
1.  Introduction
The internet-of-everything has created vast opportunities for the integration of microelectronic

systems into nearly every aspect of our lives, but it has also expanded the attack surface of such
systems, providing an ever-widening opportunity for malicious adversaries to steal private infor-
mation, destroy property or worse, subvert systems in a manner that results in the loss of human
life [1-15]. These problems are becoming particularly acute with the proliferation of mobile com-
puting and the debut of new information-sharing and control systems such as the health informa-
tion exchange, embedded medical devices, smart grid, home automation, smart cars, smart cards,
RFID and sensor networks. Stronger, physical-layer security and trust primitives are needed for
modern electronic systems to counter the advantage made available to adversaries by the increas-
ing proliferation, diversity and complexity of software and hardware.

Physical-layer refers to components that are rooted in the hardware, and that provide support
for secure execution of algorithms, and for secure generation and storage of secrets (keys). A
physical unclonable function(PUF) is a physical-layer primitive that is designed to derive entropy
(randomness) from variations in the structural and electrical characteristics of integrated circuits
(ICs) [16]. Similar to DNA profiles among humans, no two ICs are (or can intentionally be manu-
factured to be) identical. PUFs measure and digitize small ‘analog’ differences among identically
designed ICs to generate unique and unclonable bitstrings. The random and persistent nature of
the entropy source within ICs address important physical security requirements that relate to the
generation and storage of keys. Most PUF designs use standard IC manufacturing processes,
which benefits low-cost applications by eliminating the need for costly non-volatile memory
(NVM). PUFs can be integrated into any type of system, including system-on-a-chip (SoC), an
application specific integrated circuit (ASIC) or field programmable gate array (FPGA).

This chapter focuses on the design of authentication protocols which utilize physical-layer
cryptographic primitives such as the PUF, and describes the benefits (and drawbacks) they offer
over traditional software-based authentication protocols. PUF-based authentication protocols are
less than 15 years old and many have not yet been fully vetted. Therefore, the development of low
cost, secure protocols, and proofs of their attack resilience is still very much a moving target. We
provide a high-level description of algorithmic security primitives and authentication protocols,
and then present a snapshot of the current state-of-the-art, fully acknowledging that the latter is
rapidly evolving and still considered an open research problem by the hardware security and trust
community.

2.  Information Security and Cryptography
The terminformation security refers to vast array of mechanisms, protocols and algorithms

which are designed to protect information from unauthorized access, modification and destruction
[17]. Information security has four primary objectives including confidentiality, data integrity,
authentication and non-repudiation [18].Confidentialityrefers to maintaining privacy or secrecy
of information and is traditionally ensured using encryption techniques.Data integrityrelates to a
property of the data, that it has not been altered by an unauthorized party, and is typically imple-
mented using secure hashing schemes.Authenticationis a process that confirms the identity of an
entity or the original source of data using corroborative evidence, and can be carried out using
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modification detection codes (MDCs), message authentication codes (MACs) and digital signa-
tures.Non-repudiationrefers to a process that associates an entity with a commitment or action,
thereby preventing the entity from claiming otherwise, and is traditionally ensured using digital
signature schemes.

The primary goal ofcryptography is to provide a theoretical basis and practical specifications
for techniques that meet these information security goals. A wide variety of cryptographic primi-
tives have been developed to provide information security. Menezes et al. [18] propose a taxon-
omy which partitions cryptographic primitives into three basic categories, namelyunkeyed
primitives, symmetric-key primitivesandpublic-key primitives. Unkeyed primitives include cryp-
tographic hash functions, one-way permutations and random sequences. Thekeyedprimitives
include a wide variety of symmetric and public-key ciphers, MACs (which are keyed hash func-
tions), signatures and pseudo-random number generators (those relevant to authentication are
described in the next section). Each primitive can be evaluated according to a set of criteria such
as the level of security they provide as well as the performance and overhead associated with a
particular implementation of the primitive.

Authentication protocols are implemented as an exchange of messages between two or more
parties, usually over an unsecured network. Authentication utilizes cryptographic primitives as
countermeasures to adversarial manipulation of the transmitted messages and as mechanisms to
protect the interfaces of the communicating entities from information leakage and tracking. PUFs
provide novel ways of designing protocols but cannot be used by themselves to implement all of
the security requirements of the protocol. Sections 3 and 4 provide an overview of traditional
security-related primitives commonly used in authentication protocols, as well as algorithms and
evaluation metrics that are required when using PUFs for authentication. Once the groundwork of
authentication has been established, we then describe several PUF implementations and PUF-
based authentication protocols in Sections 5 and 6.

3.  Cryptographic Primitives for Authentication Protocols
A cryptographic protocol is a distributed algorithm defined by a sequence of steps precisely

specifying the actions required of two or more entities to achieve a specific security objective
[18]. All protocols make use of cryptographic primitives that provide specific security properties.
In this section, we briefly describe the primitives most commonly used in authentication proto-
cols.
3.1  Random Number Generation

Random numbers are important in many cryptographic protocols, e.g., session keys, nonces
for authentication, randomized procedures, etc. Random numbers must be selected uniformly
from a distribution, thereby ensuring that all possible values are equally likely, as a means of max-
imizing the difficulty of algorithmic and brute force attacks carried out by adversaries against the
protocol. Requests that are common in cryptographic protocols include ‘select an element at ran-
dom from the sequence {1, 2, ...,n}’ or ‘generate a random string of symbols of lengthmover the
alphabetΓ of n symbols’.Uniformly refers to the probability that a given symbol is selected and

by definition is equal to 1/n for an alphabet ofn symbols, and 1/nm for a string of symbols of
lengthm.

Traditionally, deriving random numbers from physical sources was difficult and costly, spur-
ring the development of software-based alternatives such as techniques based onpseudorandom
sequencesandseedparameters (PRNGs) [19]. NIST recommends several such cryptographically
secure PRNGs, each based on different types of cryptographic primitives such as hash functions,



MACs and block ciphers [20]. Although most are considered cryptographically secure, they each
depend on a random seed with high entropy. Anentropy accumulatorcan be used to derive the
seed from a ‘non-ideal’ physical source of randomness, whereby the input bitstream produced by
the non-ideal source is processed by the entropy accumulator into am-bit poolof high entropy.
The entropy accumulator can be a cryptographic hash function [19]. Alternatively, the physical-
layer nature of PUFs make them cost-effective and well suited as the physical source of random-
ness. Recent work shows that appropriate post-processing of PUF responses allow them to be
used directly as TRNGs, i.e., without the need of PRNGs [21].
3.2  Cryptographic Hash Functions

As mentioned above, secure hash functions are used to realize a fundamental information
security property, namely that related to theintegrity of data. Compression is a defining character-
istic of many-to-one hash functions, whereby binary strings of arbitrary length are mapped to
strings of fixed lengthn. Then-bit hash output is a compact representation of the input string. The
many-to-one property implies thatcollisionsare possible, a condition in which two distinct input
strings map to the same hash.Cryptographichash functions (referred to as hash functions subse-
quently) add important security-related properties to traditional hash functions and have the fol-
lowing characteristics [22]:
• It is easy to compute the hash for any input string.
• It is computationally infeasible to 1) generate the input string from its hash, 2) modify the

input string without changing the hash and 3) find two different input strings which produce
the same hash.
More formally, the security properties of a hash functionh with input messagemand outputy

= h(m) are defined as follows:
• preimage resistance: Given any hashy, it is computationally infeasible to find anm such that

h(m) = y.
• 2nd-preimage resistance: Given an inputm, it is computationally infeasible to find a different

inputm’ such thath(m) = h(m’)
• collision resistance: It is computationally infeasible to find any two distinct inputsm andm’

such thath(m) = h(m’).
Even stronger security properties are possible, for example it should be infeasible to find two

inputs that producesimilar hashes. Ideally, the hash function should behave like a random func-
tion, where each hash is equally probably, i.e., uniformly distributed.

There are two fundamental classes of hash functions:unkeyed hash functions and keyed

hash functions. Keyless hash functions can be used to createmodification detection codes
(MDCs), whose main purpose is to confirm data integrity. There are two types of MDCs:one-way
hash functions(OWHFs) which make it difficult to find an input stringm that hashes to specific
hash value, andcollision resistant hash functions(CRHFs), which makes it difficult to find two
input strings that map to the same hash. OWHFs are preimage and 2nd-preimage resistant, and are
consideredweak one-way hash functions, while CRHFs typically have all three properties and are
calledstrong one-way hash functions.

Keyed hash functions provide both message authentication and data integrity and are called
message authentication codes(MACs) when used in symmetric-encryption protocols, anddigital
signatureswhen used in asymmetric encryption protocols. Both schemes hash the message and
thensign it with a key. The receiver authenticates by applying the MAC or digital signature algo-
rithm on the received message and verifies that the received hash matches the locally computed
value. Hashing compresses the message and makes this data integrity check more efficient.
Although outside the scope of this expository, the chip area and computational complexity of



cryptographic hash functions is much larger than that found in non-cryptographic hash functions
[18, Ch. 9].

Similar to authentication protocols, secure hash algorithms continue to evolve, driving peri-
odic changes and additions to the public standards [23-24]. The termsecure hash algorithm
(SHA) is used in reference to a set of public standards maintained by the National Institute of
Standards and Technology (NIST). In particular, SHA-3 refers to subset of the cryptographic
primitive family Keccak, a standard released in August of 2015 that is designed as an alternative
to the SHA-2 family of secure hash functions [25].
3.3  Secure Sketches and Fuzzy Extractors

The introduction of PUFs as a primitive in authentication (and encryption) protocols made it
necessary to enlisterror-correcting andrandomness extraction mechanisms into the suite of
cryptographic primitives. The analog characteristics of the entropy source, as well as the embed-
ded analog-to-digital instrumentation components of a PUF instantiation, combined with environ-
mental (temperature, supply voltage), coupling and power supply noise sources make it difficult
or impossible to precisely reproduce the bitstrings generated by PUFs from one run of the proto-
col to the next. When PUF bitstrings are used as input to traditional cryptographic primitives, such
as hash functions or encryption algorithms, even a single bit-flip error in the bitstring causes a cat-
astrophic failure in the protocol. Additionally, PUF-generated bitstrings, in many cases, are not
ideal from the randomness perspective. Systematic bias effects and correlations inherent to the
structure of the entropy source make it difficult for the PUF to produce a bitstring uniformly from
the underlying distribution, i.e., such that all bitstrings of a given length are equally likely. Secure
sketches, strong extractors, and fuzzy extractors are functions designed to deal with these defi-
ciencies.

There are many types of error-correction algorithms that have been developed to fix errors that
occur in bitstrings. The most popular algorithms used for PUFs producehelper data as a supple-
mentary source of information during the initial bitstring generation (Gen) process, which is later
used to fix bit-flip errors during reproduction (Rep). The helper data is typically transmitted and
stored openly, in apublic non-secure location, and therefore, it must reveal as little as possible
about the bitstring it is designed to error correct.

TheSketchcomponent of asecure sketch takes an inputy and returns a helper data bitstringw
[26-27]. TheRecovercomponent takes a ‘noisy’ inputy’ and a helper bitstringw and returnsy” ,
which is guaranteed to match the original bitstringy as long as the number of bit flip errors is less
thant (t is a parameter that can be selected based on the level of error correction that is needed).
The algorithm is characterized by asecurity property, that guarantees that ify is selected from a
distribution withmin-entropy m, then an adversary can reverse-engineery from mwith probabil-

ity no greater than 2-m’ (m’ is defined below). Entropy is a measure of the disorder or randomness
in a closed system, while min-entropy refers to the worst-case behavior of a random variable and
is defined by Eq. 1. It is the negative log2 of the event with maximum probability.

