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1. Introduction
The internet-of-everything has created vast opportunities for the integration of microelectronic

systems into nearly every aspect of our lives, but it has also expanded the attack surface of such
systems, providing an ever-widening opportunity for malicious adversaries to steal private infor-
mation, destroy property or worse, subvert systems in a manner that results in the loss of human
life [1-15]. These problems are becoming particularly acute with the proliferation of mobile com-
puting and the debut of new information-sharing and control systems such as the health informa-
tion exchange, embedded medical devices, smart grid, home automation, smart cars, smart cards,
RFID and sensor networks. Stronger, physical-layer security and trust primitives are needed for
modern electronic systems to counter the advantage made available to adversaries by the increas-
ing proliferation, diversity and complexity of software and hardware.

Physical-layer refers to components that are rooted in the hardware, and that provide support
for secure execution of algorithms, and for secure generation and storage of secrets (keys). A
physical unclonable functiofPUF) is a physical-layer primitive that is designed to derive entropy
(randomness) from variations in the structural and electrical characteristics of integrated circuits
(ICs) [16]. Similar to DNA profiles among humans, no two ICs are (or can intentionally be manu-
factured to be) identical. PUFs measure and digitize small ‘analog’ differences among identically
designed ICs to generate unique and unclonable bitstrings. The random and persistent nature of
the entropy source within ICs address important physical security requirements that relate to the
generation and storage of keys. Most PUF designs use standard IC manufacturing processes,
which benefits low-cost applications by eliminating the need for costly non-volatile memory
(NVM). PUFs can be integrated into any type of system, including system-on-a-chip (SoC), an
application specific integrated circuit (ASIC) or field programmable gate array (FPGA).

This chapter focuses on the design of authentication protocols which utilize physical-layer
cryptographic primitives such as the PUF, and describes the benefits (and drawbacks) they offer
over traditional software-based authentication protocols. PUF-based authentication protocols are
less than 15 years old and many have not yet been fully vetted. Therefore, the development of low
cost, secure protocols, and proofs of their attack resilience is still very much a moving target. We
provide a high-level description of algorithmic security primitives and authentication protocols,
and then present a snapshot of the current state-of-the-art, fully acknowledging that the latter is
rapidly evolving and still considered an open research problem by the hardware security and trust
community.

2. Information Security and Cryptography
The terminformation security refers to vast array of mechanisms, protocols and algorithms

which are designed to protect information from unauthorized access, modification and destruction
[17]. Information security has four primary objectives including confidentiality, data integrity,
authentication and non-repudiation [18onfidentialityrefers to maintaining privacy or secrecy

of information and is traditionally ensured using encryption technigDaga integrityrelates to a
property of the data, that it has not been altered by an unauthorized party, and is typically imple-
mented using secure hashing schemeghentications a process that confirms the identity of an
entity or the original source of data using corroborative evidence, and can be carried out using



modification detection codes (MDCs), message authentication codes (MACs) and digital signa-
tures.Non-repudiatiorrefers to a process that associates an entity with a commitment or action,
thereby preventing the entity from claiming otherwise, and is traditionally ensured using digital
signature schemes.

The primary goal otryptography is to provide a theoretical basis and practical specifications
for techniques that meet these information security goals. A wide variety of cryptographic primi-
tives have been developed to provide information security. Menezes et al. [18] propose a taxon-
omy which partitions cryptographic primitives into three basic categories, nannatgyed
primitives symmetric-key primitiveandpublic-key primitivesUnkeyed primitives include cryp-
tographic hash functions, one-way permutations and random sequencekeyduprimitives
include a wide variety of symmetric and public-key ciphers, MACs (which are keyed hash func-
tions), signatures and pseudo-random number generators (those relevant to authentication are
described in the next section). Each primitive can be evaluated according to a set of criteria such
as the level of security they provide as well as the performance and overhead associated with a
particular implementation of the primitive.

Authentication protocols are implemented as an exchange of messages between two or more
parties, usually over an unsecured network. Authentication utilizes cryptographic primitives as
countermeasures to adversarial manipulation of the transmitted messages and as mechanisms to
protect the interfaces of the communicating entities from information leakage and tracking. PUFs
provide novel ways of designing protocols but cannot be used by themselves to implement all of
the security requirements of the protocol. Sections 3 and 4 provide an overview of traditional
security-related primitives commonly used in authentication protocols, as well as algorithms and
evaluation metrics that are required when using PUFs for authentication. Once the groundwork of
authentication has been established, we then describe several PUF implementations and PUF-
based authentication protocols in Sections 5 and 6.

3. Cryptographic Primitives for Authentication Protocols
A cryptographic protocol is a distributed algorithm defined by a sequence of steps precisely

specifying the actions required of two or more entities to achieve a specific security objective
[18]. All protocols make use of cryptographic primitives that provide specific security properties.
In this section, we briefly describe the primitives most commonly used in authentication proto-
cols.
3.1 Random Number Generation

Random numbers are important in many cryptographic protocols, e.g., session keys, nonces
for authentication, randomized procedures, etc. Random numbers must be selected uniformly
from a distribution, thereby ensuring that all possible values are equally likely, as a means of max-
imizing the difficulty of algorithmic and brute force attacks carried out by adversaries against the
protocol. Requests that are common in cryptographic protocols include ‘select an element at ran-
dom from the sequence {1, 2, n}’ or ‘generate a random string of symbols of lengthover the
alphabet” of n symbols’.Uniformly refers to the probability that a given symbol is selected and

by definition is equal to 1/ for an alphabet ofi symbols, and ™ for a string of symbols of
lengthm.

Traditionally, deriving random numbers from physical sources was difficult and costly, spur-
ring the development of software-based alternatives such as techniques bgmssiidarandom
sequenceandseedparameters (PRNGs) [19]. NIST recommends several such cryptographically
secure PRNGs, each based on different types of cryptographic primitives such as hash functions,



MACs and block ciphers [20]. Although most are considered cryptographically secure, they each

depend on a random seed with high entropy.eftropy accumulatocan be used to derive the

seed from a ‘non-ideal’ physical source of randomness, whereby the input bitstream produced by

the non-ideal source is processed by the entropy accumulator mtdi& pool of high entropy.

The entropy accumulator can be a cryptographic hash function [19]. Alternatively, the physical-

layer nature of PUFs make them cost-effective and well suited as the physical source of random-

ness. Recent work shows that appropriate post-processing of PUF responses allow them to be

used directly as TRNGs, i.e., without the need of PRNGs [21].

3.2 Cryptographic Hash Functions
As mentioned above, secure hash functions are used to realize a fundamental information

security property, namely that related to theegrity of data Compression is a defining character-

istic of many-to-one hash functions, whereby binary strings of arbitrary length are mapped to

strings of fixed lengtm. Then-bit hash output is a compact representation of the input string. The

many-to-one property implies thaollisionsare possible, a condition in which two distinct input
strings map to the same ha€ryptographichash functions (referred to as hash functions subse-
guently) add important security-related properties to traditional hash functions and have the fol-

lowing characteristics [22]:

» Itis easyto compute the hash for any input string.

» It is computationally infeasible to 1) generate the input string from its hash, 2) modify the
input string without changing the hash and 3) find two different input strings which produce
the same hash.

More formally, the security properties of a hash functiowith input messagen and outputy
= h(m) are defined as follows:

* preimage resistancésiven any hasly, it is computationally infeasible to find an such that
h(m) =vy.

» 2nd-preimage resistanc&iven an inpuim, it is computationally infeasible to find a different
inputm’ such thah(m)=h(m’)

» collision resistancelt is computationally infeasible to find any two distinct inpatsandm’
such thab(m)=h(m’).

Even stronger security properties are possible, for example it should be infeasible to find two
inputs that producsimilar hashes. Ideally, the hash function should behave like a random func-
tion, where each hash is equally probably, i.e., uniformly distributed.

There are two fundamental classes of hash functiankeyed hash functions and keyed
hash functions. Keyless hash functions can be used to creatalification detection codes
(MDCs), whose main purpose is to confirm data integrity. There are two types of Mib€svay
hash functiongOWHFs) which make it difficult to find an input string that hashes to specific
hash value, andollision resistant hash function€RHFs), which makes it difficult to find two
input strings that map to the same hash. OWHFs are preimage and 2nd-preimage resistant, and are
consideredveak one-way hash functions, while CRHFs typically have all three properties and are
calledstrong one-way hash functions.

Keyed hash functions provide both message authentication and data integrity and are called
message authentication cod@4ACs) when used in symmetric-encryption protocols, digital
signatureswhen used in asymmetric encryption protocols. Both schemes hash the message and
thensignit with a key. The receiver authenticates by applying the MAC or digital signature algo-
rithm on the received message and verifies that the received hash matches the locally computed
value. Hashing compresses the message and makes this data integrity check more efficient.
Although outside the scope of this expository, the chip area and computational complexity of



cryptographic hash functions is much larger than that found in non-cryptographic hash functions
[18, Ch. 9].

Similar to authentication protocols, secure hash algorithms continue to evolve, driving peri-
odic changes and additions to the public standards [23-24]. The deomre hash algorithm
(SHA) is used in reference to a set of public standards maintained by the National Institute of
Standards and Technology (NIST). In particular, SHA-3 refers to subset of the cryptographic
primitive family Keccak a standard released in August of 2015 that is designed as an alternative
to the SHA-2 family of secure hash functions [25].

3.3 Secure Sketches and Fuzzy Extractors

The introduction of PUFs as a primitive in authentication (and encryption) protocols made it
necessary to enligtrror-correcting and randomness extraction mechanisms into the suite of
cryptographic primitives. The analog characteristics of the entropy source, as well as the embed-
ded analog-to-digital instrumentation components of a PUF instantiation, combined with environ-
mental (temperature, supply voltage), coupling and power supply noise sources make it difficult
or impossible to precisely reproduce the bitstrings generated by PUFs from one run of the proto-
col to the next. When PUF bitstrings are used as input to traditional cryptographic primitives, such
as hash functions or encryption algorithms, even a single bit-flip error in the bitstring causes a cat-
astrophic failure in the protocol. Additionally, PUF-generated bitstrings, in many cases, are not
ideal from the randomness perspective. Systematic bias effects and correlations inherent to the
structure of the entropy source make it difficult for the PUF to produce a bitstring uniformly from
the underlying distribution, i.e., such that all bitstrings of a given length are equally likely. Secure
sketches, strong extractors, and fuzzy extractors are functions designed to deal with these defi-
ciencies.

