 48);
end behavi or;

desxor2.vhd
library ieee;
use ieee.std_logic_1164. al |;

entity desxor2 is port

(
d, | : in std_logic_vector(1l to 32);
out std_logic_vector(1l to 32)

)

end desxor 2;
architecture behaviour of desxor2 is
begi n

g<=d xor |;
end;

pcl.vhd
library ieee;
use ieee.std_logic_1164. al |;

entity pcl is port
(

key : in std_| ogic_vector(l TO 64);
c0x, dOx : out std_logic_vector(1l TO 28)
)
end pcl;
architecture behavior of pcl is
signal XX : std_l ogic_vector(1l to 56);
begi n
XX(1) <=key(57); XX(2) <=key(49); XX(3) <=key(41);
XX(4) <=key(33); XX(5) <=key(25); XX(6) <=key(17);
XX(7) <=key(9);
XX(8) <=key(1); XX(9) <=key(58); XX(10) <=key(50);
XX(11) <=key(42); XX(12) <=key(34); XX(13) <=key(26); XX(14) <=key(18);
XX(15) <=key(10); XX(16) <=key(2); XX(17) <=key(59);
XX(18) <=key(51); XX(19) <=key(43); XX(20) <=key(35); XX(21) <=key(27);
XX(22) <=key(19); XX(23) <=key(11); XX(24) <=key(3);
XX(25) <=key(60); XX(26) <=key(52); XX(27) <=key(44); XX(28) <=key(36);
XX(29) <=key(63); XX(30) <=key(55); XX(31) <=key(47); XX(32) <=key(39);
XX(33) <=key(31); XX(34) <=key(23); XX(35) <=key(15);
XX(36) <=key(7); XX(37) <=key(62); XX(38) <=key(54);
XX(39) <=key(46); XX(40) <=key(38); XX(41) <=key(30); XX(42) <=key(22);
XX(43) <=key(14); XX(44) <=key(6); XX(45) <=key(61);
XX(46) <=key(53); XX(47) <=key(45); XX(48) <=key(37); XX(49) <=key(29);
XX(50) <=key(21); XX(51) <=key(13); XX(52) <=key(5);
XX(53) <=key(28); XX(54) <=key(20); XX(55) <=key(12); XX(56) <=key(4);

cOx<=XX(1 to 28); dOx<=XX(29 to 56);
end behavi or;

-57-

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

pc2.vhd
library ieee;
use ieee.std_logic_1164. al | ;

entity pc2 is port
(

c,d . in std_logic_vector(1l TO 28);
k . out std_logic_vector(1l TO 48)
)
end pc2;
architecture behavior of pc2 is
signal YY : std_logic_vector(1l to 56);
begi n
YY(1 to 28)<=c; YY(29 to 56)<=d;

k(1) <=YY(14): k(2) <=YY(17): k(3) <=YY(11): k(4) <=YY(24) : k(5) <=YY(1):
k(6) <=YY(5);

k(7)<=YY(3): k(8)<=YY(28); k(9)<=YY(15); k(10)<=YY(6); k(11)<=YY(21);
k(12) <=YY(10);

k(13) <=YY(23); k(14) <=YY(19); k(15) <=YY(12); k(16) <=YY(4);
k(17) <=YY(26); k(18) <=YY(8):

k(19) <=YY(16); k(20) <=YY(7): k(21) <=YY(27); k(22) <=YY(20)

k(23) <=YY(13); k(24) <=YY(2)

k(25) <=YY(41); k(26) <=YY(52); k(27) <=YY(31); k(28) <=YY(37);
k(29) <=YY(47); k(30) <=YY(55);

k(31) <=YY(30); k(32) <=YY(40); k(33) <=YY(51); k(34) <=YY(45);
k(35) <=YY(33); k(36) <=YY(48);

k(37) <=YY(44); k(38) <=YY(49); k(39) <=YY(39); k(40) <=YY(56);
k(41) <=YY(34); k(42) <=YY(53);

k(43) <=YY(46) k(44) <=YY(42); k(45) <=YY(50); k(46) <=YY(36);
k(47) <=YY(29); k(48) <=YY(32);

end behavi or;

pp.vhd

library ieee;
use ieee.std_logic_1164. al |;
entity pp is port

S01x, S02X, S03X, S04X, S05X, S06X, SO7X, S08X
: in std_logic_vector(1 to 4);
ppo : out std_logic_vector(1l to 32)
)
end pp;

architecture behaviour of pp is

signal XX : std_logic_vector(1l to 32);
begi n

XX(1 to 4)<=solx; XX(5 to 8)<=so02x; XX(9 to 12)<=s03x; XX(13 to
16) <=so4x;

XX(17 to 20)<=s05x; XX(21 to 24)<=s06x; XX(25 to 28)<=s07x; XX(29 to
32) <=s08x;

ppo(1) <=XX(16); ppo(2) <=XX(7); ppo(3) <=XX(20);
ppo(4) <=XX(21);
ppo(5) <=XX(29); ppo(6) <=XX(12); ppo(7) <=XX(28);

ppo(8) <=XX(17);