Dodis et al. [26-27] proposed two algorithms for a secure sketch, both based on binary error-
correcting linear block codes. A linear block code is characterized with three parameters given as

[n, k, t], which indicate that there are 2k codewords of lengthn and each codeword is separated
from all others by at least2t-1 bits. The last parameter specifies the error correcting capability of
the linear block code, in particular, that up tot bits can be corrected.

Thecode-offset construction is the simpler of the two linear block codes. TheSketch(y)pro-
cedure samples a uniform, random codewordc (which is independent ofy) and produces ann-bit



helper data bitstringw using Eq. 2 [19]. The bitstringw represents the binary offset betweeny and
c.

Recover(y’, w)computes a noisy codewordc’ using Eq. 3 and then applies an error-correcting
procedure to correctc’ asc”  = Correct(c’).

The error-corrected value ofy’ is computed as given by Eq. 4. If the number of bits that are

different betweenc andc’ < t, wheret represents the error-correcting capability of the code, then
the algorithm guaranteesy = y” . Also, w discloses at mostn bits of y, of whichk are independent
of y (with k less than or equal ton). Therefore, theremainingmin-entropy ism - (n - k)(specified
asm’ above), where(n-k) represents the min-entropy that is lost by exposingw to the adversary.

The second algorithm proposed in [26-27] is referred to as thesyndrome construction. The
Sketch(y)procedure produces an(n-k)-bit helper data bitstring using the operation specified by

Eq. 5, whereHT is a parity-check matrix dimensioned as(n-k) x n.

TheRecoverprocedure computes a syndromes using Eq. 6.

Error correction is carried out by finding a unique error worde such that thehamming weight
(the number of ‘1’s) in bitstringe is less than or equal tot (the error-correcting capability of the
code). Also, the error worde satisfies Eq. 7.

In both the code-offset and syndrome techniques, theRecoverprocedure is more computation-
ally complex than theSketchprocedure. As discussed below, the first PUF-based authentication
protocols implemented theRecoverprocedure on the resource-constrained hardware token. Sub-
sequent work proposes areverse fuzzy extractor, which implementsSketchon the hardware
token andRecoveron the resource-rich server, making the protocol more cost-effective and attrac-
tive for this type of application environment [28].

Similar to error-correction, there is a broad range of techniques for constructing arandom-

ness extractor. Section 3.1 described the requirements for random number generation, and practi-
cal approaches for extracting randomness from non-ideal physical sources, e.g., those based on
the use ofseeded cryptographic PRNGs. Reference [19], Section 6.2.2 provides a survey of tech-
niques proposed for extracting randomness.
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Fuzzy extractors combine a secure sketch with a randomness extractor as shown in Fig. 1
(adapted from [19]). A PUF-based authentication protocol, with thehardware token, e.g., smart
card, shown on the left and thesecure server, e.g., bank, shown on the right is also shown to illus-
trate one possible usage scenario. TheSketch, as noted above, takes an inputr, which, e.g., might
be a PUF response to a server-generated challengec, as input and produces helper dataw (labeled
1st in the figure). TheExtractor takes bothr and a random number (seed)n and produces an
entropy distilledversionz, which can be stored as atuple(c, z, w, n) in a secure database (DB) on
the server. This component of the fuzzy extractor is called Generate orGen.

Authentication in the field begins by selecting a tuple (c, z, w, n) from the DB and transmitting
the challengec, helper dataw and the seedn to the hardware token. The PUF is challenged a sec-
ond time with challengec and produces a ‘noisy’ responser’ (labeled2nd in the figure). The
Reproduce orRepprocess of the fuzzy extractor uses the Recover procedure of the secure sketch
to error correctr’ using helper dataw. The outputr” of Recover and the seedn are used by the
Extractor to generatez’. As long as the number of bit flip errors inr’ is less thant (the chosen
error correction parameter), thez’ produced by the token’s Extractor will match the server-DBz
and authentication succeeds. Note that the error correctedz’ establishes a shared secret between
the server and token, which can alternatively be used as input to traditional cryptographic primi-
tives such as hash and block cipher functions (as opposed to being transmitted to the server as
shown in the figure).
3.4  Statistical Metrics

PUF generated bitstrings are often evaluated using techniques designed to measure the statisti-
cal quality of the bitstrings, which include characteristics such as uniqueness, reproducibility and
randomness.Uniquenessmeasures how different the bitstrings are from one device to another in
the population. The probability mass function of the binomial distribution is the appropriate statis-
tical characterization function for bitstrings and is given by Eq. 8, with mean and variance given
by Eq. 9 and 10, resp. [29]. Eq. 8 gives the probability of getting exactlyk successes inn trials.

Fig. 1. Fuzzy Extractor.
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Assuming the probability of a ‘1’ in a bitstring of sizen produced by a PUF isp = 0.5, thenµbino-

mial indicates that half of the bits will be ‘1’ on average. The same characteristic holds across bit-
strings from different devices if the probability of a ‘1’ is 0.5 for any given bit position. It follows
then that the average number of bits that are different from one bitstring to another, in this best
case scenario, is 50%. The metric used to measure uniqueness isinter-chip hamming distance

(HDinter). HDinter counts the number of bits that are different. In a typical PUF application, the
count is computed over all possible pairings of bitstrings produced by different devices in the pop-
ulation and then divided by the total number of bits and multiplied by 100 to yield a percentage.
Note that the set of bits that differ between any two arbitrary bitstrings necessarily are distinct
from one pairing to another.

Reproducibilitymeasures the PUFs ability to regenerate its bitstring(s) over time and under
different environmental conditions. The termsenrollment andregeneration are used in reference
to the bitstring generation process. Enrollment is carried out when a new bitstring is required,
while regeneration refers to the process of reproducing the same bitstring at some point later in
time. The application determines whether precise regeneration is required, e.g., encryption
requires exact replicas of the bitstring (when the bitstring is used as the key) while some authenti-
cation schemes have a built-in tolerance to allow some (small) fraction ofbit flip errors to occur.
Regeneration without errors is much more challenging when the process is carried out under dif-
ferent temperatures and/or supply voltages. The metric used to measure reproducibility isintra-

chip hamming distance (HDintra). Similar to HDinter, HDintra counts the number of bits that are
different between pairings of bitstrings. For HDintra, however, the pairings of bitstrings are com-
posed from the set of bitstrings produced by a specific device, each regenerated possibly under
different environmental conditions with respect to the enrollment conditions. The termTV corners

is used in reference to the set of environmental conditions used to test the devices, e.g., 85oC and
+10% VDD is a TV corner. Similar to HDinter, HDintra is usually expressed as an average percent-
age over all devices tested in the experiment, by counting the total number of bit flip errors that
occur, dividing by the total number of bits inspected and then multiplying by 100. The ideal case
is an average HDintraof 0%, i.e. no devices produced any bit flip errors under any TV corner.

The NIST statistical test suite can be used to evaluate therandomnessof PUF response bit-
strings [30]. The NIST tests look forpatternsin the bitstrings that are not likely to be found at all
or above a given frequency in a ‘truly random’ bitstring. For example, long or short strings of 0’s
and 1’s, or specific patterns repeated in many places in the bitstring work against randomness. The
output of the NIST statistical evaluation engine is thenumber of chipsthat pass thenull hypothe-
sis for a given test, when evaluated at asignificance levelα (α is set to the default value of 0.01
which reflects a confidence of 99%). The null hypothesis is specified as the condition in which the
bitstring-under-test is random. Therefore, a good result is obtained when the number of bitstrings
that pass the null hypothesis is large.

The NIST test suite consists of 15 separate tests, all of which have constraints on the size of
the bitstring. The following provides an intuitive overview of what the tests measure, with details
regarding the bitstring size requirements and applied test statistics omitted (see [30]). The test is
always conducted against what is expected in a truly random sequence of similar length.
• Frequency Test: Counts the number of ‘1’ in a bitstring and assesses the closeness of the frac-

tion of ‘1’s to 0.5. All other tests assume this test is passed.
• Block Frequency Test: Same except bitstring is partitioned intoM blocks. Ensures bitstring is

‘locally’ random.



• Runs Test: Analyzes the total number ofruns, i.e., uninterrupted sequences of identical bits,
and tests whether the oscillation between ‘0’s and ‘1’s is too fast or too slow.

• Longest Run Test: Analyzes the longest run of ‘1’s withinM-bit blocks, and tests if it is con-
sistent with the length of the longest run expected in a truly random sequence.

• Rank Test: Analyzes the linear dependence among fixed length substrings in the bitstring, and
tests if thenumber of ranks, i.e., number of rows that are linearly independent, of sizeM, M-1,
etc., match the number expected in a truly random sequence.

• Fourier Transform Test: Analyzes the peak heights in the frequency spectrum of the bitstring,
and tests if there areperiodic features, i.e., repeating patterns close to each other.

• Non-overlapping and Overlapping Template Tests: Analyzes the bitstring for the number of
timespre-specifiedtarget strings occur, to determine if too many occurrences ofnon-periodic
patterns occur.

• Universal Test: Analyzes the bitstring to determine thelevel of compressionthat can be
achieved without loss of information.

• Linear Complexity Test: Analyzes the bitstring to determine the length of the smallest set of
LFSRs needed to reproduce the sequence.

• Serial and Approximate Entropy Tests: Analyzes the bitstring to test the frequency of all pos-
sible 2m overlappingm-bitpatterns, to determine if the number is uniform for all possible pat-
terns.

• Cumulative Sums Test: Analyzes the bitstring to determine if the cumulative sum of incre-
mentally increasing (decreasing) partial sequences is too large or too small.

• Random Excursions Test: Analyzes the total number of times that a particular state occurs in a
cumulative sum random walk.

4.  Traditional, Software-Oriented Authentication
Authentication refers to the process of ‘verifying the identity of the communicating principals

to one another’ [31]. It is usually sub-divided intoentity authenticationandmessage (or data ori-
gin) authentication[18], with the former referring to authentication in ‘real-time’ between two
parties about ready to engage in communication while the latter refers to data such as email that
may later need to be authenticated by the receiver as to the origin and time sent. Note that authen-
tication of the origin of data also addresses data integrity, i.e., whether the message has been tam-
pered with by unauthorized parties, because unauthorized changes imply the data has a new
source.

Authentication is typically carried out between aprover (claimant)A, e.g., a hardware token
such as a smart card, and averifier B, e.g., a secure server operated by your bank. The verifierB
either confirms oracceptsthe prover’s identity as authentic or terminates without acceptance, i.e.,
rejects. The information exchanged with verifierB must be designed to prevent reuse byB, other-
wise it could impersonateA to a third partyC. Protocols should guarantee that the probability of
impersonationis negligible, even when a polynomially large number of previous authentications
occur betweenA andB.

Authentication can be used for security objectives including access control, entity authentica-
tion, message authentication, data integrity, non-repudiation and key authentication. Authentica-
tion can be carried out using symmetric encryption techniques, e.g., viamessage authentication
codesor MACs, using public/private encryption schemes viadigital signaturesand through
authenticated key establishment methods. The most common usage models include access control
to a resource, e.g., to computer accounts, ATMs, to software, to a building, etc.

The capabilities provided in the authentication protocol depend on the security requirements.
For example, an authentication protocol may beunilateral, i.e., from prover to verifier, ormutual.



Some protocols maypreserve privacy, to prevent malicious adversaries from tracking instances of
authentications that occur between the prover and verifier over time. Others may besymmetricin
nature, requiring the use of a shared secret between the prover and verifier provided by interac-
tions, in real-time, with atrusted third party(TTP), or may beasymmetricwith the prover and
verifier maintaining their own private secrets. The computational and communication overheads
associated with the protocols will depend on the type of protocol, its security requirements and
the security properties that must be guaranteed.
4.1  Entity Authentication

Entity authentication techniques can be divided into 3 categories:
• Something you know: Passwords, PINs and secret or private keys whose knowledge is demon-

strated in challenge-response protocols.
• Something you possess: Physical accessory, resembling a passport in function. Magnetic-

striped cards, smart-cards and hand-held customized calculators (password generators) which
provide time-variant passwords.