There are many types of error-correction algorithms that have been developed to fix errors that
occur in bitstrings. The most popular algorithms used for PUFs problelper data as a supple-
mentary source of information during the initial bitstring generati@er) process, which is later
used to fix bit-flip errors during reproductioRép) The helper data is typically transmitted and
stored openly, in g@ublic non-secure location, and therefore, it must reveal as little as possible
about the bitstring it is designed to error correct.

The Sketclcomponent of 8ecure sketch takes an inpuy and returns a helper data bitstring
[26-27]. TheRecovercomponent takes a ‘noisy’ inpyt and a helper bitstringy and returng/”,
which is guaranteed to match the original bitstrings long as the number of bit flip errors is less
thant (t is a parameter that can be selected based on the level of error correction that is needed).
The algorithm is characterized bysacurity propertythat guarantees thatyfis selected from a
distribution withmin-entropy m, then an adversary can reverse-engiryeieom mwith probabil-

ity no greater than®" (m’ is defined below). Entropy is a measure of the disorder or randomness
in a closed system, while min-entropy refers to the worst-case behavior of a random variable and
is defined by Eq. 1. It is the negative Jag the event with maximum probability.

Dodis et al. [26-27] proposed two algorithms for a secure sketch, both based on binary error-
correcting linear block codes. A linear block code is characterized with three parameters given as

[n, k, t], which indicate that there ar2odewords of lengtim and each codeword is separated
from all others by at leastt-1 bits. The last parameter specifies the error correcting capability of
the linear block code, in particular, that ug tmts can be corrected.

The code-offset construction is the simpler of the two linear block codes. Bhketch(y)ro-
cedure samples a uniform, random codewo(dhich is independent of) and produces an-bit
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The entropy of a random variabXewith
HOO == ) pilogy(p)) probabiitiesp;, ...,p,

=1
HX) = (2)|092EbD Whenp; = 1h (equal probabilities)
H,(X) = min(—IogZpi) = —Iogz(max( q)) Min-entropy Eq. 1.

helper data bitstringv using Eq. 2 [19]. The bitstring/ represents the binary offset betweeand
C.

w=ylc Eq. 2.

Recover(y’, wcomputes a noisy codewoatl using Eq. 3 and then applies an error-correcting
procedure to correct asc” = Correct(c’).

c =y Qdw = ¢ =(yOy)Oc Eq. 3.
The error-corrected value of is computed as given by Eq. 4. If the number of bits that are
y' =wdc' =yO(cOc) Eq. 4.

different betweert andc’ <t, wheret represents the error-correcting capability of the code, then

the algorithm guarantegs=y”. Also, w discloses at most bits ofy, of whichk are independent

of y (with k less than or equal t0). Therefore, theemainingmin-entropy ism - (n - k)(specified

asm’ above), wherén-k) represents the min-entropy that is lost by exposing the adversary.
The second algorithm proposed in [26-27] is referred to asyindrome construction. The

Sketch(y)yrocedure produces gn-k)-bit helper data bitstring using the operation specified by

Eq. 5, whereH" is a parity-check matrix dimensioned(ask) x n.

W= ye H Eq. 5.
TheRecoveprocedure computes a syndrosgsing Eq. 6.
s=yeH' Ow => s=(yOy)eH' Eq. 6.

Error correction is carried out by finding a unique error wersluch that thdnhamming weight
(the number of ‘1's) in bitstringe is less than or equal tb(the error-correcting capability of the
code). Also, the error worelsatisfies Eq. 7.

S = ee HT Eq.7.

In both the code-offset and syndrome techniquesRi&oveprocedure is more computation-
ally complex than the&sketchprocedure. As discussed below, the first PUF-based authentication
protocols implemented thRecoverprocedure on the resource-constrained hardware token. Sub-
sequent work proposesraverse fuzzy extractor, which implementsSketchon the hardware
token andRecoveon the resource-rich server, making the protocol more cost-effective and attrac-
tive for this type of application environment [28].

Similar to error-correction, there is a broad range of techniques for constructiagdam-
ness extractor. Section 3.1 described the requirements for random number generation, and practi-
cal approaches for extracting randomness from non-ideal physical sources, e.g., those based on
the use okeeded cryptographic PRNGReference [19], Section 6.2.2 provides a survey of tech-
niques proposed for extracting randomness.



Fuzzy extractors combine a secure sketch with a randomness extractor as shown in Fig. 1
(adapted from [19]). A PUF-based authentication protocol, withnduelware tokene.g., smart
card, shown on the left and tlsecure servere.g., bank, shown on the right is also shown to illus-
trate one possible usage scenario. Bitetchas noted above, takes an inpvhich, e.g., might
be a PUF response to a server-generated challgrageinput and produces helper datélabeled
1stin the figure). TheExtractor takes bothr and a random number (seed)and produces an
entropy distilledversionz, which can be stored astaple(c, z, w, r) in a secure database (DB) on
the server. This component of the fuzzy extractor is called Gener@tnor
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Fig. 1. Fuzzy Extractor.

Authentication in the field begins by selecting a tumez( w, n) from the DB and transmitting
the challenge, helper datav and the seed to the hardware token. The PUF is challenged a sec-
ond time with challenge and produces a ‘noisy’ response (labeled2nd in the figure). The
Reproduce oRepprocess of the fuzzy extractor uses the Recover procedure of the secure sketch
to error correct’ using helper datav. The outputr” of Recover and the seedare used by the
Extractor to generate’. As long as the number of bit flip errors im is less thart (the chosen
error correction parameter), theé produced by the token’s Extractor will match the server-DB
and authentication succeeds. Note that the error correctestablishes a shared secret between
the server and token, which can alternatively be used as input to traditional cryptographic primi-
tives such as hash and block cipher functions (as opposed to being transmitted to the server as
shown in the figure).
3.4 Statistical Metrics

PUF generated bitstrings are often evaluated using techniques designed to measure the statisti-
cal quality of the bitstrings, which include characteristics such as uniqueness, reproducibility and
randomnesdJniquenessneasures how different the bitstrings are from one device to another in
the population. The probability mass function of the binomial distribution is the appropriate statis-
tical characterization function for bitstrings and is given by Eq. 8, with mean and variance given
by Eq. 9 and 10, resp. [29]. Eg. 8 gives the probability of getting exacslyccesses in trials.

n! k n—k
; = — — Eqg. 8.
f(kin ) = e P (L-p) q
ubinomial = np Eq. 9.
Poinomial = NP(1—p) Eq. 10.



Assuming the probability of a ‘1’ in a bitstring of sizeproduced by a PUF ig = 0.5, thenuyine.-
mial INdicates that half of the bits will be ‘1" on average. The same characteristic holds across bit-

strings from different devices if the probability of a ‘1’ is 0.5 for any given bit position. It follows
then that the average number of bits that are different from one bitstring to another, in this best
case scenario, is 50%. The metric used to measure uniqueriasariship hamming distance
(HDjyer)- HDjnter counts the number of bits that are different. In a typical PUF application, the

count is computed over all possible pairings of bitstrings produced by different devices in the pop-
ulation and then divided by the total number of bits and multiplied by 100 to yield a percentage.
Note that the set of bits that differ between any two arbitrary bitstrings necessarily are distinct
from one pairing to another.

Reproducibilitymeasures the PUFs ability to regenerate its bitstring(s) over time and under
different environmental conditions. The teresrollment andregeneration are used in reference
to the bitstring generation process. Enrollment is carried out when a new bitstring is required,
while regeneration refers to the process of reproducing the same bitstring at some point later in
time. The application determines whether precise regeneration is required, e.g., encryption
requires exact replicas of the bitstring (when the bitstring is used as the key) while some authenti-
cation schemes have a built-in tolerance to allow some (small) fractibrt fip errorsto occur.
Regeneration without errors is much more challenging when the process is carried out under dif-
ferent temperatures and/or supply voltages. The metric used to measure reproducibititg-s
chip hamming distance (HDj,(,.,). Similar to HDie HDjntra COUNts the number of bits that are

different between pairings of bitstrings. For B, however, the pairings of bitstrings are com-

posed from the set of bitstrings produced by a specific device, each regenerated possibly under
different environmental conditions with respect to the enroliment conditions. Theléroorners

is used in reference to the set of environmental conditions used to test the devices€E.qn@5
+10% Vpp is a TV corner. Similar to Hien HDjntra IS Usually expressed as an average percent-

age over all devices tested in the experiment, by counting the total number of bit flip errors that
occur, dividing by the total number of bits inspected and then multiplying by 100. The ideal case
is an average HR},0f 0%, i.e. no devices produced any bit flip errors under any TV corner.

The NIST statistical test suite can be used to evaluateaheéomnes®f PUF response bit-
strings [30]. The NIST tests look fgratternsin the bitstrings that are not likely to be found at all
or above a given frequency in a ‘truly random’ bitstring. For example, long or short strings of 0’s
and 1's, or specific patterns repeated in many places in the bitstring work against randomness. The
output of the NIST statistical evaluation engine is thenber of chipshat pass thaull hypothe-
sisfor a given test, when evaluated asignificance levett (a is set to the default value of 0.01
which reflects a confidence of 99%). The null hypothesis is specified as the condition in which the
bitstring-under-test is random. Therefore, a good result is obtained when the number of bitstrings
that pass the null hypothesis is large.

The NIST test suite consists of 15 separate tests, all of which have constraints on the size of
the bitstring. The following provides an intuitive overview of what the tests measure, with details
regarding the bitstring size requirements and applied test statistics omitted (see [30]). The test is
always conducted against what is expected in a truly random sequence of similar length.

* Frequency Test: Counts the number of ‘1’ in a bitstring and assesses the closeness of the frac-
tion of ‘1’s to 0.5. All other tests assume this test is passed.

» Block Frequency Test: Same except bitstring is partitionedihtadocks. Ensures bitstring is
‘locally’ random.