- 58 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

ppo(9) <=XX(1);
ppo(12) <=XX(26) ;
ppo(13) <=XX(5);
ppo(16) <=XX(10);
ppo(17) <=XX(2);
ppo(20) <=XX(14);

ppo(10) <=XX(15);
ppo(14) <=XX(18);

ppo(18) <=XX(8);

ppo(21) <=XX(32) ; ppo(22) <=XX(27) ;

ppo(24) <=XX(9) ;

ppo(25) <=XX(19) ; ppo(26) <=XX(13) ;
ppo(29) <=XX(22) ; ppo(30) <=XX(11);

ppo(32) <=XX(25);
end;

reg32.vhd

library ieee
use ieee.std_logic_1164. al |;

entity reg32 is

port (
a cin
q : out
reset : in std_logic;
cl k cin std_l ogi c
)
end reg32

architecture synth of reg32 is

signal nmenory : std_|logic_vector

begi n

process(cl k, reset)
begi n

std_l ogi c_vector
std_l ogi c_vector

(1to 32) ;

if(clk ='1" and clk'event) then

ppo(23) <=XX(3) ;

ppo(27) <=XX(30) ;
ppo(31) <=XX(4);

(1 to 32);
(1 to 32);

ppo(11) <=XX(23);
ppo(15) <=XX(31);

ppo(19) <=XX(24)

ppo(28) <=XX(6) ;

-- on affecte la ménoire interne au coup d' horl oge

menmory <= a;

end if;
if(reset ='1") then
menory <= (others => '0");
end if;
end process
g <= nenory;
end synth
testbenchl.vhd
library ieee;

use ieee.std_logic_1164.all;
use ieee.nuneric_std.all;

entity test_desenc is end test_desenc;

architecture testbench of test_desenc is

conmponent desenc port

-59 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

(
pt
key
ct
reset
clk

)

in std_l ogic_vector (1l TO 64);
in std_l ogic_vector (1l TO 64);
out std_l ogic_vector (1 TO 64);
in std_| ogi c;
in std_logic

end conponent;

type test _vector is record

key

pt

ct
end record,;

type test_vector_array is array(natural range <>) of test_vector;

constant test

(

ct=>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

(

ct =>x"

std_logic_vector(1l to 64);
std_logic_vector(1l to 64);
std_logic_vector(1l to 64);

_vectors: test_vector_array D =(

key=>x"0000000000000000", pt=>x"0000000000000000"

8ca64de9cl1lbl23a7"

key=>x" ffffffffffffffff , pt=>x"ffffffffffffffff”

7359b2163e4edc58").,

key=>x"3000000000000000", pt=>x"1000000000000001"

958e6e627a05557b"),

key=>x"1111111111111111", pt=>x"1111111111111111"

f 40379ab9e0ec533"),

key=>x"0123456789abcdef", pt=>x"1111111111111111"

17668df c7292532d"),

key=>x"1111111111111111", pt=>x"0123456789abcdef"

8ab5aelf 81ab8f 2dd"),

key=>x"0000000000000000", pt=>x"0000000000000000"

8ca64de9clb123a7"),

key=>x"f edcba9876543210", pt=>x"0123456789abcdef"

ed39d950f a74bcc4"),

key=>x"7call0454ala6e57", pt=>x"01al1d6d039776742"

690f 5b0d9a26939b").,

key=>x"0131d9619dc1376e", pt=>x"5cd54ca83def57da"

7a389d10354bd271"),

key=>x"07a1133e4a0b2686", pt=>x"0248d43806f67172"

868ebb51cab4599a"),

key=>x"3849674c2602319e", pt=>x"51454b582ddf 440a"

7178876e01f 19b2a"),

key=>x"04b915ba43f eb5b6", pt=>x"42fd443059577f a2"

af 37f b421f 8c4095"),

key=>x"0113b970f d34f 2ce", pt=>x"059b5e0851cf 143a"

86a560f 10ec6d85b"),

key=>x"0170f 175468f b5e6", pt=>x"0756d8e0774761d2"

0cd3da020021dc09"),

key=>x"43297f ad38e373f e", pt=>x"762514b829bf 486a"

ea676b2chb7db2b7a"),

key=>x"07a7137045da2al6", pt=>x"3bdd119049372802"

df d64a815caf 1a0f "

key=>x" 0468910402fd3b2f", pt =>x" 26955f 6835af 609a"

5¢513¢c9c4886¢088").,

key=>x"37d06bb516cb7546", pt=>x"164d5e404f 275232"

Oa2aeeae3f f4ab77"),

key=>x"1f 08260d1lac2465e", pt=>x"6b056e18759f 5cca"

ef 1bf 03e5df a575a"

key=>x" 58402364laba6176", pt =>x" 004bd6ef 09176062"

88bf 0db6d70dee56").,

key=>x"025816164629b007", pt=>x"480d39006ee762f 2"

alf 9915541020b56"),

key=>x"49793ebc79b3258f ", pt=>x"437540c8698f 3cfa"

6f bf 1caf cf f d0556"),

key=>x"4f b05el1515ab73a7", pt=>x"072d43a077075292"

2f 22e49bab7calac"),

)

)

- 60 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

(

ct =>x"

(

ct =>x"

(

ct =>X

(

ct =>X

(

ct =>x"

(

ct =>X

(

ct =>X

(

ct =>x"

(

ct =>X

(

ct =>X

si gna
si gna
si gna
si gna
si gna

begi n

key=>x"49e95d6d4ca229bf "

5a6b612cc26cceda”

key=>x" 018310dc409b26d6"