• Something inherent: Biometrics, e.g., human physical characteristics such as fingerprints,
voice, retinal patterns and signatures.
Passwords represent the most widely used form of authentication, but are consideredweak

authentication protocols. Passwords provide unilateral and time-invariant authentication, with
the useridserving as the claim of identity and thepasswordserving as evidence supporting the
claim. Attacks include eavesdropping to enablereplay, and password guessing such asdictionary
attacks. On most systems, the passwords are encrypted using aone-way function(OWF) before
being stored on disk (see Section 3.2). A technique calledsalting is also commonly used to make
dictionary attacks more difficult by expanding the search space for the adversary.

Two-stage authentication and password-derived keys address the insufficient entropy issue
associated with human chosen passwords. Ann-digit PIN verifies the user to the token, e.g., smart
card, in the first stage. The token typically embeds additional secrets for use in stage two between
the token and the system. A variant usespasskeysto map a user password to a cryptographic key
using a OWF. The most secure of the weak authentication schemes usesone-time passwords,
which addresses eavesdropping and replay attacks on password schemes.

Challenge-Response protocols fall in the class ofstrong authentication protocols, whereby
authentication requires the prover to demonstrate knowledge of a secret without revealing the
secret itself to the verifier. Here, the prover providesa responseto a time-variant challenge, with
the response inseparably bound to both the secret and the challenge. The challenge can be a ran-
dom number, called anonce(for ‘used only once’), a sequence number or a timestamp. Time-
variant parameters are countermeasures to replay attacks and certain types of chosen-text attacks
because the uniqueness and timeliness guarantees allow one protocol instance to be distinguished
from another. Note thatchallenge-responseprotocols requires some type of computing device and
secure storage for long-term keying material.

Challenge-Response by Symmetric-key: Each pair of communicating parties share a secret
key. In large communities, a trusted third party (TTP) can provide session keys in real time to cir-

cumvent the need to distributen2 key pairs. A common form of unilateral authentication uses ran-
dom number(s) (RN) [18].

B generates random noncerB and transmits it toA (over an unsecured channel).A encrypts the

(B generates random noncerB)A B:r B←
A B:EK r B B*,( )→



nonce and the identifierB using a shared secret keyK and transmits the encrypted message back
to B. B then decrypts and 1) checks that therB received matches therB sent and 2) verifies B* is
equal to his own B. The shared secretK must be securely transmitted toA andB beforehand, typ-
ically using a mechanism involving a TTP, in order for this scheme to work.

Mutual authentication requires a second noncerA and a third message:

Encryption ensures the nonces and identifiers are ‘inseparably’ bound as discussed above.
Challenge-Response using Keyed One-Way Functions: Encryption is considered a ‘heavy

weight’ cryptographic primitive, and may be replaced by a one-way function (OWF) or a non-
reversible function with shared key, and a challenge, for authentication in resource-constrained
devices. The encryption algorithmEK is replaced by a MAC algorithmhK, i.e., a keyed hash func-
tion. The receiver also computes the MAC and compares it with the received MAC. These proto-
cols require an additional cleartext fieldrA to be transmitted [18].

B confirms that the hash value received, designated ashk(rA, rB, B), is equal to the value he/
she computes locally using the same hash function and shared secretK. A performs a similar vali-
dation using the transmitted hashhK(rB, rA, A) from B. As discussed in Section 3.2, the computa-
tional infeasibility of finding a second input tohK that produces the same hash provides the
security guarantee in this mutual authentication protocol.

Challenge-Response by Public-Key: Here, the prover decrypts a challenge using its secret
key component of the public-private pair, which is encrypted by the verifier under its public key
PA. Alternatively, the prover can digitally sign a challenge.

B chooses noncer, computes thewitness x = h(r) (h is a OWF), wherex demonstrates knowl-
edge ofr without disclosing it, and computes challengee= PA(r, B). A decryptse to recoverr’ and
B’, computesx’ = h(r’) and rejects ifx’ does not equalx or if B’ does not equalB, otherwiseA
sendsr = r’ to B. B succeeds with unilateral entity authentication ofA upon verifying the received
r agrees with hisr. The witness prevents chosen-text attacks.

5.  Physical Unclonable Functions (PUFs)
Components needed for information security can be implemented using physical-layer secu-

rity primitives. A long-standing assumption of software-based security systems has been that
hardware implementations of security primitives are trustworthy ‘black boxes’. In particular, for
keyedsecurity primitives such as block ciphers, key generation and key storage are assumed to be
trusted and secure, and operational state within black box implementations of security algorithms
is assumed to be hidden and inaccessible. Unfortunately, models which assume a ‘hardware root-
of-trust’ are becoming increasingly more vulnerable to attacks [32-34].

(B generates noncerB)

(A generates noncerA)A B:EK r A rB B*, ,( )→
A B:r B←

A B:EK rB r A,( )←

(B generates noncerB)

(A generates noncerA)

A B:r B←
A B:r A hK r A r B B, ,( ),→
A B:hK r B r A A, ,( )←

A B:h r( ) B PA r B,( ), ,←
A B:r→



PUFs represent physical-layer security components that are designed to deal with threats to
key generation and key storage. PUFs are circuit primitives that leverage within-die variations in
ICs as a means of producing random bitstrings. Each IC is uniquely characterized by random
manufacturing variations, and therefore, the bitstrings produced by PUFs are unique from one
chip to the next. Cloning a PUF, i.e., making an exact copy, is nearly impossible because it would
require control over the fabrication process that is well beyond our current capabilities. A PUF
maps a set of digital “challenges” to a set of digital “responses” by exploiting these physical vari-
ations in the IC. The entropy in the responses is stored in the physical structures on the IC and can
only be retrieved when the IC is powered up. The analog nature of the entropy source makes PUFs
‘tamper-evident’, whereby invasive attacks by adversaries will, with high probability, change its
characteristics.

PUFs have been proposed which leverage variations in transistor threshold voltages [35-37],
speckle patterns [38-39], delay chains and ROs [40-64], thin-film transistors [65], FPGAs [66-67],
SRAMs [68-74], leakage current [75-76], metal resistance [77-81], transistor transconductance
[82], the path delays of core logic macros [83][84-87], optics and phase change [88], sensors [89],
switching variations [90], sub-threshold design [91], ROMs [92], buskeepers [93], microproces-
sors [94], using lithography effects [95-96], optical proximity correction [97], aging [98], in sub-
threshold operation [99], memristors [100] and other non-volatile memories [101], in scan chains
[102], phase change memory [103] and carbon-nanotubes [104]. Board-level authentication using
PUFs has also recently been proposed [105] and for securing mobile system platforms [106-107].
5.1  PUF-Based Authentication

As mentioned above, authentication is the process between a prover, e.g., a hardware token
and a verifier, a secure server, that confirms the identities, using corroborative evidence, of one or
both parties. With the Internet-of-things (IoT), there are a growing number of applications in
which the hardware token is resource-constrained, and therefore, novel authentication techniques
are required that are low in cost, energy and area overhead. Conventional methods of authentica-
tion which use area-heavy cryptographic primitives and non-volatile memory (NVM) are less
attractive for these types of evolving embedded applications. PUFs, on the other hand, are hard-
ware security and trust primitives that can address issues related to low cost because they elimi-
nate (in many proposed authentication protocols) the need for NVM. Moreover, the special class
of so-called ‘strong PUFs’ can also reduce area and energy overheads by reducing the number and
type of hardware-instantiated cryptographic primitives.

PUFs generate bitstrings that can serve the role of uniquely identifying the hardware tokens
for authentication applications. The bitstrings are generated on-the-fly, thereby eliminating the
need to store digital copies of them in NVM, and are (ideally) reproducible under a range of envi-
ronmental variations. The ability to control the precise generation time of the secret bitstring and
the sensitivity of the PUF entropy source to invasive probing attacks (which act to invalidate it)
are additional attributes that make them attractive for authentication in resource-constrained hard-
ware tokens.

PUF-based protocols have been proposed for applications including encryption, authentica-
tion, for detecting malicious alterations of design components and for activating vendor specific
features on chips. Each of these applications has a unique set of requirements regarding the secu-
rity properties of the PUF. For example, PUFs that produce secret keys for encryption are not sub-
ject to model building attacks (as is true for PUF-based authentication) which attempt to ‘machine
learn’ the components of the entropy source within the chip as a means of predicting the complete
response space of the PUF. This is true for encryption because the responses to challenges are typ-



ically not ‘readable’ from an interface on the chip. In general, the more access a given application
provides to the PUF externally, the more resilience it needs to have to adversarial attack mecha-
nisms. Authentication as an application for PUFs clearly falls in the category of extended access.
5.2  Strong vs. Weak PUFs

Weak PUFs are those whose challenge-response space is small while strong PUFs have very
large, ideally exponential, challenge-response spaces [108-109]. The distinction between strong
and weak PUF is rooted in the amount of entropy that each class can access. The larger the
entropy source, the more difficult it is for an adversary, who has access to the PUF, to collect and
analyze challenge-response pairs (CRPs) until the complete behavior of the PUF can be predicted.
The SRAM PUF is an early example of a weak PUF with only one CRP [68] while the arbiter
PUF is traditionally considered a strong PUF because of its exponentially large challenge space
[41]. However, if the size of the entropy source is considered a defining characteristic, then the
arbiter PUF would fail to meet the definition of a strong PUF because its response space is derived
from a relatively small entropy source, in particular, as small as a couple hundred gates. Given this
latter consideration, very few of the proposed PUFs meet this expanded definition. Model-build-
ing resistance using machine learning techniques has emerged as an important criterion for deter-
mining whether a PUF is strong based only on the size of its CRP space or whether it istruly
strong, i.e., attacks that attempt to learn and predict its behavior are infeasible [110][42].
5.3  The Arbiter PUF

The most widely referenced strong PUF, thearbiter PUF, was the one of the first proposed,
and is described in [41][42]. However, it is also widely recognized that it is considered strong
based only on the size of its input challenge space, and not on the amount of entropy it possesses.

The arbiter PUF measures path delays from a specialized test structure as its source of entropy
as shown in Fig. 2. The test structure implements two paths, each of which can be individually
configured using a set of challenge bits (stored in FFs along the top of the figure). Each of the
challenge bits controls a ‘Switch box’, that can be configured in eitherpass modeand switch
mode. Pass mode connects the upper and lower path inputs to the corresponding upper and lower
path outputs, while switch mode reverses the connections. A stimulus, represented as a rising
edge on the left side of the figure, cause two edges to propagate along the two paths configured by
the challenge bits. The faster path controls the value stored in thearbiter located on the right side
of the figure. If the propagating rising edge on the upper input to the arbiter arrives first, the
response bit output becomes a ‘0’. Otherwise, the response bit is a ‘1’. The switch boxes are
designed identically as a means of avoiding any type of systematic bias in the delays of the two

paths1. Within-die process variations cause uncontrollable delay variations to occur in the switch
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boxes, which in turn, makes each instance of the arbiter PUF unique in terms of its generated
response bit(s). A bitstring can be obtained from the arbiter PUF by repeating the measurement
process under a set of different challenges.

From this design, it is clear that the arbiter PUF has an exponential number of input challenges

that can be applied, in particular, 2n with n representing the number of switch boxes. However, the
total amount of entropy is relatively small, and is represented by the four path segments in each of
the switch boxes. Forn equal to 128, the total number of path segments that can vary individually
from one instance to another is 4*128 = 512. The exponential number of input challenges simply
combine these individual sources of entropy in different ways. Model building attacks attempt to
learn the delay relationships of the two configurations for each switch box [110]. Once known, the
response under any challenge then becomes predictable (limited only by the noise margin of the
arbiter measurement circuit).