* Runs Test: Analyzes the total numberrahs i.e., uninterrupted sequences of identical bits,
and tests whether the oscillation between ‘0’s and ‘1’s is too fast or too slow.

* Longest Run Test: Analyzes the longest run of ‘1's witMrbit blocks, and tests if it is con-
sistent with the length of the longest run expected in a truly random sequence.

* Rank Test: Analyzes the linear dependence among fixed length substrings in the bitstring, and
tests if thenumber of ranksi.e., number of rows that are linearly independent, of 8Mzé/1-1,
etc., match the number expected in a truly random sequence.

» Fourier Transform Test: Analyzes the peak heights in the frequency spectrum of the bitstring,
and tests if there aperiodicfeatures, i.e., repeating patterns close to each other.

* Non-overlapping and Overlapping Template Tests: Analyzes the bitstring for the number of
timespre-specifiedarget strings occur, to determine if too many occurrencesofperiodic
patterns occur.

* Universal Test: Analyzes the bitstring to determine theel of compressionthat can be
achieved without loss of information.

» Linear Complexity Test: Analyzes the bitstring to determine the length of the smallest set of
LFSRs needed to reproduce the sequence.

» Serial and Approximate Entropy Tests: Analyzes the bitstring to test the frequency of all pos-
sible 2" overlappingm-bit patterns, to determine if the number is uniform for all possible pat-
terns.

* Cumulative Sums Test: Analyzes the bitstring to determine if the cumulative sum of incre-
mentally increasing (decreasing) partial sequences is too large or too small.

* Random Excursions Test: Analyzes the total number of times that a particular state occurs in a
cumulative sum random walk.

4. Traditional, Software-Oriented Authentication
Authentication refers to the process of ‘verifying the identity of the communicating principals

to one another’ [31]. It is usually sub-divided ineotity authenticatiomndmessage (or data ori-

gin) authentication18], with the former referring to authentication in ‘real-time’ between two
parties about ready to engage in communication while the latter refers to data such as email that
may later need to be authenticated by the receiver as to the origin and time sent. Note that authen-
tication of the origin of data also addresses data integrity, i.e., whether the message has been tam-
pered with by unauthorized parties, because unauthorized changes imply the data has a new
source.

Authentication is typically carried out betweermpeover (claimant)A, e.g., a hardware token
such as a smart card, anderifier B, e.g., a secure server operated by your bank. The veBfier
either confirms oacceptghe prover’s identity as authentic or terminates without acceptance, i.e.,
rejects The information exchanged with verifiBrmust be designed to prevent reusel)yther-
wise it could impersonataA to a third partyC. Protocols should guarantee that the probability of
impersonations negligible, even when a polynomially large number of previous authentications
occur betweer andB.

Authentication can be used for security objectives including access control, entity authentica-
tion, message authentication, data integrity, non-repudiation and key authentication. Authentica-
tion can be carried out using symmetric encryption techniques, e.gnessage authentication
codesor MACs, using public/private encryption schemes digital signaturesand through
authenticated key establishment methods. The most common usage models include access control
to a resource, e.g., to computer accounts, ATMs, to software, to a building, etc.

The capabilities provided in the authentication protocol depend on the security requirements.
For example, an authentication protocol mayupdateral, i.e., from prover to verifier, omutual



Some protocols magreserve privacyto prevent malicious adversaries from tracking instances of

authentications that occur between the prover and verifier over time. Others nsgynb@etridn

nature, requiring the use of a shared secret between the prover and verifier provided by interac-

tions, in real-time, with d@rusted third party(TTP), or may beasymmetriovith the prover and

verifier maintaining their own private secrets. The computational and communication overheads
associated with the protocols will depend on the type of protocol, its security requirements and
the security properties that must be guaranteed.

4.1 Entity Authentication
Entity authentication techniques can be divided into 3 categories:

* Something you knawasswords, PINs and secret or private keys whose knowledge is demon-
strated in challenge-response protocols.

* Something you possed3hysical accessory, resembling a passport in function. Magnetic-
striped cards, smart-cards and hand-held customized calculators (password generators) which
provide time-variant passwords.

* Something inherentBiometrics, e.g., human physical characteristics such as fingerprints,
voice, retinal patterns and signatures.

Passwords represent the most widely used form of authentication, but are consisiegdd
authentication protocols. Passwords provide unilateral and time-invariant authentication, with
the useridserving as the claim of identity and tipasswordserving as evidence supporting the
claim. Attacks include eavesdropping to enatglplay, and password guessing suchdagionary
attacks On most systems, the passwords are encrypted usamgeavay functiofOWF) before
being stored on disk (see Section 3.2). A technique calddtthgis also commonly used to make
dictionary attacks more difficult by expanding the search space for the adversary.

Two-stage authentication and password-derived keys address the insufficient entropy issue
associated with human chosen passwordsnAligit PIN verifies the user to the token, e.g., smart
card, in the first stage. The token typically embeds additional secrets for use in stage two between
the token and the system. A variant upasskey$o map a user password to a cryptographic key
using a OWF. The most secure of the weak authentication schemesmusésne passwords
which addresses eavesdropping and replay attacks on password schemes.

Challenge-Response protocols fall in the class aftrong authentication protocols, whereby
authentication requires the prover to demonstrate knowledge of a secret without revealing the
secret itself to the verifier. Here, the prover provideesponseo atime-variant challengewith
the response inseparably bound to both the secret and the challenge. The challenge can be a ran-
dom number, called aonce(for ‘used only once’), a sequence number or a timestamp. Time-
variant parameters are countermeasures to replay attacks and certain types of chosen-text attacks
because the uniqueness and timeliness guarantees allow one protocol instance to be distinguished
from another. Note thathallenge-respongarotocols requires some type of computing device and
secure storage for long-term keying material.

Challenge-Response by Symmetric-key: Each pair of communicating parties share a secret
key. In large communities, a trusted third party (TTP) can provide session keys in real time to cir-

cumvent the need to distributé key pairs. A common form of unilateral authentication uses ran-
dom number(s) (RN) [18].

A ~ Birg (B generates random nonGg
A - B:E(rg, B¥)
B generates random nonggand transmits it té\ (over an unsecured channeencrypts the



nonce and the identifid® using a shared secret k&yand transmits the encrypted message back
to B. B then decrypts and 1) checks that tiigreceived matches thg sent and 2) verifies B* is
equal to his own B. The shared sedfetnust be securely transmitted AcandB beforehand, typ-
ically using a mechanism involving a TTP, in order for this scheme to work.

Mutual authentication requires a second nancand a third message:

A~ B:rB (B generates nonag)
A- B:EK(rA, g B*) (A generates nonag)

Encryption ensures the nonces and identifiers are ‘inseparably’ bound as discussed above.

Challenge-Response using Keyed One-Way Functions: Encryption is considered a ‘heavy
weight’ cryptographic primitive, and may be replaced by a one-way function (OWF) or a non-
reversible function with shared key, and a challenge, for authentication in resource-constrained
devices. The encryption algorithBEy is replaced by a MAC algorithry, i.e., a keyed hash func-

tion. The receiver also computes the MAC and compares it with the received MAC. These proto-
cols require an additional cleartext fieldto be transmitted [18].

A ~ B:rB (B generates nonag)
A - Birs, he(ra g B) (A generates nonag)
A « Bihg(rg ra A

B confirms that the hash value received, designatdu(@g, rg, B), is equal to the value he/

she computes locally using the same hash function and sharedlsegrpérforms a similar vali-
dation using the transmitted hag(rg, r 5, A) from B. As discussed in Section 3.2, the computa-

tional infeasibility of finding a second input tax that produces the same hash provides the

security guarantee in this mutual authentication protocol.

Challenge-Response by Public-Key: Here, the prover decrypts a challenge using its secret
key component of the public-private pair, which is encrypted by the verifier under its public key
Pa. Alternatively, the prover can digitally sign a challenge.

A « B:h(r), B, P,(r,B)
A - Br

B chooses nonce computes thevitness X = h(r) (his a OWF), wherex demonstrates knowl-
edge ofr without disclosing it, and computes challergre P5(r, B). A decryptseto recovenr’ and

B’, computes<’ = h(r') and rejects ix’ does not equat or if B’ does not equaB, otherwiseA
sends =1’ to B. B succeeds with unilateral entity authenticatiorAaipon verifying the received
r agrees with his. The witness prevents chosen-text attacks.

5. Physical Unclonable Functions (PUFs)
Components needed for information security can be implemented using physical-layer secu-

rity primitives. A long-standing assumption of software-based security systems has been that
hardware implementations of security primitives are trustworthy ‘black boxes’. In particular, for
keyedsecurity primitives such as block ciphers, key generation and key storage are assumed to be
trusted and secure, and operational state within black box implementations of security algorithms
is assumed to be hidden and inaccessible. Unfortunately, models which assume a ‘*hardware root-
of-trust’ are becoming increasingly more vulnerable to attacks [32-34].



PUFs represent physical-layer security components that are designed to deal with threats to
key generation and key storage. PUFs are circuit primitives that leverage within-die variations in
ICs as a means of producing random bitstrings. Each IC is uniquely characterized by random
manufacturing variations, and therefore, the bitstrings produced by PUFs are unique from one
chip to the next. Cloning a PUF, i.e., making an exact copy, is nearly impossible because it would
require control over the fabrication process that is well beyond our current capabilities. A PUF
maps a set of digital “challenges” to a set of digital “responses” by exploiting these physical vari-
ations in the IC. The entropy in the responses is stored in the physical structures on the IC and can
only be retrieved when the IC is powered up. The analog nature of the entropy source makes PUFs
‘tamper-evident’, whereby invasive attacks by adversaries will, with high probability, change its
characteristics.