5f 4c038ed12b2e41"),

key=>x"1c587f 1c13924f ef "
" 63f ac0d034d9f 793"),

key=>x"0101010101010101"
"617b3a0ce8f 07100"),

key=>x"1f 1f 1f 1f 0e0OeOeOe"

db958605f 8¢8c606").,

key=>x"eOf eeOf ef 1f ef 1f "
"edbf d1c66¢29ccc7"),

key=>x"0000000000000000"
" 355550b2150e2451"

key=>x" ffffffffffffffff"

caaaaf 4deaf 1dbae"),

key=>x"0123456789%abcdef "
" d5d44f f 720683d0d"),

key=>x"f edcba9876543210"
" 2a2bb008df 97c2f 2")

)

pt =>x" 02f e55778117f 12a",

pt =>x"1d9d5c5018f 728c2",

pt =>x" 305532286d6f 295a",

pt =>x" 0123456789abcdef ",

pt =>x" 0123456789abcdef ",

pt =>x" 0123456789abcdef ",

pt=>x"ffffffffffffffff",

pt =>x" 0000000000000000",

pt =>x" 0000000000000000",

pt=>x"ffffffffffffffff",

key : std_logic_vector(1l to 64);
pt : std_logic_vector(l to 64);
ct : std_logic_vector(1l to 64);

clk : std_logic;
reset : std_l ogic;

dut: desenc port map (key=>key, pt =>pt ,

cl k=>cl k

)

process

begi n

cl k<=

vari abl e vector :
vari abl e errors:

test _vector;

bool ean: =f al se;

for i in test_vectors' range |oop
vector:=test_vectors(i);

key<=vect or. key;

for j in 0 to 15 | oop cl k<="0'";

1'; wait for 250 ns

pt <=vect or. pt;

end | oop;

i f(ct/=vector.ct) then
assert fal se

report "Ilnplenentation

severity note

errors: =true;
end if;

end | oop;

assert not errors
report "Test vectors failed"
severity note
assert errors
report "Test vectors passed"

wait;

end process

end testbench

severity note

Spartan 2 version (with converters)

ct=>ct,

reset =>reset,

wait for 250 ns;

Fai | ure"

-61 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

desenc.vhd

library ieee;

use ieee.std_logic_1164. al | ;

entity desenc is port

(

pt : in std_l ogic_vector (1 TO 16);
key : in std_l ogic_vector (1 TO 16);
ct : out std_l ogic_vector (1 TO 64);
reset in std_| ogi c;
| oad_dat a : in std_| ogi c;
clk : in std_logic

)

end desenc;

architecture behavior of desenc is

si gnal k1x, k2x, k3x, k4x, k5x, k6x, k7x, k8x, k9x, k10x, k11x, k12x, k13x, k14x, k15x, k16X
: std_logic_vector(1l to 48);

si gna

| Oxa, | 1x, 1 2x, | 3x, 1 4x,15x,16x,17x,18x,19x,110x, | 11x, | 12x, | 13x, | 14x, | 15x, | 16x
std_logic_vector(1l to 32);

si gna

rOxa, r 1x, r 2x, r 3x, r4x, r 5x, r6x, r 7x, r 8x, r 9x, r 10x, r 11x, r 12x, r 13x, r 14x, r 15x, r 16X
std_logic_vector(1l to 32);

signal key_sig : std_logic_vector(1l to 64);
signal pt_sig: std_logic_vector(1l to 64);
conponent keysched
port (
key : in std_logic_vector(1l to 64);
k1x, k2x, k3x, k4x, kbx, k6x, k7x, k8x, k9x, k10x, k11x, k12x, k13x, k14x, k15x, k16x
out std_logic_vector(1l to 48)
)

end conponent;

conponent ip

port (
pt : in std_|logic_vector(l TO 64);
| Ox : out std_logic_vector(1l TO 32);
r Ox : out std_logic_vector(1 TO 32)
)

end conponent;

conmponent roundfunc

port (
clk : in std_| ogi c;
reset : in std_| ogi c;
li,ri in std_logic_vector(1l to 32);
k : in std_logic_vector(1l to 48);
lo,ro : out std_logic_vector(1l to 32)
)

end conponent;

conponent fp
port (
I, : in std_logic_vector(1l to 32);
ct : out std_logic_vector(1l to 64)
)

end conponent;

conponent converter

port (
i nput in std_|ogic_vector(l to 16);
clk : in std_| ogic;

-62 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

| oad_dat a in std_| ogi c;
out put : out std_logic_vector (1 to 64)

)

end conponent;

begi n
key_converter: converter port map (input=>key, clk=>clKk,

| oad_dat a=>| oad_dat a, output=>key_sig);
pt _converter:converter port map (input=>pt, clk=>clk, | oad_data=>| oad_dat a,