The model-building weakness of the arbiter PUF is addressed in follow-on work, where the
outputs ofn arbiter PUFs are XOR’ed, to create a XOR-mixed arbiter PUF [44][111][112]. Fig. 3
shows an example in which 2 arbiter PUF output bits are XOR’ed. The goal is to create an XOR
network large enough to achieve theavalanche criterion. This criterion is commonly found in
cryptographic hash and encryption functions where flipping one of the input bits (or a bit in the
key for encryption) causes half of the output bits to flip. For the XOR-mixed PUF, the goal is to
achieve the avalanche effect by flipping one of the challenge bits. Although this helps signifi-
cantly with model building, particularly with networks of XORs greater than 4, larger XOR net-
works also reduce reliability by creating anoise-basedavalanche effect, i.e., any odd number of
bit flips that occur on the inputs of any given XOR network results in a response bit flip error. As
reported in [111], if a single arbiter PUF has an HDintra of 5% (intra-chip HD measures the PUF’s
ability to reproduce the same bitstring over repeated applications of the challenge, usually under
different environmental conditions), the HDintra increases to 19% for a 4-XOR-mixed arbiter PUF,
i.e., nearly 1/5 of the response bits have bit flip errors. Therefore, error-correction using tech-
niques described in Section 3.3 become critical to ensuring proper functional operation when used
in authentication protocols.
5.4  Hardware-Embedded Delay PUF (HELP)

Similar to arbiter PUFs, the hardware-embedded delay PUF (HELP) derives its entropy from
variations in path delays. However, HELP measures delays from existing functional units. There-
fore, no dedicated test structures are required. Another major benefit of using existing functional
units is the amount of entropy that can be potentially leveraged. Cryptographic functional units
are particularly attractive because of the complexity of their interconnection networks. On the

1. Note that achieving an unbiased layout in an FPGA is a challenging and non-trivial pro-
cess.

Fig. 3. XOR-mixed Arbiter PUF [44][111][112].
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down side, the lack of control over the configuration of paths in functional units creates issues
related to systematic bias and reliability, as described in the following sections.

Interestingly, the authors of the first silicon-based PUF paper describe their notion of a ‘better
PUF’ in Ongoing and Future Work section, which turns out, based on our work, to be well
founded [40]. The basic concept of measuring path delays from a core logic functional unit was
implemented first by Li and Lach [83], but was not fully developed as a PUF primitive. In particu-
lar, the authors do not address the bias introduced by paths of different lengths nor do they deal
with the reliability issues associated with paths that glitch.

Our development of HELP began in 2011 on a 90 nm ASIC implementation [86], but was
fully developed as an intrinsic PUF (with full integration of the control logic, entropy source and
measurement components) on a 130 nm Xilinx V2Pro [84-85], and more recently using a 28 nm
Xilinx Zynq architecture [87]. We have developed solutions for path length bias and glitching that
occur when core logic functional units are used as the source of entropy, as well as techniques that
improve the attack resilience of HELP when used in low cost authentication applications. This
section describes the characteristics of the most recent incarnation of HELP and presents new
results.

The original version of HELP made use of an embedded test structure called REBEL [113] for
measuring path delays and detecting glitches [84-85][86]. Recent implementations of HELP mea-
sure path delays in glitch-free functional units, which allows a simplified version of REBEL to be
used [87]. The simplified version eliminates the delay chain component and instead samples the
path delays at the capture FF directly.

HELP attaches to an on-chip module, such as a hardware implementation of the Secure Hash-
ing Algorithm (SHA-3) [114], as shown on the left side of Fig. 4. The data path component of the
SHA-3 algorithm, configured askeccak-f[200], is used in our FPGA experiments. This combina-
tional data path component includes 416 primary inputs (PIs) and 400 primary outputs (POs) and
is implemented on a Xilinx Zynq FPGA using 1936 LUTs.

Similar to the arbiter PUF described in the previous section, within-die variations in path
delays are the main source of entropy for HELP. Manufacturing variations change the relative
path delays through the functional unit in different ways, and therefore, each instance of the func-
tional unit is uniquely characterized by these delays. However, the structure of the paths in the

Fig. 4. HELP Block Diagram: (a) Instantiation of the HELP entropy source and (b) HELP processing
engine.
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arbiter PUF is very different than those in a typical functional unit, i.e., the arbiter PUF paths are
symmetric and regular (by design) while the paths within a typical functional unit exhibit no such
regularity.

Functional unit paths exhibitfan-out and thenreconvergenceof fan-out at various points
within the logic structure of the functional unit (called reconvergent-fanout), as shown on the right
side of Fig. 5. Also, the lengths of the paths can vary widely, e.g., theshort pathsshown have 3 or
fewer gates while thelong pathsare 5 or more gates in length. Both of these characteristics make
it more difficult to build a PUF with good statistical characteristics. Reconvergent-fanout can
causeglitching, i.e., static and dynamic hazards, to occur on the primary outputs, whereby output
signals transition more than once. Glitching creates ambiguity regarding the ‘correct’ timing
value to use for the path. Operating the functional unit under different environmental conditions,
e.g., temperature and supply voltage, exacerbates the problem, where paths that are glitch-free
under nominal environmental conditions suddenly become glitchy under adverse conditions.
Moreover, the systematic bias associated with paths of different lengths significantly degrades the
statistical randomness and uniqueness characteristics of the PUF. We have developed several tech-
niques to deal with both of these problems. Our most recent work, described here, implements the
functional unit using a specialglitch-free logic style calledwave differential dynamic logic
(WDDL) [115-116], while the systematic bias introduced by paths of different lengths is dealt
with by applying amodulus to the digitized path delay, which effectively removes the bias.

5.4.1   Clock Strobing
Path delay is defined as the amount of time (∆t) it takes for a set of 0-to-1 and 1-to-0 bit tran-

sitions introduced on the PIs of the functional unit (input challenge) to propagate through the
logic gate network and emerge on a PO. HELP uses a clock-strobing technique to obtain high res-
olution measurements of path delays as shown on the left side of Fig. 4. A series of launch-cap-
ture operations are applied in which the vector sequence that defines the input challenge is applied
repeatedly to the PIs using the Launch row flip-flops (FFs) and the output responses are measured
on the POs using the Capture row FFs. On each application, the phase of the capture clock,Clk2,
is incremented forward with respect toClk1, by small∆ts (on order of 20 ps), until the emerging
signal transition on a PO is successfully captured in the Capture row FFs. A set of XOR gates con-
nected to the Capture row FF inputs and outputs (not shown) provide a simple means of determin-
ing when this occurs. When an XOR gate value becomes 0, then the input and output of the FF are
the same (indicating a successful capture). The first occurrence in which this occurs during the
clock strobe sweep causes the current phase shift value to be recorded as the digitized delay value

Fig. 5. Portion of a functional unit schematic, showing fan-out and reconvergence of paths, and the presence
of different length (short vs. long) paths.
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for this path. This operation is applied to all POs simultaneously.
The phase shifting module forClk2 is shown in the middle of Fig. 4. On-chip digital clock

managers (DCMs) are commonly included in FPGA architectures. For example, Xilinx FPGAs
typically incorporate at least one DCM with a digitally controlledfine phase shiftcontrol mecha-
nism even on their lowest cost FPGAs. For low-cost components that do not include a DCM with
this capability, a fine phase shift mechanism can be implemented with a small area overhead using
a multi-tapped delay chain.

The right side of Fig. 4 shows the HELP processing engine. The digitized path delays are col-
lected by astoragemodule and stored in an on-chip block RAM (BRAM). Each digitized timing
value is stored as a 14-bit value, with 10 binary digits serving to cover the fine phase shift sweep
range of 0 to1023 and 4 binary digits of fixed point precision to enable up to 16 samples of each
path delay to be measured and averaged. The 7 KByte BRAM allows 4096 path delays to be
stored. We configure the applied challenges to test 2048 paths with rising transitions and 2048
paths with falling transitions. The 14-bit digitized path delays are referred to as PUFNums orPN.

5.4.2   PN Processing
Once the PN are collected, a sequence of mathematical operations are applied as shown on the

right side of the Fig. 4 to produce the bitstring and helper data. Thedifferencemodule creates
unique, pseudo-random pairings between the rising and falling PN groups using two seeded linear
feedback shift registers (LFSRs). The two 11-bitLFSR seedsare user-specified parameters. The
PN differences, referred to asPND, are stored in the lower 2048 memory locations of the BRAM
as values in the range +/- 511 with 4 binary digits of fixed point precision, overwriting the original
set of rising-edge PN.

Fig. 6(a) shows an example of this process using two groups of 38 curves, one curve for each
Xilinx Zynq 7020 chip that was tested. The curves shown along the bottom depict the PN
obtained from rising transition tests and those along the top are the PN from falling transition
tests. The 13 line-connected points associated with each curve represent the chip’s PN measured
over a range of environmental conditions, called temperature-voltage (TV) corners. The PN at the
x-axis position given by 0 are those measured under nominal conditions (referred to asenroll-

ment values below), i.e., at 25oC, 1.00V. The PN at positions 1, 2 and 3 are also measured at 25oC
but at supply voltages of 0.95, 1.00 and 1.05 V. Similarly, the other groups of 3 consecutive points

along the x-axis are measured at these supply voltages but at temperatures -40oC, 85oC and

100oC. The PN measured under TV corners numbered 1 to 12 are referred to asregeneration val-

-80

Fig. 6. (a) Example rising and falling path delays (PN), (b) PND and (c) PNDc.
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ues. Fig. 6(b) plots thePND defined by subtracting point-wise, each falling PN from the corre-
sponding rising PN for the same chip.

5.4.3   Temperature-Voltage (TV) Compensation
PUFs must be able to reproduce their bitstrings as precisely as possible, ideally without any

bit flip errors, over a range of environmental conditions in which temperature and supply voltage
are different from the conditions present during enrollment. No PUF construction to date is able to
completely eliminate bit flip errors during regeneration, but some are more resilient to them than
others. A method called temperature-voltage compensation (TVComp as shown on right side of
Fig. 4) is proposed for the HELP PUF as a mechanism to improve its resilience to bit flip errors.

For HELP, bit flip errors occur because changes to the chip’s ambient temperature and supply
voltage change its path delays (calledTV noise). TVComp applies a linear transformation to the
path delay differences (PND) as a means of shifting and scaling them to a common reference. The
goal is to define a transformation that eliminates the saw-tooth behavior in the curves shown in
Fig. 6(b), making them as flat and straight as possible.

TVComp is applied to the entire set of 2048 PND measured for each chip at each of the 13 TV
corners separately (note, Fig. 6(b) shows only one of the PND from the larger set of 2048 PND
that exist for each chip and TV corner). The TVComp procedure first converts the PND to ‘stan-
dardized’ values. Equation (11) represents the first transformation which makes use of two con-
stants,µTVxandRngTVx,obtained from a histogram distribution of the measured PND. The second

transformation is represented by Equation (12), which translates the standardizedzvalsto a new
distribution with meanµref and rangeRngref. The reference mean and range values are user-
selectable parameters of the HELP algorithm.

As an example, Fig. 7(a) shows the PND histogram distribution for chip C1 at 25C, 1.00V.
TheµTVx is shown as -40 while theRngTVx is computed between the 5% and 95% as 136. Fig 7(b)
superimposes the PND histograms for C1 at 25C, 1.00V and 100C, 1.05V. The TVComp process
will shift (and scale) this distribution to the left to remove the adverse effects introduced by the
change in environmental conditions.