PUFs have been proposed which leverage variations in transistor threshold voltages [35-37],
speckle patterns [38-39], delay chains and ROs [40-64], thin-film transistors [65], FPGAS [66-67],
SRAMs [68-74], leakage current [75-76], metal resistance [77-81], transistor transconductance
[82], the path delays of core logic macros [83][84-87], optics and phase change [88], sensors [89],
switching variations [90], sub-threshold design [91], ROMs [92], buskeepers [93], microproces-
sors [94], using lithography effects [95-96], optical proximity correction [97], aging [98], in sub-
threshold operation [99], memristors [100] and other non-volatile memories [101], in scan chains
[102], phase change memory [103] and carbon-nanotubes [104]. Board-level authentication using
PUFs has also recently been proposed [105] and for securing mobile system platforms [106-107].
5.1 PUF-Based Authentication

As mentioned above, authentication is the process between a prover, e.g., a hardware token
and a verifier, a secure server, that confirms the identities, using corroborative evidence, of one or
both parties. With the Internet-of-things (10T), there are a growing number of applications in
which the hardware token is resource-constrained, and therefore, novel authentication techniques
are required that are low in cost, energy and area overhead. Conventional methods of authentica-
tion which use area-heavy cryptographic primitives and non-volatile memory (NVM) are less
attractive for these types of evolving embedded applications. PUFs, on the other hand, are hard-
ware security and trust primitives that can address issues related to low cost because they elimi-
nate (in many proposed authentication protocols) the need for NVM. Moreover, the special class
of so-called ‘strong PUFs’ can also reduce area and energy overheads by reducing the number and
type of hardware-instantiated cryptographic primitives.

PUFs generate bitstrings that can serve the role of uniquely identifying the hardware tokens
for authentication applications. The bitstrings are generated on-the-fly, thereby eliminating the
need to store digital copies of them in NVM, and are (ideally) reproducible under a range of envi-
ronmental variations. The ability to control the precise generation time of the secret bitstring and
the sensitivity of the PUF entropy source to invasive probing attacks (which act to invalidate it)
are additional attributes that make them attractive for authentication in resource-constrained hard-
ware tokens.

PUF-based protocols have been proposed for applications including encryption, authentica-
tion, for detecting malicious alterations of design components and for activating vendor specific
features on chips. Each of these applications has a unique set of requirements regarding the secu-
rity properties of the PUF. For example, PUFs that produce secret keys for encryption are not sub-
ject to model building attacks (as is true for PUF-based authentication) which attempt to ‘machine
learn’ the components of the entropy source within the chip as a means of predicting the complete
response space of the PUF. This is true for encryption because the responses to challenges are typ-



ically not ‘readable’ from an interface on the chip. In general, the more access a given application
provides to the PUF externally, the more resilience it needs to have to adversarial attack mecha-
nisms. Authentication as an application for PUFs clearly falls in the category of extended access.
5.2 Strong vs. Weak PUFs

Weak PUFs are those whose challenge-response space is small while strong PUFs have very
large, ideally exponential, challenge-response spaces [108-109]. The distinction between strong
and weak PUF is rooted in the amount of entropy that each class can access. The larger the
entropy source, the more difficult it is for an adversary, who has access to the PUF, to collect and
analyze challenge-response pairs (CRPs) until the complete behavior of the PUF can be predicted.
The SRAM PUF is an early example of a weak PUF with only one CRP [68] while the arbiter
PUF is traditionally considered a strong PUF because of its exponentially large challenge space
[41]. However, if the size of the entropy source is considered a defining characteristic, then the
arbiter PUF would fail to meet the definition of a strong PUF because its response space is derived
from a relatively small entropy source, in particular, as small as a couple hundred gates. Given this
latter consideration, very few of the proposed PUFs meet this expanded definition. Model-build-
ing resistance using machine learning techniques has emerged as an important criterion for deter-
mining whether a PUF is strong based only on the size of its CRP space or wheth&uly is
strong, i.e., attacks that attempt to learn and predict its behavior are infeasible [110][42].
5.3 The Arbiter PUF

The most widely referenced strong PUF, tmbiter PUF, was the one of the first proposed,
and is described in [41][42]. However, it is also widely recognized that it is considered strong
based only on the size of its input challenge space, and not on the amount of entropy it possesses.
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Fig. 2. Arbiter PUF [41].

The arbiter PUF measures path delays from a specialized test structure as its source of entropy
as shown in Fig. 2. The test structure implements two paths, each of which can be individually
configured using a set of challenge bits (stored in FFs along the top of the figure). Each of the
challenge bits controls a ‘Switch box’, that can be configured in eiffaess modeand switch
mode Pass mode connects the upper and lower path inputs to the corresponding upper and lower
path outputs, while switch mode reverses the connections. A stimulus, represented as a rising
edge on the left side of the figure, cause two edges to propagate along the two paths configured by
the challenge bits. The faster path controls the value stored iarbieer located on the right side
of the figure. If the propagating rising edge on the upper input to the arbiter arrives first, the
response bit output becomes a ‘0’. Otherwise, the response bit is a ‘1’. The switch boxes are
designed identically as a means of avoiding any type of systematic bias in the delays of the two

paths. Within-die process variations cause uncontrollable delay variations to occur in the switch



boxes, which in turn, makes each instance of the arbiter PUF unique in terms of its generated
response bit(s). A bitstring can be obtained from the arbiter PUF by repeating the measurement
process under a set of different challenges.

From this design, it is clear that the arbiter PUF has an exponential number of input challenges

that can be applied, in particulaf! @ith n representing the number of switch boxes. However, the
total amount of entropy is relatively small, and is represented by the four path segments in each of
the switch boxes. Far equal to 128, the total number of path segments that can vary individually
from one instance to another is 4*128 = 512. The exponential number of input challenges simply
combine these individual sources of entropy in different ways. Model building attacks attempt to
learn the delay relationships of the two configurations for each switch box [110]. Once known, the
response under any challenge then becomes predictable (limited only by the noise margin of the
arbiter measurement circuit).

challenge bits C,, C,4 oo Co
. —D Q)
arbiter PUF
I —C :!:)D response bit
arbiter PUF :8 Q
challenge bits C; C; ooe Co

Fig. 3. XOR-mixed Arbiter PUF [44][111][112].

The model-building weakness of the arbiter PUF is addressed in follow-on work, where the
outputs ofn arbiter PUFs are XOR’ed, to create a XOR-mixed arbiter PUF [44][111][112]. Fig. 3
shows an example in which 2 arbiter PUF output bits are XOR’ed. The goal is to create an XOR
network large enough to achieve tagalanche criterion This criterion is commonly found in
cryptographic hash and encryption functions where flipping one of the input bits (or a bit in the
key for encryption) causes half of the output bits to flip. For the XOR-mixed PUF, the goal is to
achieve the avalanche effect by flipping one of the challenge bits. Although this helps signifi-
cantly with model building, particularly with networks of XORs greater than 4, larger XOR net-
works also reduce reliability by creatingrmise-basedvalanche effect, i.e., any odd number of
bit flips that occur on the inputs of any given XOR network results in a response bit flip error. As
reported in [111], if a single arbiter PUF has an KR of 5% (intra-chip HD measures the PUF’s

ability to reproduce the same bitstring over repeated applications of the challenge, usually under
different environmental conditions), the Ky, increases to 19% for a 4-XOR-mixed arbiter PUF,

i.e., nearly 1/5 of the response bits have bit flip errors. Therefore, error-correction using tech-
niques described in Section 3.3 become critical to ensuring proper functional operation when used
in authentication protocols.

5.4 Hardware-Embedded Delay PUF (HELP)

Similar to arbiter PUFs, the hardware-embedded delay PUF (HELP) derives its entropy from
variations in path delays. However, HELP measures delays from existing functional units. There-
fore, no dedicated test structures are required. Another major benefit of using existing functional
units is the amount of entropy that can be potentially leveraged. Cryptographic functional units
are particularly attractive because of the complexity of their interconnection networks. On the

1. Note that achieving an unbiased layout in an FPGA is a challenging and non-trivial pro-
cess.



down side, the lack of control over the configuration of paths in functional units creates issues
related to systematic bias and reliability, as described in the following sections.

Interestingly, the authors of the first silicon-based PUF paper describe their notion of a ‘better
PUF’ in Ongoing and Future Work section, which turns out, based on our work, to be well
founded [40]. The basic concept of measuring path delays from a core logic functional unit was
implemented first by Li and Lach [83], but was not fully developed as a PUF primitive. In particu-
lar, the authors do not address the bias introduced by paths of different lengths nor do they deal
with the reliability issues associated with paths that glitch.

Our development of HELP began in 2011 on a 90 nm ASIC implementation [86], but was
fully developed as an intrinsic PUF (with full integration of the control logic, entropy source and
measurement components) on a 130 nm Xilinx V2Pro [84-85], and more recently using a 28 nm
Xilinx Zyng architecture [87]. We have developed solutions for path length bias and glitching that
occur when core logic functional units are used as the source of entropy, as well as techniques that
improve the attack resilience of HELP when used in low cost authentication applications. This
section describes the characteristics of the most recent incarnation of HELP and presents new
results.
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Fig. 4. HELP Block Diagram: (a) Instantiation of t}le HELP entropy source and (b) HELP processing

engine.

The original version of HELP made use of an embedded test structure called REBEL [113] for
measuring path delays and detecting glitches [84-85][86]. Recent implementations of HELP mea-
sure path delays in glitch-free functional units, which allows a simplified version of REBEL to be
used [87]. The simplified version eliminates the delay chain component and instead samples the
path delays at the capture FF directly.

HELP attaches to an on-chip module, such as a hardware implementation of the Secure Hash-
ing Algorithm (SHA-3) [114], as shown on the left side of Fig. 4. The data path component of the
SHA-3 algorithm, configured dseccak-f[200] is used in our FPGA experiments. This combina-
tional data path component includes 416 primary inputs (PIs) and 400 primary outputs (POs) and
is implemented on a Xilinx Zynq FPGA using 1936 LUTSs.

Similar to the arbiter PUF described in the previous section, within-die variations in path
delays are the main source of entropy for HELP. Manufacturing variations change the relative
path delays through the functional unit in different ways, and therefore, each instance of the func-
tional unit is uniquely characterized by these delays. However, the structure of the paths in the



arbiter PUF is very different than those in a typical functional unit, i.e., the arbiter PUF paths are
symmetric and regular (by design) while the paths within a typical functional unit exhibit no such
regularity.