out put =>pt _sig);
keyschedul i ng: keysched port nmap (key=>key_si g, k1x=>k1x,
k2x=>k2x, k3x=>k3x, k4x=>k4x, k5x=>k5Xx, k6x=>k6X, k7x=>k7x,
k8x=>k8x, k9x=>k9x, k10x=>k10x, k1lx=>k1l1x, ki12x=>k12x, k13x=>k13x,
k1l4x=>k14x, k15x=>k15x, ki16x=>k16x);
i perm ip port map (pt =>pt _si g,
| Ox=>| Oxa, r Ox=>r Oxa);
roundl: r oundf unc port nmap (cl k=>cl k, reset =>reset,
| i =>| Oxa, ri =>ro0oxa, k=>k1x, | o=>| 1x, ro=>r1x);
round2: r oundf unc port nmap (cl k=>cl k, reset =>reset,
i =>| 1x, ri=>rix, k=>k2x, | o=>| 2x, ro=>r 2X);
round3: r oundf unc port nmap (cl k=>cl k, reset =>reset,
i => 2x, ri=>r2x, k=>k3x, | o=>| 3x, r o=>r 3x);
round4: r oundf unc port nmap (cl k=>cl k, reset =>reset,
i => 3x, ri=>r3x, k=>k4x, | o=>| 4x, r o=>r 4x);
round5: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>| 4x, ri =>r4x, k=>k5x, | o=>| 5x, r o=>r 5x);
round6: r oundf unc port map (cl k=>cl k, reset =>reset,
| i =>| 5x, ri =>rb5x, k=>k6Xx, | o=>| 6X, r o=>r 6x);
round7: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>| 6x, ri =>ro6x, k=>k7x, | o=>| 7x, ro=>r7x);
rounds: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>| 7x, ri=>r7x, k=>k8x, | o=>| 8x, r o=>r 8x);
round9: r oundf unc port map (cl k=>cl k, reset =>r eset,
| i =>| 8x, ri =>r8x, k=>k9x, | o=>| 9x, r o=>r 9x);
round10: r oundf unc port map (cl k=>cl k, reset =>r eset,
i => 9x, ri=>rox, k=>k10x, | o=>| 10x, ro=>r 10x);
roundll: r oundf unc port map (cl k=>cl k, reset =>r eset,
| i =>| 10x, ri =>r10x, k=>k11x, | o=>| 11x, ro=>r11x);
round12: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>] 11x, ri=>r1ix, k=>k12x, | o=>| 12x, ro=>r12x);
roundl3: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>] 12x, ri =>r12x, k=>k13x, | o=>| 13x, ro=>r 13x);
roundl4: r oundf unc port map (cl k=>cl k, reset =>r eset,
| i =>| 13x, ri =>r13x, k=>k14x, | o=>| 14x, ro=>r 14x);
roundl15: r oundf unc port map (cl k=>cl k, reset =>r eset,
i =>| 14x, ri =>r14x, k=>k15x, | o=>| 15k, ro=>r 15x);
roundl16: r oundf unc port map (cl k=>cl k, reset =>r eset,
| i =>| 15x, ri =>r15x, k=>k16x, | o=>| 16X, ro=>r 16x);
fperm fp port nmap (1=>r16x, r=>| 16x, ct=>ct);

end behavi or

converter.vhd

library ieee

use ieee.std_logic_1164. al |

entity converter

(.
i nput

is port

in std_|ogic_vector(l to 16);

-63 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

clk : in std_| ogic;
| oad_dat a : in std_| ogi c;
out put : out std_logic_vector (1 to 64)

)

end converter;

architecture behavior of converter is
signal menory: std_logic_vector(1 to 48);
type state_type is (loadl, |oad2, |oad3, unload);
signal state,f_state: state_type;

begi n

process(state)
begi n

case state is

when | oadl =>
menory <= input & nmenory(1l to 32);
f_state <= | oad2;

when | oad2 =>
menory <= input & nmenory(1l to 32);
f_state <= | oads3;

when | oad3 =>
menory <= input & nmenory(1l to 32);
f_state <= unl oad,
when unl oad =>
output <= menory & input;
f_state <= unl oad,
end case;
end process

process (clk, | oad_data)
begi n

if (clk'event and clk ='1") then
state <= f_state;

end if;

i f(load_data="'1") then
state <= | oadl

end if;

end process

end behavi or;

testbenchl.vhd

library ieee;

use ieee.std_logic_1164. al | ;

use ieee.nunmeric_std.all;

entity test_desenc is end test_desenc;
architecture testbench of test_desenc is

conmponent desenc port

(

pt : in std_l ogic_vector (1l TO 16);
key : in std_l ogic_vector (1 TO 16);
ct : out std_l ogic_vector (1l TO 64);

- 64 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

reset : in std_| ogi c;
| oad_dat a : in std_| ogi c;
clk : in std_logic

)

end conponent;

type test _vector is record

key : std_logic_vector(1l to 16);
pt : std_logic_vector(1l to 16);
ct : std_logic_vector(1l to 64);

end record;
type test_vector_array is array(natural range <>) of test_vector;

constant test_vectors: test_vector_array : =(

(key=>x"0000", pt =>x" 0000", ct=>x"8ca64de9clbl23a7"),
(key=>x"ffff", pt=>x"ffff", ct=>x"7359b2163e4edc58"),
(key=>x"1111", pt =>x"1111", ct=>x"f40379ab9e0ec533")
)
si gnal key : std_logic_vector(1l to 16);
si gnal pt : std_logic_vector(l to 16);
si gnal ct : std_logic_vector(1l to 64);
si gnal clk : std_logic;
si gnal reset : std_l ogic;
si gnal | oad_data : std_|l ogic;
begi n
dut: desenc port map (key=>key, pt =>pt , ct =>ct, reset =>reset,
| oad_dat a=>| oad_dat a, cl k=>cl k);
process
vari abl e vector : test _vector;
vari abl e errors: bool ean: =f al se;
begi n
clk<="1"; wait for 250 ns; clk<="'0"; wait for 250 ns
for i in test_vectors' range |oop
vector:=test_vectors(i);
key<=vect or. key; pt <=vect or. pt;
| oad_data <= '1';
clk<="1"; wait for 250 ns; clk<="0"; wait for 250 ns
| oad_data <= '0';
for j in 0to 17 loop clk<="1"; wait for 250 ns; cl k<="0'";
wait for 250 ns; end | oop;
end | oop;
wait;