A second illustration of the effect of TVCOMP is shown in Figs. 6(b) and 6(c). The data in
Fig. 6(c) is obtained by applying TVCOMP procedure to the 2048 PND measured under each of

Eq. 11.zvali
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the 13 TV corners for each chip, i.e., 13 TV corners * 38 chips = 494 separate applications. Since
the same reference mean and range are used for all transformations, TVComp eliminates both TV
noise and chip-wide performance differences between the chips. Note that the curves in Fig. 6(c)

no longer exhibit the saw-tooth behavior introduced by TV noise1.
The differences that remain in the TVCOMP’ed PND (subsequently referred to asPNDc)

shown in Fig. 6(c) are those introduced by WDV anduncompensatedTV noise (UC-TVNoise).
For this particular PND, the TVCOMP process is able to reduce TV noise to approx. 2 in the
worst case, which translates to approx. 36 ps. In general, PNDc with larger levels of UC-TVNoise
are more likely to introduce bit flip errors.

The implementation of the HELP algorithm shown in Fig. 4 constructs a histogram distribu-
tion in the upper 2048 memory locations of the BRAM using the 2048 PND stored in the lower
portion and then parses the distribution to obtainµTVxandRngTVx. Once the distribution constants
are available, the PND in the low portion of the BRAM are converted to PNDc.

The last operation applied to the PN is represented by theModulusoperation shown on the
right side of Fig. 4. Modulus is a standard mathematical operation that computes the positive
remainder after dividing by the modulus. The Modulus operation is required by HELP to elimi-
nate the path length bias that exists in the PNDc, which acts to reduce randomness and uniqueness
in the generated bitstrings. The value of the Modulus is also a user-selectable parameter, similar to
the LFSR seed, mean and range parameters, and is discussed further in the following. The HELP
engine shown in Fig. 4 overwrites the PNDc after applying the Modulus. The final values, called
MPNDc, are used in the bitstring generation process.

5.4.4   Bit Generation Algorithm
The bitstring generation process uses a fifth user-specified parameter, called theMargin, as a

means of improving the reliability of the bitstring regeneration process. The bottom portion of
Fig. 8(a) plots 18 of the 2048 PNDc from Chip1 along the x-axis. The red curve line-connects the
data points obtained under enrollment conditions while the black curves line-connect data points
under the 12 regeneration TV corners.

The curves plotted along the top of Fig. 8(a) show the MPNDc values after a modulus of 20 is

1. TV compensation also serves as a countermeasure to prevent adversaries from manipu-
lating temperature and supply voltage as a physical attack mechanism.
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applied. Fig. 8(b) enlarges the upper portion of Fig. 8(a) and includes a set of margins of size 2
surrounding two strong bit regions of size 6. Designators along the top given as ‘s0’, ‘s1’, ‘w0’
and ‘w1’ classify each of the enrollment data points as either a strong 0 or 1, or a weak 0 or 1,
resp. Data points that fall on or within the hatched areas are classified as weak as a mechanism to
avoid bit flip errors introduced by UC-TVNoise that occurs during regeneration.

The Margin method improves bitstring reproducibility by eliminating data points classified as
‘weak’ in the bitstring generation process. For example, the data points at indexes 4, 6, 7, 8, 10
and 14 would introduce bit flip errors at one or more of the TV corners during regeneration
because at least one of the regeneration data points is in the opposite bit value region from the cor-
responding enrollment value. We refer to this bitstring generation technique as theSingle Helper

Data (SHD) scheme since the classification of the MPNDc as strong or weak is determined solely
by the enrollment data.

A second technique, referred to as theDual Helper Data (DHD) scheme, requires that both
the enrollment and regeneration MPNDc be in strong bit regions before allowing the bit to be used
in the bitstring during regeneration. Thehelper data, which represents the classification of the
MPNDc as strong or weak, is bitwise ‘AND’ed, and then both the enrollment and regeneration bit-
strings are generated (the enrollment data is assumed to be collected earlier in time and stored on
a secure server). The DHD scheme doubles the protection provided by the margin against bit flip
errors because the MPNDc produced during regeneration must now change and move across both
a ‘0’ and ‘1’ margin before it can introduce a bit flip error. This is true because both the enroll-
ment and regeneration MPNDc must be classified as strong to be included in the bitstring and the
strong bit regions are separated by 2*margin.

Fig. 8 highlights four cases where an enrollment-classified strong bit would be reclassified as
weak in the DHD scheme because 1 or more of the regeneration PNDc falls within a weak region.
This shows that in addition to doubling the protection against bit flip errors, the DHD scheme can
potentially produce different bitstrings each time the chip regenerates it. Therefore,DHD

increases entropy by leveraging UC-TVNoise (and sampling noise to a smaller degree). This fea-
ture is a benefit for authentication applications because only half of the helper data is revealed to
the adversary while the other half is generated and kept on the chip or server. The missing helper
data adds uncertainty for an adversary as to the final form of the bitstring. Encryption applications
can leverage both of these DHD benefits as well by exchanging the chip and server helper data
bitstrings while keeping the generated keys private. These benefits of DHD are expanded upon in
the following sections.

5.4.5   Entropy Analysis
The Margin technique using either the SHD or DHD schemes adds uniqueness to the regener-

ated bitstring. This is true because weak bits are excluded from the bitstring based on the position
of the PNDc and Margins and therefore, different chips utilize different bits in the constructed bit-
string. Figs. 9(a) and (b) depict several scenarios that show how the Margin and the position of the
PNDc affect bitstring generation. The line-connected curves in Fig. 9 are analogous to those
described earlier in reference to Fig. 6(c). Fig. 9(a) plots a set of 20 different PNDc to illustrate
how PNDc distribute across the range defined by the Modulus, which is set to 20. Fig. 9(b) is a
blow-up of the bottom portion of Fig. 9(a).

As indicated earlier, within-die process variations change path delays uniquely in different
chips, which is reflected by the y-dimensional spread within each group of PNDc. For the data set



labeled as scenario1 in Fig. 9(b), the range occupied by the PNDc is approx. 10. The y position of
the overall data set is such that, except for a few points, the bit generated by this data will be 0 for
all 38 chips.

However, the enrollment data points (left-most) for some chips fall within the weak bit regions
and therefore, this bit is skipped for these chips using either the SHD or DHD schemes. Moreover,
UC-TVNoise causes some of the regeneration data points to move from their strong bit positions
in the enrollment data to weak bits during regeneration. The DHD scheme excludes this bit for
these chips as well, creating differences in the generated bitstring for the same chip at different
TV corners, while simultaneously providing a 2x Margin to bit flip errors. Moreover, the relative
position of the curve associated with each chip, with respect to the other chips, changes in each
data set so it is unpredictable which data points are excluded during bitstring generation for any
particular chip. The curve for chip C1 is highlighted in red in each of the PNDc groups to illustrate
the change in its relative position with respect to other chips in the group.

The data set labeled scenario2 in Fig. 9(b) shows a second possibility, that is closest to the
‘ideal’ case because the position and range of the curves spans the y-axis into both the strong 0
and strong 1 bit regions. The number of possible results regarding the status of the bit includes
those described for scenario1 plus an additional possibility that some chips generate a strong 1 bit
and others a strong 0 bit. In contrast, scenario3 labeled in Fig. 9(a) is closest to the ‘worst’ case
where nearly the entire data set is positioned with the strong 0 region. Note that this scenario is
only possible when the Modulus is large enough to create strong bit regions that upper-bound the
smallest range (WDV + UC-TVNoise) found among the MPNDc groups. Generating bitstrings
with Moduli larger than 4*Margin + this smallest range begins to reduce their statistical quality.
The analysis presented in subsequent sections shows that the upper-bound for this data set is Mod-
ulus = 28.

5.4.6   Statistical Analysis of the Bitstrings
The bitstrings generated using the DHD scheme are subjected to the NIST statistical test suite

as well as Inter-chip and Intra-chip hamming distance (HD) tests. The analysis is carried out using
two different referencescaling factors for TVCOMP, referred to asminimum(Min) and mean
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scaling. Theµref andRngref scaling constants derived from the set of path distributions for the 38
chips are used as the reference values in Equation 12 to scale all chip data before applying the
Modulus operation and DHD bitstring generation procedures described above. Theminimumscal-
ing constants are derived from the chip with smallest distribution, i.e., smallest mean and range
values. Themeanscaling constants are computed from the average mean and range values across
the distributions of all chips. We focus our analysis on these two scaling factors because they rep-
resent the extremes of the recommended range. We expect similar results to be produced for all
scaling factors between these limits.

We use the acronymSBSto denote ‘strong bitstring’. The DHD scheme requires two helper
data bitstrings from the same chip as a means of constructing the two corresponding SBS’s. The
helper data bitstings, which are derived from the 2048 MPNDc using the Margin technique, are
bitwise AND’ed and then used to select bits for use in the construction of the SBS’s. The SBS’s
generated using enrollment data (TV0) and the nominal regeneration TV corner data (TV2) from
the same chip are used in the NIST statistical tests and Interchip hamming distance (HDInter) cal-
culations below. UC-TVNoise is smallest using this combination, and therefore, it represents the
worst case condition where the affect of the helper data AND’ing has the smallest impact on the
additional entropy as discussed earlier. Only one of the SBS’s from each chip is used in HDInter
and NIST statistical tests, and the SBS’s are truncated to the length of smallest bitstring among
the 38 generated. The same criteria are used in the Intra-chip HD (HDIntra) calculations except a
much larger set of bits are processed by accumulating the results across a set of 256 different
LFSR seeds (only one LFSR seed is used for NIST and HDInter tests because similar results are
obtained using other seeds).

NIST Statistical Test Results:

The NIST statistical test results are shown in Fig. 10(a) and (b) for minimum and mean scal-
ing, resp. A test is considered ‘a pass’ according to the NIST criteria if at least 35 of the 38 chips
pass the test individually. The histogram bar heights indicate the number of chips that pass the
test. The bitstrings generated using a Margin of 3 and a set of Moduli between 14 and 30 are sub-
jected to 10 of the NIST tests. The size of the bitstring was too small for some values of the Mod-
ulus and therefore, the bar heights for these NIST test results are set to 0 (includes regions along
back and left side of the 3-D histogram).

Under minimum scaling, all NIST tests are passed except for four associated with Modulus
30. These fails are related to scenario3 discussed in reference to Fig. 9, where the range of within-
die variation fits entirely within the strong ‘0’ or ‘1’ regions defined by Modulus. This is sup-
ported by the results presented under the mean scaling, where the bitstrings for Modulus 30 pass

(a) Min scaling: Margin = 3 (b) Mean scaling: Margin = 3

NIST test #
10

5
1

Modulus
22 30

14# 
of

 p
as

si
ng

 c
hi

ps

0

20

40

# 
of

 p
as

si
ng

 c
hi

ps

0

20

40

Modulus
22 30

14

NIST test #
10

5
1

Fig. 10. NIST statistical test results using 38 chip bitstrings for each analysis and (a) Minimum scaled data
and (b) Mean scaled data.



all tests (only 1 test is failed under mean scaling, and with a value of 34 instead of 35). Mean scal-
ing enlarges the y-dimensional spread of the data points over minimum scaling and reduces the
probability that scenario3 occurs. These results indicate that the bitstrings posses a high degree of
randomness, which is a necessary condition for classifying the bitstrings as cryptographic quality.
The results using Margins of 2 and 4 are very similar.

Interchip Hamming Distance (HDInter):

HDInter is computed using Equation 13. The symbolsNC, NBandNCC represent ‘number of
chips’, ‘number of bits’ and ‘number of chip combinations’, resp. This equation simply sums all
the bitwise differences between each of the possible pairing of chip SBS’s (NCC), and then con-
verts the sum into a percentage by dividing by the total number of bits that were examined. The
XOR operator generates a 1 when the pair of bits in the SBS’s at the same position are different
and 0 otherwise.