Functional unit paths exhibitan-out and thenreconvergenceof fan-out at various points
within the logic structure of the functional unit (called reconvergent-fanout), as shown on the right
side of Fig. 5. Also, the lengths of the paths can vary widely, e.gshioet pathsshown have 3 or
fewer gates while thiong pathsare 5 or more gates in length. Both of these characteristics make
it more difficult to build a PUF with good statistical characteristics. Reconvergent-fanout can
causeglitching, i.e., static and dynamic hazards, to occur on the primary outputs, whereby output
signals transition more than once. Glitching creates ambiguity regarding the ‘correct’ timing
value to use for the path. Operating the functional unit under different environmental conditions,
e.g., temperature and supply voltage, exacerbates the problem, where paths that are glitch-free
under nominal environmental conditions suddenly become glitchy under adverse conditions.
Moreover, the systematic bias associated with paths of different lengths significantly degrades the
statistical randomness and uniqgueness characteristics of the PUF. We have developed several tech-
niques to deal with both of these problems. Our most recent work, described here, implements the
functional unit using a specialitch-free logic style calledwave differential dynamic logic
(WDDL) [115-116], while the systematic bias introduced by paths of different lengths is dealt
with by applying anodulusto the digitized path delay, which effectively removes the bias.

¥
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Fig. 5. Portion of a functional unit schematic, showing fan-out and reconvergence of paths, and the presence
of different length (short vs. long) paths.

5.4.1 Clock Strobing
Path delay is defined as the amount of tif® (t takes for a set of 0-to-1 and 1-to-0 bit tran-

sitions introduced on the Pls of the functional unit (input challenge) to propagate through the
logic gate network and emerge on a PO. HELP uses a clock-strobing technique to obtain high res-
olution measurements of path delays as shown on the left side of Fig. 4. A series of launch-cap-
ture operations are applied in which the vector sequence that defines the input challenge is applied
repeatedly to the Pls using the Launch row flip-flops (FFs) and the output responses are measured
on the POs using the Capture row FFs. On each application, the phase of the captur€l&ipck,

is incremented forward with respect @lk;, by smallAts (on order of 20 ps), until the emerging

signal transition on a PO is successfully captured in the Capture row FFs. A set of XOR gates con-
nected to the Capture row FF inputs and outputs (not shown) provide a simple means of determin-
ing when this occurs. When an XOR gate value becomes 0, then the input and output of the FF are
the same (indicating a successful capture). The first occurrence in which this occurs during the
clock strobe sweep causes the current phase shift value to be recorded as the digitized delay value



for this path. This operation is applied to all POs simultaneously.
The phase shifting module falk, is shown in the middle of Fig. 4. On-chip digital clock

managers (DCMs) are commonly included in FPGA architectures. For example, Xilinx FPGAs
typically incorporate at least one DCM with a digitally controlli@gake phase shiftontrol mecha-

nism even on their lowest cost FPGAs. For low-cost components that do not include a DCM with
this capability, a fine phase shift mechanism can be implemented with a small area overhead using
a multi-tapped delay chain.

The right side of Fig. 4 shows the HELP processing engine. The digitized path delays are col-
lected by astoragemodule and stored in an on-chip block RAM (BRAM). Each digitized timing
value is stored as a 14-bit value, with 10 binary digits serving to cover the fine phase shift sweep
range of 0 t01023 and 4 binary digits of fixed point precision to enable up to 16 samples of each
path delay to be measured and averaged. The 7 KByte BRAM allows 4096 path delays to be
stored. We configure the applied challenges to test 2048 paths with rising transitions and 2048
paths with falling transitions. The 14-bit digitized path delays are referred to as PUFNUMs or
5.4.2 PN Processing

Once the PN are collected, a sequence of mathematical operations are applied as shown on the
right side of the Fig. 4 to produce the bitstring and helper data. difierencemodule creates
unique, pseudo-random pairings between the rising and falling PN groups using two seeded linear
feedback shift registers (LFSRs). The two 1110#SR seedare user-specified parameters. The
PN differences, referred to #ND, are stored in the lower 2048 memory locations of the BRAM
as values in the range +/- 511 with 4 binary digits of fixed point precision, overwriting the original
set of rising-edge PN.

(a) Path Delays (PN) (b) PND

(c) PND,
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Fig. 6. (a) Example rising and falling path delays (PN), (b) PND and (c) PND...

Fig. 6(a) shows an example of this process using two groups of 38 curves, one curve for each
Xilinx Zyng 7020 chip that was tested. The curves shown along the bottom depict the PN
obtained from rising transition tests and those along the top are the PN from falling transition
tests. The 13 line-connected points associated with each curve represent the chip’s PN measured
over a range of environmental conditions, called temperature-voltage (TV) corners. The PN at the
X-axis position given by 0 are those measured under nominal conditions (referrecnools

ment values below), i.e., at &, 1.00V. The PN at positions 1, 2 and 3 are also measured®@t 25
but at supply voltages of 0.95, 1.00 and 1.05 V. Similarly, the other groups of 3 consecutive points

along the x-axis are measured at these supply voltages but at temperatfies 88 and
10(°C. The PN measured under TV corners numbered 1 to 12 are referrededgeasration val-



ues. Fig. 6(b) plots th®ND defined by subtracting point-wise, each falling PN from the corre-
sponding rising PN for the same chip.
5.4.3 Temperature-Voltage (TV) Compensation

PUFs must be able to reproduce their bitstrings as precisely as possible, ideally without any
bit flip errors, over a range of environmental conditions in which temperature and supply voltage
are different from the conditions present during enrollment. No PUF construction to date is able to
completely eliminate bit flip errors during regeneration, but some are more resilient to them than
others. A method called temperature-voltage compensaliMComp as shown on right side of
Fig. 4) is proposed for the HELP PUF as a mechanism to improve its resilience to bit flip errors.

For HELP, bit flip errors occur because changes to the chip’s ambient temperature and supply
voltage change its path delays (called nois@. TVComp applies a linear transformation to the
path delay differences (PND) as a means of shifting and scaling them to a common reference. The
goal is to define a transformation that eliminates the saw-tooth behavior in the curves shown in
Fig. 6(b), making them as flat and straight as possible.

TVComp is applied to the entire set of 2048 PND measured for each chip at each of the 13 TV
corners separately (note, Fig. 6(b) shows only one of the PND from the larger set of 2048 PND
that exist for each chip and TV corner). The TVComp procedure first converts the PND to ‘stan-
dardized’ values. Equation (11) represents the first transformation which makes use of two con-
stants ity andRngryy, obtained from a histogram distribution of the measured PND. The second

(PND1y/y — Hyy)
zval. = TV TTVX Eq. 11.
! RngTVx
TVCPNDiffi = zvaIiRngref+ Hyof Eq. 12.

transformation is represented by Equation (12), which translates the standardidsid a new
distribution with meanu,es and rangeRng.s. The reference mean and range values are user-

selectable parameters of the HELP algorithm.
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Fig. 7. (a) PND distribution for chip C; with pandRngn,, depicted and (b) Chip C; PND at 2 TV
corners.

As an example, Fig. 7(a) shows the PND histogram distribution for chipt@5C, 1.00V.
Theptyxis shown as -40 while thRngr is computed between the 5% and 95% as 136. Fig 7(b)
superimposes the PND histograms fgrdt 25C, 1.00V and 100C, 1.05V. The TVComp process
will shift (and scale) this distribution to the left to remove the adverse effects introduced by the
change in environmental conditions.

A second illustration of the effect of TVCOMP is shown in Figs. 6(b) and 6(c). The data in
Fig. 6(c) is obtained by applying TVCOMP procedure to the 2048 PND measured under each of



the 13 TV corners for each chip, i.e., 13 TV corners * 38 chips = 494 separate applications. Since
the same reference mean and range are used for all transformations, TVComp eliminates both TV
noise and chip-wide performance differences between the chips. Note that the curves in Fig. 6(c)

no longer exhibit the saw-tooth behavior introduced by TV foise
The differences that remain in the TVCOMP’ed PND (subsequently referred RNEg)

shown in Fig. 6(c) are those introduced by WDV amttompensatedV noise UC-TVNoise).
For this particular PND, the TVCOMP process is able to reduce TV noise to approx. 2 in the
worst case, which translates to approx. 36 ps. In general, RN larger levels of UC-TVNoise

are more likely to introduce bit flip errors.

The implementation of the HELP algorithm shown in Fig. 4 constructs a histogram distribu-
tion in the upper 2048 memory locations of the BRAM using the 2048 PND stored in the lower
portion and then parses the distribution to obiaj), andRngp,,. Once the distribution constants

are available, the PND in the low portion of the BRAM are converted to.PND

The last operation applied to the PN is represented byMbdulusoperation shown on the
right side of Fig. 4. Modulus is a standard mathematical operation that computes the positive
remainder after dividing by the modulus. The Modulus operation is required by HELP to elimi-
nate the path length bias that exists in the RNizhich acts to reduce randomness and uniqueness

in the generated bitstrings. The value of the Modulus is also a user-selectable parameter, similar to
the LFSR seed, mean and range parameters, and is discussed further in the following. The HELP
engine shown in Fig. 4 overwrites the PNBfter applying the Modulus. The final values, called

MPND,, are used in the bitstring generation process.
5.4.4 Bit Generation Algorithm

The bitstring generation process uses a fifth user-specified parameter, calidrtie, as a
means of improving the reliability of the bitstring regeneration process. The bottom portion of
Fig. 8(a) plots 18 of the 2048 PNDBrom Chip; along the x-axis. The red curve line-connects the
data points obtained under enrollment conditions while the black curves line-connect data points
under the 12 regeneration TV corners.
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Fig. 8. Strong/Weak PND, classification using margining.
The curves plotted along the top of Fig. 8(a) show the MRM&lues after a modulus of 20 is

1. TV compensation also serves as a countermeasure to prevent adversaries from manipu-
lating temperature and supply voltage as a physical attack mechanism.



applied. Fig. 8(b) enlarges the upper portion of Fig. 8(a) and includes a set of margins of size 2
surrounding two strong bit regions of size 6. Designators along the top given as ‘sQ’, ‘s1’, ‘w0’
and ‘w1’ classify each of the enroliment data points as either a strong 0 or 1, or a weak 0 or 1,
resp. Data points that fall on or within the hatched areas are classified as weak as a mechanism to
avoid bit flip errors introduced by UC-TVNoise that occurs during regeneration.