end process

end testbench

- 65 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

Small design

state.vhd

library ieee;
use ieee.std_logic_1164. al |;

entity state is port

(
pt : in std_l ogic_vector (1 TO 16);
key : in std_l ogic_vector (1 TO 16);
clk : in std_| ogi c;
reset in std_| ogi c;
ct : out std_l ogi c_vector (1l TO 64)
)
end state;

architecture structural of state is

conmponent control

port (

reset : in std_| ogi c;

clk : in std_| ogi c;

| oad_new pt out std_| ogi c;

out put _ok : out std_| ogi c;

| oad_pt : out std_| ogi c;

unl oad_pt : out std_| ogi c;

| oad_key : out std_| ogic;

unl oad_key : out std_| ogic;

shift : out std_logic_vector(1 to 3)
)

end conponent;

component full round

port (
pt in std_l ogic_vector (1l TO 64);
xkey in std_l ogic_vector (1l TO 48);
reset in std_| ogi c;
clk in std_| ogi c;
| oad_new_pt in std_| ogi c;
out put _ok in std_| ogi c;
ct : out std_l ogi c_vector (1l TO 64)
)
end conponent;
conponent keysched
port (
t he_key : in std_logic_vector(1l to 64);
shift : in std_logic_vector(1 to 3);
clk : in std_| ogi c;
ki : out std_logic_vector(1l to 48)
)
end conponent;
conmponent converter
port (
i nput in std_|ogic_vector(l to 16);
| oad : in std_|logic;
unl oad : in std_|logic;
clk : in std_| ogic;
out put : out std_logic_vector (1 to 64)
)

end conponent;

- 66 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

signal |oad_new pt : std_| ogi c;

si gnal out put _ok : std_| ogi c;

signal load_pt_sig : std_| ogi c;

signal unload_pt_sig : std_| ogi c;

signal |oad_key sig: std_| ogi c;

signal unl oad_key_si g : std_| ogi c;

signal shift_sig : std_logic_vector(1 to 3);
signal ki_sig : std_logic_vector(1l to 48);
signal key_sig : std_logic_vector(1l to 64);
signal pt_sig : std_logic_vector(1l to 64);
begi n

control _unit : control port map (reset=>reset, clk=>clKk,

| oad_new_pt =>l oad_new _pt, output_ok=>out put_ok, |oad_pt=>| oad_pt_sig,

unl oad_pt =>unl oad_pt _si g, |oad_key=>l oad_key_si g, unl oad_key=>unl oad_key_si g,
shift=>shift_sig);

converter_pt : converter port map (input=>pt, |oad=>load_pt_sig

unl oad=>unl oad_pt _si g, clk=>clk, output=>pt_sig);

converter_key: converter port map (input=>key, |oad=>l oad_key_sig,

unl oad=>unl oad_key_si g, cl k=>clk, output=>key_sig);

dat apat h . fullround port map (pt=>pt_sig, xkey=>ki_sig, reset=>reset,
cl k=>cl k, | oad_new_pt =>| oad_new_pt, out put _ok=>out put _ok, ct=>ct);

key_proc . keysched port map (the_key=>key_sig, shift=>shift_sig, clk=>clk,
ki =>ki _sig);

end structural

control.vhd
library ieee;
use ieee.std_logic_1164. al |;

entity control is port

(

reset : in std_| ogi c;

clk : in std_| ogi c;

| oad_new pt : out std_| ogi c;

out put _ok : out std_| ogi c;

| oad_pt : out std_| ogi c;

unl oad_pt : out std_| ogi c;

| oad_key : out std_| ogi c;

unl oad_key : out std_| ogi c;

shift : out std_logic_vector(1 to 3)

)

end control
architecture behavior of control is
type typeetat is (LOADL, LOAD2, LOAD3, LOADM4, INT, RL, R2, R3, R4, R5, R6

R7, R8, RO, R10, R11l, R12, R13, R14, R15, R16, KEY_LOADI NG ;
signal etat, etatfutur : typeetat;

begi n

process(etat)
begi n

- 67 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

case etat

when LOAD1 =>

| oad_new pt <= '0";
out put _ok<= '0";

|l oad_pt <= "1'";
unload_pt <= "'0";

| oad_key <= "'1";
unl oad_key <= '0";
shift <= "000";
etatfutur <= LOADZ;

when LOAD2 =>

| oad_new pt <= '0";
out put _ok<= '0";
load_pt <= "1'";
unload_pt <= "'0";

| oad_key <= "1";
unl oad_key <= "'0";
shift <= "000";
etatfutur <= LQAD3;

when LOAD3 =>

| oad_new pt <= '0";
out put _ok<= "'0'";

|l oad_pt <= "1'";
unload_pt <= "'0";