Fig. 11(a) shows the HDinter results for a set of Moduli (x-axis) and Margins (y-axis). The
ideal value for HDinter is 50%, which indicates that half of the bits in any arbitrary pairing of bit-
strings from the 38 chips have different values. The best values are produced for smaller Moduli,
as expected. However, all values remain above 48.5%, which indicates a high degree of unique-
ness among the bitstrings from different chips.

Intrachip Hamming Distance (HDIntra):

HDInter is computed using Equation 14. The symbolsNS, NC, NBandNT represent ‘number
of seeds’, ‘number of chips’, ‘number of bits’ and ‘number of TV corners’, resp. As indicated ear-
lier, we repeat the HDintra analysis for 256 different LFSR seeds as a means of increasing the
number of bits used in the analysis.NT is 12 to represent each of the TV corners used to compute
the pair of chip SBS’s under the DHD scheme. This equation sums all the bitwise differences
between each of the enrollment SBS (TV0) bitstrings and the 12 corresponding SBS bitstrings

HDinter
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from the remaining TV corners for each chip and each LFSR seed, and then converts the sum into
a percentage by dividing by the total number of bits that were examined. The value forN varied
between approx. 12 million for Modulus 10 to more than 165 million for Modulus 30.

Fig. 11(b) reports HDIntra as the probability of a bit flip failure for the same set of Moduli and
Margins used in 11(a) (note the x-axis is reversed from that shown in Fig. 11(a)). The value of the

exponentx is reported from the equation 1/10-x so -6 indicates 1 chance in 1 million. Cases where
no bit flips were detected as shown as -10. As expected, the larger Moduli produce lower proba-
bilities of failure. The probability of failure for Margins 3 and 4 under minimum scaling are all set

to 10-10 (no bit flip errors were detected), and are less than 10-6 for Margin 2 except for Modulus

10. The probability of failure under mean scaling are larger but remain below 10-6 for Margins 3
and 4.

Minimum Bitstring Size:

Fig. 11(c) plots the smallest bitstring size for the same set of Moduli and Margins. Smaller
Moduli have smaller strong bit regions for a given Margin and therefore, fewer bits quality as
strong. However, the bitstring sizes grow quickly, with at least several hundred bits available for
Moduli/Margin combinations with strong bit regions of size 2 and larger. Bitstring size can be
increased as needed by increasing the number of tested paths beyond 4096.

5.4.7   Security Property Analysis
In this section, we investigate several important security properties of HELP that relate to its

resistance to model building and to the number of bitstrings that each token can generate using the
five user-defined parameters described earlier and a sixth parameter called thePath-Selection-
Mask(which is discussed below and in Section 6.6 as it relates to proposed authentication proto-
col).

Parameter-Based Bitstring Diversity:

Due to the interaction of the user-defined parameters, we present a conservative lower-bound
estimate on the number of possible parameter combinations, i.e., those that ensure the generated
bitstrings are random, reliable and unique for each token. Note that the source of entropy is fixed
in this analysis to a set of 4096 PN (in contrast to the analysis that includes thePath-Selection-
Mask parameter as described in the next section). In other words, the set of five user-defined
parameters, namely,µ, Rng, Modulus, Margin and theLFSR seeds, apply different transforma-
tions to the same set of PN as a means of achieving bitstring diversity. As noted earlier, the two
11-bit LFSR seedparameters allow any of the 2048 rising edge PN to be paired with any of the
2048 falling edge PN, yielding 4,194,304 possible combinations. From the results shown in Fig.

11, the number of combinations ofMargins andModuli that yield high reliability (< e-6) is 12
(using Moduli from 16-28 for Margin 3, and 20-28 for Margin 4, in steps of size 2). The number
of differentµ andRngparameters is conservatively estimated to be 10 each. Therefore, a total of
4,194,304 * 12 * 10 * 10 ~= 5 billion combinations of these five user-defined parameters are pos-
sible. This lower bounds the amount of effort required by an adversary in possession of the token
to read out all the possible response bitstrings. The probability of achieving this lower bound is
nearly zero in practice because, in the proposed protocol, the token and server generate nonces
that are used to select values of the parameters and therefore, the adversary does not have direct
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control of the token’s interface (details covered in Section 6.6).
Path-Selection-Mask-Based Bitstring Diversity:

Unlike the parameter-based scheme, bitstring diversity introduced by thePath-Selection-Mask
is based on changing the underlying entropy components. In other words, the 4096 PN are not
fixed, but vary from one authentication to the next. In the protocol proposed in Section 6.6, path
selection is performed by the server using a random number generator. Path selection involves
choosing a subsetx of y timing values from those produced simultaneously by the challenge. For
example, assume that a challenge vector sequence produces 200 timing values and the server
selects a random subset of 50. The number of ways of choosing 50 from 200 is a very large num-
ber and is given by Equation 15. This number is then multiplied by the number of vectors required

to reach 4096 PN (as an example, we use 82 in our recent experimental evaluation). Therefore, the
number of possible bitstrings using thePath-Selection-Maskis exponentially related to the num-
ber of simultaneously sensitized paths produced by a challenge and the number of PN randomly
selected. More importantly, thePath-Selection-Maskchanges the characteristics of the PND dis-
tribution, which in turn impacts how each PND is transformed through the TVComp process. In
other words, even with all 5 user-defined parameters held constant, the bit value generated by a
MPNDc will vary because its value depends on all of he 4096 PNs selected and used in the bit-
string generation process. This complex relationship is leveraged as a security property in the
HELP authentication protocol as a means of both preserving privacy and adding resilience to
model-building attacks.

6.  PUF-Based Authentication Protocols
The tamper-evident and unclonable characteristics of PUFs can be leveraged in authentication

protocols to generate nonces and repeatable random bitstrings, to provide secure storage of
secrets, to reduce costs and energy requirements and to simplify key management. Although weak
PUFs have been proposed for authentication as described in the examples that follow, they
increase the number and type of cryptographic primitives required on the token. Strong PUFs pro-
vide a distinct advantage by eliminating some of these cryptographic primitives while providing
higher resistance to protocol attacks.

The cryptographic primitives required in an authentication protocol depend on the security
requirements. For example, in the simplest form, the protocol can be designed to provide unilat-
eral, e.g., server-based, authentication as discussed in Section 4. More advanced features such as
mutual authentication and privacy-preserving protocols, i.e, those that prevent token tracking,
require additional cryptographic primitives and message exchanges.

Entity authentication requires the prover (hardware token) to provide both an identifier and
corroborative and timely evidence of its identity, e.g., a secret, that could only have been produced
by the prover itself. From Section 4, PUFs carry out user authentication under the general model
of ‘something you possess’, e.g., a hardware token such as a smart card, which in turn, incorpo-
rate silicon-based fingerprint-like identities for authentication to a secure server, such as a bank.
Bear in mind that PUFs do not address the task of identifying the user to the token. As discussed
in Section 4, user-token authentication is layered on top of token-server authentication using pass-
words, PINs, actual human fingerprints, etc.

Although passwords, PINs, one-time passwords, etc. can be used for token-server authentica-
tion, they are considered weak authentication methods. The strong authentication methods
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described in Section 4 are based on a challenge-response mechanism but implicitly require the
prover A to demonstrate knowledge of asecretknown to be associated with proverA without
revealing the secret itself to the verifierB. The challenge-response component provides a mecha-
nism to enable the prover to maintain the secret while allowing, in the composition of exchanged
messages, the prover to demonstrate its knowledge to the verifier. In order to ensure certain secu-
rity properties, the random numbers (nonces) that are cryptographically bound to the secret and
exchanged must have sufficient entropy. Cryptographic functions such as one-way hash functions,
symmetric key encryption algorithms (for MACs), and public-private encryption algorithms (for
digital signatures) may also be required. PUFs can certainly be used in these types of traditional
authentication schemes, e.g., for generating nonces with sufficient entropy (which we discuss
below), but the large number of CRPs available in strong PUF implementations also allow for
simpler schemes with stronger security properties.
6.1  Protocol 1: Strong PUF with Unprotected Interface

The simplest mechanisms calledchallenge-response entity authentication, as proposed in
[38][40][120-121], exchange cleartext bitstrings directly, thereby eliminating area/energy-expen-
sive cryptographic primitives associated with traditional schemes. A PUF whose inputs and out-
puts can be accessed directly, as in this scheme, is said to haveunprotected interfaces. The
protocol is shown graphically in Fig. 12 (referred to asnaivein [121]), and consists of two phases:
• Enrollment: A process carried out in a secure environment between a token,A and verifier,B.

Verifier B generates a sequence of randomly-chosen challenges,ci, which are presented to
tokenA and applied to the PUF, and the PUF responses,r i are then recorded in a secure data-
base as challenge-response pairs,crpi, along with a unique identifier,htID for the token.

• Authentication: TokenA requests authentication by transmitting its ID,htID, to the verifierB.
Verifier B selects one or more challenges from the database using thehtID and transmits them
across an unsecured channel to the fielded token. TokenA appliesci to the PUF to generater i’ ,
which is transmitted toB for verification.B comparesr i with r i’ andacceptsif the two bit-
strings match with a tolerance,HDintra, and rejectsotherwise. VerifierB removes thecrpi
from the database as a countermeasure to replay attacks.

Fig. 12. Naive Strong PUF Authentication [38][121].
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The protocol has the benefit of being simple to implement and is very lightweight for the
token. The inability of the PUF to precisely reproduce the responser i (in simple schemes that do
not attempt error correction or error avoidance) makes it necessary to implement a error-tolerant
matching scheme withHDintra > 0. It should be noted however that large values ofHDintra

increase the chance of impersonation, and act to reduce the strength of the authentication scheme.
A second drawback is the large number of challenge-response pairs that must be recorded during
enrollment, as a means of ensuring that authentication can be carried out over a long period of
time. This increases the storage requirements for the verifier, since the worst-case usage scenario
must be accommodated, and/or creates inconveniences for users who exceed the stored CRP
capacity. Other drawbacks include the lack of resistance todenial of serviceattacks, whereby
adversaries purposely deplete the server database, the inability to carry out privacy-preserving or
mutual authentication and the susceptibility of the scheme to model-building attacks [122]. The
latter is the primary driver for the requirement that atruly strong PUF be used for authentication
protocols with unprotected interfaces, of which this simple protocol is an example.

A growing list of proposed protocols address these short-coming by incorporating crypto-
graphic primitives on the prover and verifier side [19][21][39-40][123]. The inclusion of crypto-
graphic primitives enable significant improvements to the security properties of the protocols, and
additionally allow for privacy-preserving and mutual authentication. However, their use, in many
cases, requires error-free response bitstrings from the PUF, which in turn requireshelper datato
be stored with the CRPs on the server. Many recent protocols target low-cost, resource-con-
strained applications, e.g., RFID, and attempt to minimize the implementation footprint and
energy profile on the token side. Error correction algorithms, such assecure sketches[26-27], are
asymmetric in terms of their computational cost, with helper data generation requiring fewer
resources than the process of using the helper data to correct bit flip errors in the regenerated
response. Recently proposed authentication protocols attempt to minimize the area and energy
requirements for token-side operations by leveraging this asymmetrical relationship. We discuss
several of these protocols below. An excellent review of these and other protocols
[28][38][40][124-137] is provided in [121][138].
6.2  Protocol 2: Controlled PUF

The most straightforward countermeasure to model building attacks is to protect the chal-
lenge-response interface to the PUF using cryptographic hash function(s) [16][121]. One possible
implementation of the protocol proposed for aControlled PUFis shown in Fig. 13. The hash of
the challenge preventschosen-challengeattacks. This is true because the hash is a one-way-func-
tion (OWF), which makes it computationally infeasible for the adversary to control the composi-
tion of the challenge applied to the PUF. Similarly, by hashing the output of the PUF, correlations
that may exist among different challenges are obfuscated, increasing the difficulty of model-build-
ing even further. The main drawback of using a OWF on the PUF responses as shown is a require-
ment that the responses from the PUF be error-free. This is true because even a single bit flip error
in the PUF’s response changes a large number of bits in the output of the OWF (avalanche effect).
The functionsGen and Repare responsible for error-correcting the response, using algorithms
that were described earlier in Section 3.3.