The Margin method improves bitstring reproducibility by eliminating data points classified as
‘weak’ in the bitstring generation process. For example, the data points at indexes 4, 6, 7, 8, 10
and 14 would introduce bit flip errors at one or more of the TV corners during regeneration
because at least one of the regeneration data points is in the opposite bit value region from the cor-
responding enrollment value. We refer to this bitstring generation technique Singfie Helper
Data (SHD) scheme since the classification of the MRNIB strong or weak is determined solely
by the enroliment data.

A second technique, referred to as heal Helper Data (DHD) scheme, requires that both
the enrollment and regeneration MPNBe in strong bit regions before allowing the bit to be used
in the bitstring during regeneration. Thelper data which represents the classification of the
MPND; as strong or weak, is bitwise ‘AND’ed, and then both the enroliment and regeneration bit-
strings are generated (the enrollment data is assumed to be collected earlier in time and stored on
a secure server). The DHD scheme doubles the protection provided by the margin against bit flip
errors because the MPNIProduced during regeneration must now change and move across both
a ‘0’ and ‘1’ margin before it can introduce a bit flip error. This is true because both the enroll-
ment and regeneration MPNDnust be classified as strong to be included in the bitstring and the
strong bit regions are separated by 2*margin.

Fig. 8 highlights four cases where an enroliment-classified strong bit would be reclassified as
weak in the DHD scheme because 1 or more of the regeneration fN®within a weak region.

This shows that in addition to doubling the protection against bit flip errors, the DHD scheme can
potentially produce different bitstrings each time the chip regenerates it. Therd®B,
increases entropy by leveraging UC-TVNoise (and sampling noise to a smaller degree). This fea-
ture is a benefit for authentication applications because only half of the helper data is revealed to
the adversary while the other half is generated and kept on the chip or server. The missing helper
data adds uncertainty for an adversary as to the final form of the bitstring. Encryption applications
can leverage both of these DHD benefits as well by exchanging the chip and server helper data
bitstrings while keeping the generated keys private. These benefits of DHD are expanded upon in
the following sections.

5.4.5 Entropy Analysis

The Margin technique using either the SHD or DHD schemes adds uniqueness to the regener-
ated bitstring. This is true because weak bits are excluded from the bitstring based on the position
of the PN and Margins and therefore, different chips utilize different bits in the constructed bit-
string. Figs. 9(a) and (b) depict several scenarios that show how the Margin and the position of the
PND, affect bitstring generation. The line-connected curves in Fig. 9 are analogous to those

described earlier in reference to Fig. 6(c). Fig. 9(a) plots a set of 20 different. RiNDustrate
how PNL,. distribute across the range defined by the Modulus, which is set to 20. Fig. 9(b) is a

blow-up of the bottom portion of Fig. 9(a).
As indicated earlier, within-die process variations change path delays uniquely in different
chips, which is reflected by the y-dimensional spread within each group of FftDthe data set
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Fig. 9. (a) Example PND, (20 groups) from 38 chips (y-axis) across 1 enrollment and 12 TV corners (x-
axis), and (b) blow-up of -60 to -80 region.

labeled as scenarion Fig. 9(b), the range occupied by the PNIB approx. 10. The y position of
the overall data set is such that, except for a few points, the bit generated by this data will be 0 for
all 38 chips.

However, the enroliment data points (left-most) for some chips fall within the weak bit regions
and therefore, this bit is skipped for these chips using either the SHD or DHD schemes. Moreover,
UC-TVNoise causes some of the regeneration data points to move from their strong bit positions
in the enroliment data to weak bits during regeneration. The DHD scheme excludes this bit for
these chips as well, creating differences in the generated bitstring for the same chip at different
TV corners, while simultaneously providing a 2x Margin to bit flip errors. Moreover, the relative
position of the curve associated with each chip, with respect to the other chips, changes in each
data set so it is unpredictable which data points are excluded during bitstring generation for any
particular chip. The curve for chipGs highlighted in red in each of the PNDroups to illustrate
the change in its relative position with respect to other chips in the group.

The data set labeled scenaria Fig. 9(b) shows a second possibility, that is closest to the
‘ideal’ case because the position and range of the curves spans the y-axis into both the strong 0
and strong 1 bit regions. The number of possible results regarding the status of the bit includes
those described for scenayiplus an additional possibility that some chips generate a strong 1 bit
and others a strong 0 bit. In contrast, scenglabeled in Fig. 9(a) is closest to the ‘worst’ case

where nearly the entire data set is positioned with the strong 0 region. Note that this scenario is
only possible when the Modulus is large enough to create strong bit regions that upper-bound the
smallest range (WDV + UC-TVNoise) found among the MPN#poups. Generating bitstrings
with Moduli larger than 4*Margin + this smallest range begins to reduce their statistical quality.
The analysis presented in subsequent sections shows that the upper-bound for this data set is Mod-
ulus = 28.
5.4.6 Statistical Analysis of the Bitstrings

The bitstrings generated using the DHD scheme are subjected to the NIST statistical test suite
as well as Inter-chip and Intra-chip hamming distance (HD) tests. The analysis is carried out using
two differentreferencescaling factors for TVCOMP, referred to asinimum(Min) and mean




scaling. Thauef andRNg,s scaling constants derived from the set of path distributions for the 38

chips are used as the reference values in Equation 12 to scale all chip data before applying the
Modulus operation and DHD bitstring generation procedures described abovenifineumscal-
ing constants are derived from the chip with smallest distribution, i.e., smallest mean and range
values. Themeanscaling constants are computed from the average mean and range values across
the distributions of all chips. We focus our analysis on these two scaling factors because they rep-
resent the extremes of the recommended range. We expect similar results to be produced for all
scaling factors between these limits.

We use the acronyr8BSto denote ‘strong bitstring’. The DHD scheme requires two helper
data bitstrings from the same chip as a means of constructing the two corresponding SBS’s. The
helper data bitstings, which are derived from the 2048 MRNBing the Margin technique, are

bitwise AND’ed and then used to select bits for use in the construction of the SBS’s. The SBS’s
generated using enroliment data (J\and the nominal regeneration TV corner data Y ¥fom

the same chip are used in the NIST statistical tests and Interchip hamming distanggld&l-

culations below. UC-TVNoise is smallest using this combination, and therefore, it represents the
worst case condition where the affect of the helper data AND’ing has the smallest impact on the
additional entropy as discussed earlier. Only one of the SBS’s from each chip is useghjg,HD

and NIST statistical tests, and the SBS’s are truncated to the length of smallest bitstring among
the 38 generated. The same criteria are used in the Intra-chip H},(kJ[@alculations except a

much larger set of bits are processed by accumulating the results across a set of 256 different
LFSR seeds (only one LFSR seed is used for NIST angh{dRests because similar results are

obtained using other seeds).

NIST Statistical Test Results:

The NIST statistical test results are shown in Fig. 10(a) and (b) for minimum and mean scal-
ing, resp. A test is considered ‘a pass’ according to the NIST criteria if at least 35 of the 38 chips
pass the test individually. The histogram bar heights indicate the number of chips that pass the
test. The bitstrings generated using a Margin of 3 and a set of Moduli between 14 and 30 are sub-
jected to 10 of the NIST tests. The size of the bitstring was too small for some values of the Mod-
ulus and therefore, the bar heights for these NIST test results are set to O (includes regions along
back and left side of the 3-D histogram).

(a) Min scaling: Margin = 3 (b) Mean scaling: Margin =
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Fig. 10. NIST statistical test results using 38 chip bitstrings for each analysis and (a) Minimum scaled data
and (b) Mean scaled data.

Under minimum scaling, all NIST tests are passed except for four associated with Modulus
30. These fails are related to scenauiscussed in reference to Fig. 9, where the range of within-
die variation fits entirely within the strong ‘0O’ or ‘1’ regions defined by Modulus. This is sup-
ported by the results presented under the mean scaling, where the bitstrings for Modulus 30 pass



all tests (only 1 test is failed under mean scaling, and with a value of 34 instead of 35). Mean scal-

ing enlarges the y-dimensional spread of the data points over minimum scaling and reduces the
probability that scenaripoccurs. These results indicate that the bitstrings posses a high degree of

randomness, which is a necessary condition for classifying the bitstrings as cryptographic quality.

The results using Margins of 2 and 4 are very similar.

Interchip Hamming Distance (HDyy¢e):

HDnter is computed using Equation 13. The symbiIS, NBandNCC represent ‘number of
chips’, ‘number of bits’ and ‘number of chip combinations’, resp. This equation simply sums all
the bitwise differences between each of the possible pairing of chip SRE€)( and then con-
verts the sum into a percentage by dividing by the total number of bits that were examined. The
XOR operator generates a 1 when the pair of bits in the SBS’s at the same position are different
and 0 otherwise.

NC NCNB I
|nter a\l—————CCX NB z ZID > (SB% kDSBS k)D[]x 100 q- 13.

Fig. 11(a) shows the HR}, results for a set of Moduli (x-axis) and Margins (y-axis). The
ideal value for HQyer is 50%, which indicates that half of the bits in any arbitrary pairing of bit-

strings from the 38 chips have different values. The best values are produced for smaller Moduli,
as expected. However, all values remain above 48.5%, which indicates a high degree of unique-
ness among the bitstrings from different chips.
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Fig. 11. (a) Interchip hamming distance (HD), (b) Probability of failure and (c) Smallest bitstring size
statistics using 4096 PN.

Intrachip Hamming Distance (HDy,.,):
HDnter is computed using Equation 14. The symbiIi§ NC, NBandNT represent ‘number

of seeds’, ‘number of chips’, ‘number of bits’ and ‘number of TV corners’, resp. As indicated ear-
lier, we repeat the H[a, analysis for 256 different LFSR seeds as a means of increasing the
number of bits used in the analysi¢T is 12 to represent each of the TV corners used to compute
the pair of chip SBS’s under the DHD scheme. This equation sums all the bitwise differences
between each of the enrollment SBS @)\bitstrings and the 12 corresponding SBS bitstrings



from the remaining TV corners for each chip and each LFSR seed, and then converts the sum into
a percentage by dividing by the total number of bits that were examined. The valNevéored
between approx. 12 million for Modulus 10 to more than 165 million for Modulus 30.