| oad_key <= "1";
unl oad_key <= "'0";
shift <= "000";
etatfutur <= LOAD4;

when LOADA =>

| oad_new pt <= '0";
out put _ok<= '0";

|l oad_pt <="'0";
unload_pt <="'1";

| oad_key <= '0";
unl oad_key <= "1";
shift <= "000";
etatfutur <= INT,;

when INNT =>

| oad_new pt <= '0";
out put _ok<= '0";

|l oad_pt <="'0";
unload_pt <= "'0";

| oad_key <= '0";
unl oad_key <= "'0";
shift <= "011";
etatfutur <= RI1;

when Rl =>

| oad_new pt <= "1'";
out put _ok<= "'0";

|l oad_pt <="'0";
unload_pt <= "'0";

| oad_key <= '0";
unl oad_key <= "'0";
shift <= "010";
etatfutur <= R2;

when R2 =>

| oad_new pt <= '0";

- 68 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

out put _ok<= '0";

|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R3;

when R3 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R4;

when R4 =>
| oad_new pt <= '0";
out put _ok<= "'0'";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R5;

when RS =>
| oad_new pt <= '0";
out put _ok<= "'0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R6;

when R6 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R7;

when R7 =>
| oad_new pt <= '0";
out put _ok<= "'0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= Rg;

when R8 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= '0";
shift <= "010";
etatfutur <= R9;

- 69 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

when RO =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R10;

when R10 =>
| oad_new pt <= '0";
out put _ok<= '0'";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= RI11;

when R11 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R12;

when R12 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="'0";
unload_pt <= "'0";
| oad_key <= '0";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R13;

when R13 =>
| oad_new pt <= '0";
out put _ok<= '0";
|l oad_pt <="1'";
unload_pt <= "'0";
| oad_key <= "1";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R14;

when R14 =>
| oad_new pt <= '0";
out put _ok<= "'0";
|l oad_pt <="1'";
unload_pt <= "'0";
| oad_key <= "1";
unl oad_key <= "'0";
shift <= "100";
etatfutur <= R15;

when R15 =>
| oad_new pt <= '0";
out put _ok<= "'0";
|l oad_pt <= "1'";
unload_pt <= "'0";
| oad_key <= "1";

-70 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

unl oad_key <= '0";
shift <= "010";
etatfutur <= R16;

when R16 =>
| oad_new pt <= '0";
out put _ok<= "'0'
|l oad_pt <="'0";
unload_pt <="'1";
| oad_key <= '0";
unl oad_key <= "1";
shift <= "000"
etatfutur <= KEY_LQAD NG

when KEY_LCADI NG =>

| oad_new pt <= '0";
out put _ok<= "1";

|l oad_pt <="'0";
unload_pt <= "'0";

| oad_key <= '0";
unl oad_key <= "'0";
shift <= "011";
etatfutur <= R1

end case;

end process

process (clk, reset)
begi n

if (clk'event and clk ='1") then
etat <= etatfutur;

end if;

if(reset="1") then
etat <= LOAD1

end if;

end process

end behavi or;

converter.vhd
library ieee;
use ieee.std_logic_1164. al |;

entity converter is port

(

i nput in std_|ogic_vector(l to 16);
| oad : in std_|logic;

unl oad : in std_|logic;

clk : in std_| ogic;

out put : out std_logic_vector (1 to 64)

)

end converter;
architecture behavior of converter is

signal menory: std_logic_vector(1 to 48);
begi n

process(| oad, cl k)

_71 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

begi n
if (clk'event and clk ='1") then
if(load = "'1") then

menory <= input & nmenory(1l to 32);
end if;
end if;

end process

process(unl oad, cl k)
begi n

if (clk'event and clk ='1") then
if(unload = "1") then

output <= menory & input;
end if;
end if;
end process

end behavi or;

fullround.vhd
library ieee;
use ieee.std_logic_1164. al | ;

entity fullround is port

(

pt in std_l ogic_vector (1l TO 64);
xkey in std_l ogic_vector (1 TO 48);
reset in std_| ogi c;
clk in std_| ogi c;
| oad_new_pt in std_| ogi c;
out put _ok in std_| ogi c;
ct : out std_l ogic_vector (1l TO 64)

end full round
architecture behavior of fullround is

conponent mux32

port (
ed : in std_l ogi c_vector (1 to 32) ;
el : in std_l ogic_vector (1 to 32) ;
o] . out std_l ogic_vector (1 to 32) ;
sel @ in std_l ogic

)

end conponent;

conmponent roundfunc

port (
clk : in std_| ogi c;
reset : in std_| ogi c;
li,ri in std_logic_vector(1l to 32);
k : in std_logic_vector(1l to 48);
lo,ro : out std_logic_vector(1l to 32)
)

end conponent;

conponent ov32

port (
e . in std_l ogi c_vector (1 to 32)
ol : out std_l ogi c_vector (1 to 32) ;
02 . out std_l ogi c_vector (1 to 32) ;
clk @ in std_| ogi c;