The protocol works as follows. During enrollment in a secure environment, a one-time inter-
face is used to allow the server to obtain PUF responses,r j, produced from randomly generated,
hashed challengescj. TheGenroutine produces helper datahdj for eachr j, which is sent to the
token to produce a hashed version of the PUF response,r’ j. The 3-tuples<cj, r’ j, hdj> produced



by multiple iterations of this algorithm are stored in the database for tokenhtID. After enrollment,
a fuse is blown to disable the one-time interface. Authentication is very similar except for theGen
operation. Note that the responser’ n must match the stored responsern in order for the authentica-
tion to succeed, i.e., error-correction eliminates the need for the ‘fuzzy matching’ component in
Protocol 1. Otherwise, the benefits and drawbacks are similar as those described for Protocol 1
with additional drawbacks related to the need for a cryptographic hash function and the increased
computational and energy cost associated withRep.
6.3  Protocol 3: Reverse Fuzzy Extractor

Maes et al. proposes a protocol based onreversed secure sketchingthat is designed to address
authentication in resource-constrained environments [19][123]. Their protocol uses the syndrome
technique proposed in [26] (see Section 3.3) for error correction but reverses the roles of the
prover and verifier, i.e., the prover (resource-constrained token) performs the lighter-weightGen
procedure while the verifier (server) performs the compute-intensiveRepprocedure. The same
process is carried out during enrollment and regeneration. Given that the sketching procedure pro-
duces a unique bitstring with bits that are different every time it is executed on the token, in order
to authenticate, the verifier is required tocorrect the original bitstringstored during enrollment to
match each of the regenerated bitstrings. In order to accomplish this, the helper data produced by
each run ofGen on the token is transmitted to the verifier.

The mutual authentication protocol proposed in [19] is graphically illustrated in Fig. 14. Sim-
ilar to previous protocols, enrollment involves the verifier generating challenges and storing the
PUF responsesr i for hti in a secure database (not shown). In the proposed protocol,only a single

Fig. 13. Controlled PUF [16][121].
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CRPis stored for each token, which is indexed byID i in the server’s database, and then this inter-
face is permanently disabled on the token. The authentication process begins with the token on the
left generating the bitstring response again asr’ i and then multiplying it by the parity-check

matrix HT of the syndrome-based linear block code to produce the helper datahdi. A random
number generator is used to produce noncen1 that is exchanged with the verifier as a mechanism
to prevent replay attacks (see Section 4 for expository on traditional challenge-response authenti-
cation). The tupleID i, hdi andn1 is transmitted over an unsecured channel to the verifier,

The verifier looks up the response bitstringr i generated by this token during enrollment in the
secure database and invokes theReproutine of the secure sketch error correction algorithm withr i

and the transmitted helper datahdi. If the PUF responser’ i and corresponding helper datahdi are
within the error-correcting capabilities of the secure sketch algorithm, the outputr” i of Repwill
match ther’ i generated by the token. A second nonce,n2, is generated to enable secure mutual
authentication (see Section 4) and a securehashis applied to theID i, helper datahdi, the regener-
ated response bitstringr” i and both noncesn1 andn2 to producem1. The hashm1 conveys to the
token that the server has knowledge of the responser’ i, which allows the token to authenticate the
server. This verification is carried out by the token by hashing the same values, except using its
own version ofr’ i and comparing the output to the transmittedm1. If a match occurs, thenr’ i must
be equal tor” i, and the tokenaccepts, otherwise authentication of the server fails. The token then
demonstrates knowledge ofr’ i by hashing it with itsID i and noncen2 and transmitting the result
m2 to the server. The server then authenticates the token using a similar process by comparing its
result withm2.

The helper data in this ‘reverse’ implementation of the fuzzy extractor changes from one run
of the protocol to the next, based on the number and position of the bits that flip during each
regeneration. The main drawbacks of the proposed scheme are that it is not privacy-preserving

Fig. 14. “Reversed secure sketching” mutual authentication protocol proposed in [26].
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and assumes that the helper data does not leak any information about the responser i. Moreover,
since most PUFs can reliably reproduce more than 80% of the secret bitstring, any correlations
that occur in the helper data bitstrings introduced by these ‘constant’ secret bitstring components
may reveal information that the adversary can use to increase the effectiveness of reverse-engi-
neering attacks.
6.4  Protocol 4: Slender PUF Protocol

Majzoobi et al. proposed an authentication protocol [137] based on substring matching [112],
again designed to address authentication in resource-constrained environments. Their protocol
eliminates all types of cryptographic functions on the token, including hashing and error correc-
tion functions. The proposed protocol is demonstrated using a 4-XOR arbiter PUF, a variant of the
arbiter PUF shown in Fig. 3, in which the output of 4 copies of the arbiter PUF are XOR’ed as a
mechanism to increase its model-building resistance. The enrollment process involves building
compact models of the arbiter PUFs using a one-time interface that allows access to the individual
outputs and provides control over the input challenges. A compact model is a mathematical repre-
sentation similar to what an adversary would construct when model-building the PUF.

The benefit of storing the compact models is the ability to estimate the response of the 4-XOR
arbiter PUF for any arbitrary challenge. This capability is required in the proposed protocol
because the challenge is composed of two parts, one part generated by the prover and one part
generated by the verifier (using TRNGs). This ‘on-the-fly’ random challenge generation requires
the verifier to generate a ‘simulated’ PUF response from the compact model that closely matches
that produced by the actual PUF on the token. The prover’s contribution to the concatenated chal-
lenge makes it impossible for an adversary to carry out a chosen-challenge attack. A third feature
of the protocol relates to the manner in which authentication is performed. A seeded LFSR is used
to generate a sequence of challenges that are applied to the 4-XOR PUF to produce a response bit-
string. The prover then selects a fixed length substring randomly from PUF-generated response
bitstring and transmits it to the verifier. The verifier authenticates the token if it can find the sub-
string (within a predefined noise tolerance) in the corresponding estimate of the response bitstring
generated from the compact model. Revealing only part of the response bitstring adds again to the
difficulty of model-building.

The protocol is graphically portrayed in Fig. 15. The compact model is built during enroll-
ment in a secure environment using a sequence of CRPs applied to the individual arbiter PUFs.
The access mechanism is then disabled by blowing fuses. Authentication begins with the genera-
tion of challengescV andcP by the verifier and prover, resp., which are concatenated and applied
to the PUF to produce responser. A random indexi is then generated that serves as the starting
index into bitstringr. A substring ofr is extracted asr’ , and is returned to the verifier along with
challengecP. The verifier uses the compact model to generate an estimate of the PUF responser”
using the same concatenated challenge (cV | cP). Authentication succeeds if the verifier can locate
the substringr’  as a substring inr”  within an error tolerance ofε.

Although the protocol is very light weight for the token, and avoids NVM, the level of model-
to-hardware-correlation attained in the compact model must be very high and must be able to
accommodate changes introduced by TVNoise, resulting in considerable time and effort at enroll-
ment. PUFs that are easily modeled simplifies the development of the compact model, but also
represents somewhat of a contradiction to their required resilience to model-building attacks.
Also, the proposed protocol does not preserve privacy.



6.5  Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol

Aysu et al. recently proposed and implemented a PUF-based authentication protocol that pro-
vides bothprivacy and mutual authentication in resource-constrained environments [21]. They
adapt the privacy protocol proposed by [139] to work as a reverse fuzzy extractor, as described in
Section 6.3. The protocol ensures that an adversary is unable to identify or trace the tokens across
multiple mutual authentications, despite the adversary having the ability to monitor and control
communications and read out the contents of the token’s non-volatile memory (NVM). The proto-
col assumes circuit-level countermeasures are implemented in the tokens to guard against other
types of physical attacks, including fault injection and differential power analysis.

The protocol is designed to minimize the functional operations that are to be carried out by the
token, but given the privacy goal, the protocol requires the token to implement 4 cryptographic
primitives including theGenoperation of the fuzzy extractor algorithm, a symmetric encryption
algorithmEnc, a random number generatorTRNGand a pseudo-random functionPRF. Moreover,
the token makes use of an NVM to store information between authentications, in particular, a
secret keysk1 and a PUF challengec1. However, the protocol is designed such that leakage of this
stored information cannot be used by an adversary to impersonate the token. In particular, the
stored challenge is used to allow the token to reproduce a specific PUF response while the secret
key is used to encrypt helper data produced by the fuzzy extractor’sGenoperation on the token.
The encryption of the helper data prevents the adversary from reverse engineering the helper data
in an attempt to learn the PUF response to the NVM-stored challengec1.

Another key feature of the protocol, in support of the privacy objective, is the implementation
of a key update mechanism. After each successful authentication, the key stored on the token and

Fig. 15. Slender PUF authentication protocol proposed in [137].
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in the server’s database is updated by applying a new challenge to the PUF and obtaining its
response, thereby creating achainedsequence of keys across successive authentications. A copy
of the state information to be replaced is maintained as a countermeasure to de-synchronization,
and subsequent denial-of-service, attacks.

Fig. 16. Part 1: Mutual, Privacy-preserving authentication protocol proposed in [21][139].
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A graphical illustration of the protocol operation is shown in Fig. 16. The Enrollment opera-
tion is carried out in a secure environment. The server generates a secret keysk1 and a challenge
c1 that is stored in NVM on the token. The token generates a responser1 from the PUF and pro-
vides it to the server through a one-time interface. The server stores two copies of thesk1 andr1 in
its secure database. The combination ofsk1 andr1 is used to derive an ID for the token, as dis-
cussed below.

The server begins the authentication process by generating a noncen1, which is transmitted to
the token. The token’s challengec1 is read from the NVM and used to generate a noisy PUF
responser’ 1. TheGencomponent of the fuzzy extractor producesz’1 (an entropy distilled version
of r’ 1) and helper datahd. Helper datahd is encrypted using the keysk1 from the NVM to produce
hdenc. The token then generates a noncen2. The PUF-generated keyz’1 and the concatenated non-
ces(n1||n2) are used as input to a pseudo-random functionPRF to produce a set of unique values
t1 throught5 that are used as an ID, keys and challenges in the remaining steps of the protocol. A
second responser2 is obtained from the PUF using a new randomly generated challengec2, which
will serve as thechainedkey for the next authentication (assuming this one succeeds). It is XOR-
encrypted asr2_encfor secure transmission to the server.PRF’ is then used to compute a MACm
using t3 as the key, over the concatenated, encrypted helper data and new key (hdenc||r2_enc) to
allow the server to check the integrity ofhdencandr2_enc. The encrypted valueshdencandr2_enc

plusn2, t1 andmare transmitted to the server. The noncen2, as usual, introduces ‘freshness’ in the
exchange, preventing replay attacks. The IDt1 will be the target of a search in the server database
during the server side execution of the protocol.

The server begins an exhaustive search of the database, carrying out the following operations
for each entry in the DB: 1) decrypt helper datahdencusing the current DB-storedski to produce
hd” , 2) constructz” using the fuzzy extractor’sRepprocedure and helper datahd” , 3) computet’1
throught’5 from PRF(z” , n1||n2) and 4) compare token generated valuet1 with t’1. If a match is
found, then the server verifies that the token’s MACm matches thePRF’(t’3, henc||r2_enc) com-
puted by the server. If they match, then the token’s PUF-generated keyr2 is recovered using
(r2_encXOR t’2), and the database is updated by replacing (sk1, r1, skold, rold) with (t’5, r2, sk1, r1).
If the exhaustive search fails, then the entire process is repeated using (skoldi, roldi). If both
searches fail, the server generates a randomt’4 (which guarantees failure when the token authenti-
cates). Otherwise, thet’4 produced from a match during the first or second search is transmitted to
the token. The token compares itst4 with the receivedt’4. If they match, the token updates its
NVM replacing (sk1, c1) with (t5, c2). Otherwise, the old values are retained.