;, NS NC NB NT

Eq. 14.
HDintra = Eﬁ > Z Z > (SBSZ L ,00SBS, k)Dx 100 q
z=0i = =0k =

Fig. 11(b) reports Hl—r?ﬁtra as the probability of a bit flip failure for the same set of Moduli and
Margins used in 11(a) (note the x-axis is reversed from that shown in Fig. 11(a)). The value of the

exponenk is reported from the equation 1/¥&o -6 indicates 1 chance in 1 million. Cases where
no bit flips were detected as shown as -10. As expected, the larger Moduli produce lower proba-
bilities of failure. The probability of failure for Margins 3 and 4 under minimum scaling are all set

to 1010 (no bit flip errors were detected), and are less thafl f Margin 2 except for Modulus

10. The probability of failure under mean scaling are larger but remain bel&fdOMargins 3
and 4.

Minimum Bitstring Size:

Fig. 11(c) plots the smallest bitstring size for the same set of Moduli and Margins. Smaller
Moduli have smaller strong bit regions for a given Margin and therefore, fewer bits quality as
strong. However, the bitstring sizes grow quickly, with at least several hundred bits available for
Moduli/Margin combinations with strong bit regions of size 2 and larger. Bitstring size can be
increased as needed by increasing the number of tested paths beyond 4096.

5.4.7 Security Property Analysis

In this section, we investigate several important security properties of HELP that relate to its
resistance to model building and to the number of bitstrings that each token can generate using the
five user-defined parameters described earlier and a sixth parameter calledtlih®election-
Mask(which is discussed below and in Section 6.6 as it relates to proposed authentication proto-
col).

Parameter-Based Bitstring Diversity:

Due to the interaction of the user-defined parameters, we present a conservative lower-bound
estimate on the number of possible parameter combinations, i.e., those that ensure the generated
bitstrings are random, reliable and unique for each token. Note that the source of entropy is fixed
in this analysis to a set of 4096 PN (in contrast to the analysis that includéxatheSelection-

Mask parameter as described in the next section). In other words, the set of five user-defined
parameters, namely, Rng Modulus Margin and theLFSR seedsapply different transforma-

tions to the same set of PN as a means of achieving bitstring diversity. As noted earlier, the two
11-bit LFSR seegarameters allow any of the 2048 rising edge PN to be paired with any of the
2048 falling edge PN, yielding 4,194,304 possible combinations. From the results shown in Fig.

11, the number of combinations &argins and Moduli that yield high reliability (< éﬁ) Is 12

(using Moduli from 16-28 for Margin 3, and 20-28 for Margin 4, in steps of size 2). The number

of differentp andRngparameters is conservatively estimated to be 10 each. Therefore, a total of
4,194,304 * 12 * 10 * 10 ~= 5 billion combinations of these five user-defined parameters are pos-
sible. This lower bounds the amount of effort required by an adversary in possession of the token
to read out all the possible response bitstrings. The probability of achieving this lower bound is
nearly zero in practice because, in the proposed protocol, the token and server generate nonces
that are used to select values of the parameters and therefore, the adversary does not have direct



control of the token’s interface (details covered in Section 6.6).

Path-Selection-Mask-Based Bitstring Diversity:

Unlike the parameter-based scheme, bitstring diversity introduced BetiheSelection-Mask
is based on changing the underlying entropy components. In other words, the 4096 PN are not
fixed, but vary from one authentication to the next. In the protocol proposed in Section 6.6, path
selection is performed by the server using a random number generator. Path selection involves
choosing a subsetof y timing values from those produced simultaneously by the challenge. For
example, assume that a challenge vector sequence produces 200 timing values and the server
selects a random subset of 50. The number of ways of choosing 50 from 200 is a very large num-
ber and is given by Equation 15. This number is then multiplied by the number of vectors required

Path-select-combos %25%% = 4.5e47 Eq. 15.

to reach 4096 PN (as an example, we use 82 in our recent experimental evaluation). Therefore, the
number of possible bitstrings using tRath-Selection-Masis exponentially related to the num-

ber of simultaneously sensitized paths produced by a challenge and the number of PN randomly
selected. More importantly, thHeath-Selection-Mas&hanges the characteristics of the PND dis-
tribution, which in turn impacts how each PND is transformed through the TVComp process. In
other words, even with all 5 user-defined parameters held constant, the bit value generated by a
MPND;, will vary because its value depends on all of he 4096 PNs selected and used in the bit-

string generation process. This complex relationship is leveraged as a security property in the
HELP authentication protocol as a means of both preserving privacy and adding resilience to
model-building attacks.

6. PUF-Based Authentication Protocols
The tamper-evident and unclonable characteristics of PUFs can be leveraged in authentication

protocols to generate nonces and repeatable random bitstrings, to provide secure storage of
secrets, to reduce costs and energy requirements and to simplify key management. Although weak
PUFs have been proposed for authentication as described in the examples that follow, they
increase the number and type of cryptographic primitives required on the token. Strong PUFs pro-
vide a distinct advantage by eliminating some of these cryptographic primitives while providing
higher resistance to protocol attacks.

The cryptographic primitives required in an authentication protocol depend on the security
requirements. For example, in the simplest form, the protocol can be designed to provide unilat-
eral, e.g., server-based, authentication as discussed in Section 4. More advanced features such as
mutual authentication and privacy-preserving protocols, i.e, those that prevent token tracking,
require additional cryptographic primitives and message exchanges.

Entity authentication requires the prover (hardware token) to provide both an identifier and
corroborative and timely evidence of its identity, e.g., a secret, that could only have been produced
by the prover itself. From Section 4, PUFs carry out user authentication under the general model
of ‘something you possess’, e.g., a hardware token such as a smart card, which in turn, incorpo-
rate silicon-based fingerprint-like identities for authentication to a secure server, such as a bank.
Bear in mind that PUFs do not address the task of identifying the user to the token. As discussed
in Section 4, user-token authentication is layered on top of token-server authentication using pass-
words, PINs, actual human fingerprints, etc.

Although passwords, PINs, one-time passwords, etc. can be used for token-server authentica-
tion, they are considered weak authentication methods. The strong authentication methods



described in Section 4 are based on a challenge-response mechanism but implicitly require the
prover A to demonstrate knowledge ofsecretknown to be associated with provérwithout
revealing the secret itself to the verifiBr The challenge-response component provides a mecha-
nism to enable the prover to maintain the secret while allowing, in the composition of exchanged
messages, the prover to demonstrate its knowledge to the verifier. In order to ensure certain secu-
rity properties, the random numbensopce$ that are cryptographically bound to the secret and
exchanged must have sufficient entropy. Cryptographic functions such as one-way hash functions,
symmetric key encryption algorithms (for MACs), and public-private encryption algorithms (for
digital signatures) may also be required. PUFs can certainly be used in these types of traditional
authentication schemes, e.g., for generating nonces with sufficient entropy (which we discuss
below), but the large number of CRPs available in strong PUF implementations also allow for
simpler schemes with stronger security properties.
6.1 Protocol 1: Strong PUF with Unprotected Interface

The simplest mechanisms calletiallenge-response entity authenticati@s proposed in
[38][40][120-121], exchange cleartext bitstrings directly, thereby eliminating area/energy-expen-
sive cryptographic primitives associated with traditional schemes. A PUF whose inputs and out-
puts can be accessed directly, as in this scheme, is said toumpretected interfacesThe
protocol is shown graphically in Fig. 12 (referred toremvein [121]), and consists of two phases:
* Enroliment: A process carried out in a secure environment between a tlead verifier,B.

Verifier B generates a sequence of randomly-chosen challengeshich are presented to

tokenA and applied to the PUF, and the PUF responsese then recorded in a secure data-

base as challenge-response paig;, along with a unique identifielt,p for the token.
» Authentication: Toker requests authentication by transmitting its Hjp, to the verifierB.

Verifier B selects one or more challenges from the database usirg,ghand transmits them

across an unsecured channel to the fielded token. TAlegpliesc; to the PUF to generatg,

which is transmitted tdB for verification.B compareg; with r;’ andacceptsif the two bit-

strings match with a tolerancéiDj,,, andrejectsotherwise. VerifierB removes thecrp;

from the database as a countermeasure to replay attacks.

Prover (token ht; with ID;) Verifier (server)
r; = PUF(c)) «— (c;,r;) with jO[1...n] and
c. « TRNQ)

(c;.r;) - DB[ID;]

(Server gens. challengesand stores CRPs in DB[|P

b DB[ID;] - (¢, ry)

Enrollment

c (Server selects,)
1 _ 4—“ n=0n —1
Mn = PUF(Cn) (CRP is deleted from DB)

(PUF generates responsg with errors) r’'

?
— * HDjya(rp r'y) <€

Authentication

Accept if match has HRy,4
less than noise margin

Fig. 12. Naive Strong PUF Authentication [38][121].



The protocol has the benefit of being simple to implement and is very lightweight for the
token. The inability of the PUF to precisely reproduce the respon&e simple schemes that do

not attempt error correction or error avoidance) makes it necessary to implement a error-tolerant
matching scheme withiD;. 4 > 0. It should be noted however that large valuesH®;, 5

increase the chance of impersonation, and act to reduce the strength of the authentication scheme.
A second drawback is the large number of challenge-response pairs that must be recorded during
enrollment, as a means of ensuring that authentication can be carried out over a long period of
time. This increases the storage requirements for the verifier, since the worst-case usage scenario
must be accommodated, and/or creates inconveniences for users who exceed the stored CRP
capacity. Other drawbacks include the lack of resistancedetuial of serviceattacks, whereby
adversaries purposely deplete the server database, the inability to carry out privacy-preserving or
mutual authentication and the susceptibility of the scheme to model-building attacks [122]. The
latter is the primary driver for the requirement thatraly strong PUF be used for authentication
protocols with unprotected interfaces, of which this simple protocol is an example.