-72 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

sel @ in std_l ogic
)

end conponent;

conponent fp
port (
I, : in std_logic_vector(1l to 32);
ct : out std_logic_vector(1l to 64)
)

end conponent;

conponent ip

port (

pt : in std_|ogic_vector(l TO 64);

| Ox : out std_logic_vector(1l TO 32);

r Ox : out std_logic_vector(1 TO 32)
)
end conponent;
signal left_in : std_logic_vector(1l to 32);
signal right_in : std_logic_vector(1l to 32);
signal mux_| _to_round : std_logic_vector(1l to 32);
signal mux_r_to_round : std_logic_vector(1l to 32);
signal round_| _to_ov : std_logic_vector(1l to 32);
signal round_r_to_ov : std_logic_vector(1l to 32);
signal ov_|l_to_nux std_logic_vector(1l to 32);
signal ov_r_to_nux std_logic_vector(1l to 32);
signal ov_| _to fp : std_logic_vector(1l to 32);
signal ov_r_to fp : std_logic_vector(1l to 32);

begi n

initial _p: ip port map (pt=>pt, |Ox=>left_in, rOx=>right_in);
mux_|left: mux32 port map (eO=>ov_| _to_mux, el=>left_in,

o=>mux_| _to_round, sel=>load_new pt);

nmux_ri ght: nmux32 port map (eO=>ov_r_to_nux, el=>right_in,

o=>mux_r _to_round, sel=>load_new pt);

round: roundfunc port nmap (cl k=>cl k,
i =>nux_| _to_round, ri=>nux_r_to_round, k=>xkey,
ro=>round_r_to_ov);

reset =>r eset,
| o=>round_| _to_ov,

ov_left: ov32 port map (e=>round_| _to_ov, ol=>ov_I| _to_nmnux,

o2=>ov_| _to_fp, clk=>clk, sel=>output_ok);

ov_right: ov32 port map (e=>round_r_to_ov, ol=>ov_r_to_mnux,

o2=>ov_r _to_fp, clk=>clk, sel=>output_ok);

final _p: fp port map (I=>ov_r_to fp, r=>ov_| _to fp, ct=>ct);

end behavi or;

fullround.vhd
library ieee;
use ieee.std_logic_1164. al | ;

entity keysched is port

t he_key : in std_logic_vector(1l to 64);
shift : in std_logic_vector(1 to 3);

clk : in std_| ogi c;

ki : out std_logic_vector(1l to 48)

)
end keysched,;

-73 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

architecture behavi our of keysched is

signal c,d,cl,dl : std_logic_vector(1l to 28);
conmponent pcl
port (
key : in std_|ogic_vector(l TO 64);
c0x, dOx : out std_logic_vector(1l TO 28)
)

end conponent;

component shifter

port (
dat ac : in std_l ogic_vector(1l to 28);
dat ad : in std_l ogic_vector(1l to 28);
shift : in std_logic_vector(1l to 3);
clk : in std_| ogi c;
dat ac_out : out std_logic_vector(1l to 28);
dat ad_out : out std_logic_vector(1l to 28)
)

end conponent;

conmponent pc2
port (
c,d . in std_logic_vector(l TO 28);
k . out std_logic_vector(1l TO 48)
)

end conponent;

begi n

pc_1: pcl port map (key=>the_key, cOx=>c, dOx=>d);

shifter_conp: shifter port map (datac=>c, datad=>d, shift=>shift, clk=>clk,
dat ac_out =>c1, datad_out=>d1);
pc_2: pc2 port map (c=>cl, d=>d1, k=>ki);
end behavi our;
keysched.vhd
library ieee;
use ieee.std_logic_1164. al | ;
entity keysched is port
(
t he_key : in std_logic_vector(1l to 64);
shift : in std_logic_vector(1 to 3);
clk : in std_| ogi c;
ki : out std_logic_vector(1l to 48)
)
end keysched,;
architecture behavi our of keysched is
signal c,d,cl,dl : std_logic_vector(1l to 28);
conmponent pcl
port (
key : in std_| ogic_vector(l TO 64);
c0x, dOx : out std_logic_vector(1l TO 28)
)

end conponent;

-74 -

Semester project

Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

conmponent shifter

port (
dat ac in
dat ad in
shift in
clk in
datac_out out
dat ad_out out

)

end conponent;

conponent pc2

port (
c,d
k
)

std_| og
std_| og
std_| og
std_| og
std_| og
std_| og

c_vector(l to 28);
c_vector(l to 28);
c_vector(l to 3);

c

c_vector(l to 28);
c_vector(l to 28)

in std_logic_vector(1 TO 28);
out std_logic_vector(1l TO 48)

end conponent;

begi n
pc_1: pcl port map

shifter_conp:

shifter

(key=>t he_key,

dat ac_out =>c1, datad_out=>d1);

pc_2: pc2 port map (c=>cl, d=>d1, k=>k

end behavi our;

mux32.vhd

LI BRARY i eee ;

USE i eee.std_| ogic_

ENTI TY nmux32 | S

PORT(
el I'N
el : IN
o] oauT
sel IN
)
END nux32 ;

ARCHI TECTURE synth
BEGA N

process(sel, e0, el)
begi n

if sel ='0" then
0 <= e0;
el se
0 <= el;
end if;

end process

END synt h;
ov32.vhd

LI BRARY i eee ;

USE i eee.std_| ogic_

1164. al |

std_l ogi c_vector
std_l ogi c_vector
std_l ogi c_vector
std_l ogi c

OF mux32 IS

1164. al |

cOx=>c,

port map (datac=>c,

)