Note that the old values are needed for de-synchronization attacks where the adversary pre-
vents the last step, i.e., the proper transmission oft’4 from the server to the token. In such cases,
the server has authenticated the token and has committed the update to the DB with (t’5, r2, sk1,
r1) but the token fails to authenticate the server, so the token retains its old NVM values (sk1, c1).
On a subsequent authentication, the first search process fails to find thet’5, r2 components but the
second search will succeed in findingsk1, r1. This allows the token and server to re-synchronize.

The encryption of the helper datahd, as mentioned, prevents the adversary from repeatedly
attempting authentication to obtain multiple copies of the helper data, and then using them to



reverse engineer the PUF’s secret. Note that encryption does not prevent the adversary from
manipulating the helper data, and carrying out denial-of-service attacks, so the MAC operation is
required to attain this security goal.

The weakest part of the algorithm is the very limited amount of PUF response information
maintained by the server, i.e, effectively only one PUF response. Although the authors claim that
circuit countermeasures can be used to prevent the PUF response from being extracted from the
token using, e.g., differential power analysis, the entire security of the protocol is based on this
premise. If, for example, the token’sz’1 is extracted, a clone that impersonates the token can be
easily constructed (one that does not even need to embed a PUF), and once it authenticates suc-
cessfully the first time, the authentic token is barred forever from succeeding (denial-of-service).
The very limited amount of PUF response information stored on the server, although attractive
from a storage overhead point-of-view, makes it vulnerable to this type of de-synchronization
attack. Other issues relate to the requirement for NVM and the not-so-light-weight encryption
function, which work against the low-cost, resource-constrained objective.
6.6  Protocol 6: The HELP Authentication Protocol

Similar to Protocol 5, the HELP authentication protocol is privacy-preserving and mutual, tar-
gets resource-constrained tokens and makes the same assumptions regarding adversarial threats to
the token and server [117]. However, HELP does not make use of NVM, does not implement pri-
vacy using achainedkey-update mechanism and requires no cryptographic operation to be imple-
mented on the token. The protocol is unique among those discussed in that it stores PUFsoft
informationon the server instead of bitstrings or PUF models. Soft information refers to digitized
path delay values, which from Section 5.4.2, can each be represented as an 14-bit value, depend-
ing on the digital clock manager parameters. When combined with the set of user-defined param-
eters described in Section 5.4, includingModulus, Margin, µ andRng, two 11-bit LFSR Seedsand
a Path-Selection-Mask, this feature, i.e., storing path delay information, provides some distinct
advantages over storing response bitstrings, as highlighted below.

The enrollment operation is graphically illustrated along the top of Fig. 17. The authentication
protocol uses a common set of challenges{ck} for all tokens as a mechanism to preserve privacy
while establishing the token’s identity on the server during theID Phaseof in-field authentication.
The challenges{ck} are transmitted to the token in a secure environment during enrollment and
applied as inputs to the PUF. A set of PN are produced and returned to the server as {PNj}. The
server generates an internal identifierID i for each token usingServerGenIDand stores the set
{ PNj} under ID i in the secure database.

A similar process is carried out during theAuthen Phaseof enrollment except that the chal-
lenges are selected from a large set usingSelectChallenges(IDi) for each token among those that
have been generated using random vectors or automatic test pattern generation (ATPG). The
server ensures that the selected set overlaps with those chosen for other tokens, but with no more
than 50% overlapping with any one token. This policy prevents the challenges used in theAuthen
Phaseduring in-field authentication from being used to track the token (explained further below).
The set of PN {PNy} generated in theAuthen Phaseare also stored, along with the challenge vec-
tors, in the secure database underID i. The number of structural paths for the data path component
of SHA-3 is larger than 860,000, with more than 80% testable, so the set of challenge vectors
available is large. Note that the task of generating 2-vector tests for all paths is likely to be compu-
tationally infeasible for even moderately sized functional units. However, it is feasible and practi-
cal to use random vectors and ATPG to target random subsets of paths for the enrollment



requirements.
The cardinality of {PNy} is approx. twice that of {PNj} at 8192 but both are relatively small

because the parameters, particularly thePath-Selection-Mask, allow an exponential number of
different combinations to be constructed over successive authentications. The example from Sec-
tion 5.4.7 uses thePath-Selection-Maskto select 50 PN per challenge. In this case, the number of
challenges that need to be applied in theID andAuthen Phasesduring enrollment is approx. 80
and 160, resp.

The protocol for token authentication is shown in the bottom portion of Fig. 17. The token ini-
tiates the process by generating and sending a noncen1 to the server. The server generates a nonce

Fig. 17. The HELP Authentication Protocol.
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n2, retrieves the fixed set of challenges {ck} and transfersn2 and the challenges to the token. Both
the token and server compute (n1 XOR n2) to producen3. This strategy prevents achosen-mes-
sageattack by adversaries, where the ‘message’ refers the HELP parameters. The XOR’ed nonce
n3 is used as input to aSelParfunction to derive theMod, S, µ, Rng, Mar parameters. TheSelPar
function selects bit fields inn3 for use in a lookup-table operation topseudo-randomlyconstrain
theModandMar parameters to a specific set of values (as given in Fig. 11). Other bit fields are
used to defineµ andRng, constrained, in this case, to a range of fixed-point values. The sameSel-
Par operation is carried out on the server. This component of the protocol is similar to the strategy
proposed for the Slender PUF Protocol described in Section 6.4 [137] but is used there for chal-
lenge selection.

The set {ck} of challenges are applied to the PUF to generate the set {PN’j}. The difference,
TVComp and modulus operations shown on the right side of Fig. 4 are applied to {PN’j} to gener-
ate the set {MPNDc’j}. Bitstring generation using the single helper data scheme,BitGenS, is then
performed as described in Section 5.4.4 using theMar parameter.BitGenSproduces a strong bit-
stringSBS’ and helper data stringhd’, which are both transmitted to the server.

A search process is carried out on the server, where the {PNj} i data for each tokeni in the
database is processed in a similar fashion. However, bitstring generation is carried out using the
dual helper data scheme (BitGenD). BitGenDreturns anSBScomputed using the server data and a
modified bitstringSBS”, which is a reduced-in-size version of the token’sSBS’(see section 5.4.4
for details). The search process terminates when the number of bits that differ inSBSandSBS” is
less than a toleranceε (which may be zero) or the database is exhausted. In the former case, the
token identifierID i is passed to theAuthen Phase. Otherwise, authentication terminates with fail-
ure at the end of theID Phase.

Note that token privacy is preserved in theID Phasebecause, with high probability, the trans-
mitted informationSBS’andhd’ will be different from one run of the protocol to the next, given
the diversity of the parameter space provided byMod, S, µ, Rng, Mar andPath-Select-Mask. Also
note that this is a compute-intensive operation for large databases because the difference,
TVComp, modulus and BitGenD operations must be applied to each server data set. However, the
search operation can be carried out in parallel on multiple CPUs given the independence of the
operations. Trial run experiments without any type of explicit parallelism yields runtimes of 200
us per database entry using a database of 10,000 elements when evaluated on an Intel i7-4702HQ
CPU @ 2.2 GHz running Linux.

TheAuthen Phaseis not shown but is identical to theID Phasewith the following exceptions.
The subset of 80 token-specific challenges {c1} are randomly selected from the larger set of 160
in { cx} that were applied during enrollment. As indicated earlier, the 160 challenges selected for a
token overlap with those selected for other tokens, making it impossible for adversaries to track
specific tokens across multiple authentications. A second difference is that theAuthenphase rep-
resents themutual authenticationstep, in which the server is authenticated to the token. There-
fore, the server generates theSBS’andhd’ using the Single Helper Data scheme, which are then
transmitted to the token, and the token implements the Dual Helper Data scheme and fuzzy match

operations (opposite to that shown in Fig. 17)1. This is possible in a resource-constrained environ-

1. If needed, an optional third phase can be implemented to carry out a second token
authentication but using the{cx} challenges instead of theID Phase {ck} challenges.



ment because of the symmetry in energy requirements of the proposed error avoidance schemes,
i.e., the work performed by the Single Helper Data and Dual Helper Data schemes are nearly the
same.

7.  PUF-based Authentication for SoC
System-on-chip (SoC) devices continue to proliferate as core components in IoT applications.

Although not considered a resource-constrained device, the heterogeneous multi-core, multi-tech-
nology characteristics of SoCs, many of which integrate third party IP, make them easy targets for
sabotage, reverse engineering, substitution and cloning. The threat is exacerbated when the SoC
integrates cryptographic IP blocks. PUF-based authentication mechanisms can be used to detect
manipulation and substitution in the supply-chain and later as installed components in fielded sys-
tems.

Applications of PUF-based authentication in SoC is expanding. Recent work focuses on pre-
venting scan chain attacks, carrying out entity authentication and providing authentication of bit-
streams for FPGAs. For example, the authors of [140] propose a secure test wrapper which allows
testing of multiple IP blocks using PUF-based authentication as a mechanism to improve the
security of SoCs that embed IP cores. A low-cost PUF-based authentication architecture designed
to secure code execution in IoT SoCs is proposed in [141] The proposed architecture extracts a
PUF-based key from the processor’s cache to address threats against code and data authenticity
and integrity. A scan chain PUF is proposed in [142] for authenticating SoCs as part of an Infra-
structure IP designed to provide multiple security functions. An overview of traditional and mod-
ern-day bitstream authentication (and encryption) in FPGAs is provided in [143].

8.  Conclusion
Authentication protocols, although proposed initially for digital systems over 40 years ago,

continue to evolve as new cryptographic functions, such as the Physical Unclonable Function,
become available as primitives for enabling physical layer security properties including secure
key generation and storage. Adversarial attack surfaces are widening with the proliferation of
low-cost and embedded devices for home automation, RFID, smart cards/cars/grids, embedded
medical devices, and other types of Internet-of-Things applications. Adversarial attack mecha-
nisms, including physical-layer information extraction techniques, model building and sophisti-
cated network communication tracking algorithms, exacerbate the task of implementing secure
unilateral, mutual and privacy preserving authentication protocols. The introduction of PUFs as
primitives can be leveraged to serve as significant countermeasures to adversarial attack mecha-
nisms, particularly for authentication in resource-constrained environments.

This chapter covered both traditional and emerging PUF-based authentication protocols. The
primary function of a PUF is to securely generate and store secrets, that can be converted, at any
instance in time, into bitstrings for direct use in authentication functions and/or as keys for hash-
ing and encryption functions within authentication protocols. The source of a PUF’s entropy is
based primarily on within-die variations that occur among circuit components of an integrated cir-
cuit. Within-die variations are uncontrollable and unique to each copy of the IC, which allows the
PUF to produce unclonable and instance-specific bitstrings.

The integration of PUFs into commercial products is not yet wide-spread. However, published
work on PUF constructions and their use in security and trust protocols is growing day-by-day. A
wide variety of PUF primitives exist, each with distinctive characteristics related to the number of
generated bits (weak vs. strong), robustness to on-chip noise sources, and the statistical quality of
the generated bitstrings, e.g., randomness and uniqueness. Existing work shows how PUFs can



address shortcoming and provide new capabilities to traditional software-based approaches to
authentication but, as discussed in [121][138], care must be taken to properly characterize the
security properties of specific PUF constructions in order to ensure functional and/or practical
implementations.
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