(1to 32) ;
(1to 32) ;
(1to 32) ;

dat ad=>d,

dox=>d);

shift=>shift,

cl k=>cl k,

-75 -

Semester project
Implementation of DES Algorithm Using FPGA Technology

Arnaud Lagger

ENTITY ov32 IS

PORT(
e :in std_l ogi c_vector (1 to 32)
ol : out std_l ogi c_vector (1 to 32) ;
02 ;. out std_l ogi c_vector (1 to 32) ;
clk @ in std_| ogi c;
sel @ in std_l ogic
)
END ov32 ;
ARCHI TECTURE synth OF ov32 IS
BEG N
process(sel, cl k)
begi n
if (clk'event and clk ='1") then
if(sel ="'1") then
02<=e;
end if;
end if;

end process

ol<=e;

END synt h;

shifter.vhd
library ieee;
use ieee.std_logic_1164. al | ;

entity shifter is port

(

dat ac in std_logic_vector(1l to 28);
dat ad in std_logic_vector(1l to 28);
shift in std_logic_vector(1 to 3);
clk in std_| ogi c;

dat ac_out out std_logic_vector(1l to 28);
dat ad_out out std_logic_vector(1l to 28)

)

end shifter;

architecture behavi our
signal datac_out_nmem datad_out_nmem

begi n

process(shift, cl k)

begi n

if (clk'event and clk

case shift is

when "001"

-- pas de shift,

=>

of shifter is

="'1") then

nouvel l e cl é

dat ac_out _nmenx=dat ac;
dat ad_out _nenx=dat ad;

when " 010"
-- shifter

=>

1 fois, pas de nouvelle clé

std_logic_vector(1l to 28);

-76 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

datac_out _nmenx=To_St dLogi cVector (to_bitvector(datac_out_nen) rol 1);
datad_out _nmenx=To_St dLogi cVector (to_bitvector(datad_out_nmen) rol 1);

when "011" =>

-- shifter 1 fois, nouvelle clé
datac_out _nmenx=To_StdLogi cVector (to_bitvector(datac) rol 1);
datad_out _nmenx=To_StdLogi cVector (to_bitvector(datad) rol 1);

when " 100" =>

-- shifter 2 fois, pas de nouvelle clé
datac_out _nmenx=To_St dLogi cVector (to_bitvector(datac_out_nen) rol 2);
datad_out _nmenx=To_St dLogi cVector (to_bitvector(datad_out_nen) rol 2);

when "101" =>
-- shifter 2 fois, nouvelle clé

datac_out _nmenx=To_StdLogi cVector (to_bitvector(datac) rol 2);
datad_out _nmenx=To_St dLogi cVector (to_bitvector(datad) rol 2);

when others =>
-- erreur ou pas de shift, pas de nouvelle clé
end case;
end if;
end process
dat ac_out <=dat ac_out _nmem
dat ad_out <=dat ad_out _nmem

end behavi our;

testbench_FPGA.vhd

library ieee;

use ieee.std_logic_1164. al |;

use ieee.nunmeric_std.all;

entity test_fpga is end test_fpga;
architecture testbench of test_fpga is

conponent state port

(

pt : in std_l ogic_vector (1 TO 16);
key : in std_l ogic_vector (1l TO 16);
clk : in std_| ogi c;
reset in std_| ogi c;
ct : out std_l ogi c_vector (1l TO 64)

)

end conponent;

type test _vector is record

key : std_logic_vector(1l to 16);
pt : std_logic_vector(1l to 16);
ct : std_logic_vector(1l to 64);

end record;
type test _vector_array is array(natural range <>) of test_vector;

constant test_vectors: test_vector_array : =(

(key=>x"1111", pt =>x"1111", ct=>x"f40379ab9e0ec533"),
(key=>x"ffff", pt=>x"0000", ct=>x"caaaaf 4deaf 1dbae"),
(key=>x"0000", pt =>x"0000", ct=>x"8ca64de9clbl23a7")

-77 -

Semester project Arnaud Lagger
Implementation of DES Algorithm Using FPGA Technology

si gnal key : std_logic_vector(1l to 16);
si gnal pt : std_logic_vector(l to 16);
si gnal ct : std_logic_vector(1l to 64);
si gnal clk : std_|l ogic;

signal reset : std_|logic;

begi n
dut: state port map (pt=>pt, key=>key, ct=>ct, reset=>reset,
cl k=>cl k);
process
vari abl e vector : test _vector;
begi n
key<=x"0000"; pt <=x"0000";
for j in 0 to 17 | oop cl k<='0"; wait for 250 ns; cl k<="1";
wait for 250 ns; end | oop;
key<=x"ffff",; pt<=x"ffff";
for j in 0Oto 3 I|oop cl k<='0"; wait for 250 ns; cl k<="1";
wait for 250 ns; end | oop;
for i in test_vectors' range |oop
for j in 0O to 16 | oop cl k<="0'"; wait for 250 ns;
clk<="1"; wait for 250 ns; end | oop;
vector:=test_vectors(i);
key<=vector. key; pt <=vector. pt;
for j in 0to 3 loop cl k<="0'"; wait for 250 ns;
clk<="1"; wait for 250 ns; end | oop;
end | oop;
for j in 0 to 17 |oop cl k<="0"; wait for 250 ns; cl k<="1";
wait for 250 ns; end | oop;
wait;

end process;

end testbench;

-78 -