A growing list of proposed protocols address these short-coming by incorporating crypto-
graphic primitives on the prover and verifier side [19][21][39-40][123]. The inclusion of crypto-
graphic primitives enable significant improvements to the security properties of the protocols, and
additionally allow for privacy-preserving and mutual authentication. However, their use, in many
cases, requires error-free response bitstrings from the PUF, which in turn relelipes datato
be stored with the CRPs on the server. Many recent protocols target low-cost, resource-con-
strained applications, e.g., RFID, and attempt to minimize the implementation footprint and
energy profile on the token side. Error correction algorithms, sudeasre sketchd26-27], are
asymmetric in terms of their computational cost, with helper data generation requiring fewer
resources than the process of using the helper data to correct bit flip errors in the regenerated
response. Recently proposed authentication protocols attempt to minimize the area and energy
requirements for token-side operations by leveraging this asymmetrical relationship. We discuss
several of these protocols below. An excellent review of these and other protocols
[28][38][40][124-137] is provided in [121][138].

6.2 Protocol 2: Controlled PUF

The most straightforward countermeasure to model building attacks is to protect the chal-
lenge-response interface to the PUF using cryptographic hash function][g)416 One possible
implementation of the protocol proposed foCantrolled PUFis shown in Fig. 13. The hash of
the challenge preventhosen-challengattacks. This is true because the hash is a one-way-func-
tion (OWF), which makes it computationally infeasible for the adversary to control the composi-
tion of the challenge applied to the PUF. Similarly, by hashing the output of the PUF, correlations
that may exist among different challenges are obfuscated, increasing the difficulty of model-build-
ing even further. The main drawback of using a OWF on the PUF responses as shown is a require-
ment that the responses from the PUF be error-free. This is true because even a single bit flip error
in the PUF’s response changes a large number of bits in the output of the OWF (avalanche effect).
The functionsGenand Repare responsible for error-correcting the response, using algorithms
that were described earlier in Section 3.3.

The protocol works as follows. During enrollment in a secure environment, a one-time inter-
face is used to allow the server to obtain PUF responsestoduced from randomly generated,

hashed challenges. The Genroutine produces helper dakei for eachr;, which is sent to the
token to produce a hashed version of the PUF respahsdhe 3-tuples<c;, r';, hd> produced



Prover (token ht; with ID;) Verifier (server)
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Fig. 13. Controlled PUF [16][121].

by multiple iterations of this algorithm are stored in the database for tbkgnAfter enrollment,

a fuse is blown to disable the one-time interface. Authentication is very similar except fGetine
operation. Note that the respon$gmust match the stored respomgén order for the authentica-

tion to succeed, i.e., error-correction eliminates the need for the ‘fuzzy matching’ component in
Protocol 1. Otherwise, the benefits and drawbacks are similar as those described for Protocol 1
with additional drawbacks related to the need for a cryptographic hash function and the increased
computational and energy cost associated Rép.
6.3 Protocol 3: Reverse Fuzzy Extractor

Maes et al. proposes a protocol basedewersed secure sketchitigat is designed to address
authentication in resource-constrained environments [19][123]. Their protocol uses the syndrome
technique proposed in [26] (see Section 3.3) for error correction but reverses the roles of the
prover and verifier, i.e., the prover (resource-constrained token) performs the lighter-@sght
procedure while the verifier (server) performs the compute-interReeprocedure. The same
process is carried out during enrollment and regeneration. Given that the sketching procedure pro-
duces a unique bitstring with bits that are different every time it is executed on the token, in order
to authenticate, the verifier is requireddorrect the original bitstringstored during enroliment to
match each of the regenerated bitstrings. In order to accomplish this, the helper data produced by
each run ofsenon the token is transmitted to the verifier.

The mutual authentication protocol proposed in [19] is graphically illustrated in Fig. 14. Sim-
ilar to previous protocols, enrollment involves the verifier generating challenges and storing the
PUF responses for ht, in a secure database (not shown). In the proposed protmagla single



CRPis stored for each token, which is indexedIBy in the server’s database, and then this inter-
face is permanently disabled on the token. The authentication process begins with the token on the
left generating the bitstring response againrasand then multiplying it by the parity-check
matrix HT of the syndrome-based linear block code to produce the helperhdata random
number generator is used to produce nongthat is exchanged with the verifier as a mechanism

to prevent replay attacks (see Section 4 for expository on traditional challenge-response authenti-
cation). The tupléD;, hd andn, is transmitted over an unsecured channel to the verifier,

Prover (token ht; with ID;) Verifier (server)
PUF - r’;
(PUF produces’))
hd = r' e H'
(Helper datéhd, computed usingen ID. hd.n
(Noncen; generated) (Server looks upp;)
r". = Rep(r;, hd) g
(And error corrects it to’ ) ‘§
n, « TRNQ) =
- (Noncen, generated) 2
h(1D;, hd, r';, n;, n,) = m, «M™M  m =h(ID,hd,r",n,n,) 2
(Accept if match, else abort) (Unkeyed hash of protocol vals)
— h ! m2 " r)
m, = h(ID;, r';, ny) -2 h(ID;, 1", ny) = m,
(Unkeyed hash of protocol vals) (Accept if match, else abort)

Fig. 14. “Reversed secure sketching” mutual authentication protocol proposed in [26].

The verifier looks up the response bitstringenerated by this token during enrollment in the
secure database and invokes eproutine of the secure sketch error correction algorithm wiith
and the transmitted helper ddtg,. If the PUF responsg; and corresponding helper ddte, are
within the error-correcting capabilities of the secure sketch algorithm, the oritpat Repwill
match ther’; generated by the token. A second nongg,is generated to enable secure mutual
authentication (see Section 4) and a setiaghis applied to thdD;, helper datdnd;, the regener-
ated response bitstring ; and both nonces, andn, to producem,. The hashm, conveys to the
token that the server has knowledge of the responRsehich allows the token to authenticate the

server. This verification is carried out by the token by hashing the same values, except using its
own version of’; and comparing the output to the transmittad If a match occurs, ther; must

be equal ta” ;, and the tokemcceptsotherwise authentication of the server fails. The token then
demonstrates knowledge of by hashing it with itdD; and noncen, and transmitting the result
my, to the server. The server then authenticates the token using a similar process by comparing its
result withmy.

The helper data in this ‘reverse’ implementation of the fuzzy extractor changes from one run

of the protocol to the next, based on the number and position of the bits that flip during each
regeneration. The main drawbacks of the proposed scheme are that it is not privacy-preserving



and assumes that the helper data does not leak any information about the respdioseover,

since most PUFs can reliably reproduce more than 80% of the secret bitstring, any correlations
that occur in the helper data bitstrings introduced by these ‘constant’ secret bitstring components
may reveal information that the adversary can use to increase the effectiveness of reverse-engi-
neering attacks.

6.4 Protocol 4: Slender PUF Protocol

Majzoobi et al. proposed an authentication protocol [137] based on substring matching [112],
again designed to address authentication in resource-constrained environments. Their protocol
eliminates all types of cryptographic functions on the token, including hashing and error correc-
tion functions. The proposed protocol is demonstrated using a 4-XOR arbiter PUF, a variant of the
arbiter PUF shown in Fig. 3, in which the output of 4 copies of the arbiter PUF are XOR’ed as a
mechanism to increase its model-building resistance. The enroliment process involves building
compact models of the arbiter PUFs using a one-time interface that allows access to the individual
outputs and provides control over the input challenges. A compact model is a mathematical repre-
sentation similar to what an adversary would construct when model-building the PUF.

The benefit of storing the compact models is the ability to estimate the response of the 4-XOR
arbiter PUF for any arbitrary challenge. This capability is required in the proposed protocol
because the challenge is composed of two parts, one part generated by the prover and one part
generated by the verifier (using TRNGS). This ‘on-the-fly’ random challenge generation requires
the verifier to generate a ‘simulated’ PUF response from the compact model that closely matches
that produced by the actual PUF on the token. The prover’s contribution to the concatenated chal-
lenge makes it impossible for an adversary to carry out a chosen-challenge attack. A third feature
of the protocol relates to the manner in which authentication is performed. A seeded LFSR is used
to generate a sequence of challenges that are applied to the 4-XOR PUF to produce a response bit-
string. The prover then selects a fixed length substring randomly from PUF-generated response
bitstring and transmits it to the verifier. The verifier authenticates the token if it can find the sub-
string (within a predefined noise tolerance) in the corresponding estimate of the response bitstring
generated from the compact model. Revealing only part of the response bitstring adds again to the
difficulty of model-building.

The protocol is graphically portrayed in Fig. 15. The compact model is built during enroll-
ment in a secure environment using a sequence of CRPs applied to the individual arbiter PUFs.
The access mechanism is then disabled by blowing fuses. Authentication begins with the genera-
tion of challenges,, andcp by the verifier and prover, resp., which are concatenated and applied

to the PUF to produce responseA random index is then generated that serves as the starting
index into bitstringr. A substring ofr is extracted as', and is returned to the verifier along with
challengecp. The verifier uses the compact model to generate an estimate of the PUF resSponse

using the same concatenated challergd €p). Authentication succeeds if the verifier can locate

the substring’ as a substring irf within an error tolerance af

Although the protocol is very light weight for the token, and avoids NVM, the level of model-
to-hardware-correlation attained in the compact model must be very high and must be able to
accommodate changes introduced by TVNoise, resulting in considerable time and effort at enroll-
ment. PUFs that are easily modeled simplifies the development of the compact model, but also
represents somewhat of a contradiction to their required resilience to model-building attacks.
Also, the proposed protocol does not preserve privacy.
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Fig. 15. Slender PUF authentication protocol proposed in [137].

6.5 Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol

Aysu et al. recently proposed and implemented a PUF-based authentication protocol that pro-
vides bothprivacy and mutual authentication in resource-constrained environments [21]. They
adapt the privacy protocol proposed by [139] to work as a reverse fuzzy extractor, as described in
Section 6.3. The protocol ensures that an adversary is unable to identify or trace the tokens across
multiple mutual authentications, despite the adversary having the ability to monitor and control
communications and read out the contents of the token’s non-volatile memory (NVM). The proto-
col assumes circuit-level countermeasures are implemented in the tokens to guard against other
types of physical attacks, including fault injection and differential power analysis.

The protocol is designed to minimize the functional operations that are to be carried out by the
token, but given the privacy goal, the protocol requires the token to implement 4 cryptographic
primitives including theGenoperation of the fuzzy extractor algorithm, a symmetric encryption
algorithmEncg a random number generatbRNGand a pseudo-random functi®RF Moreover,
the token makes use of an NVM to store information between authentications, in particular, a
secret keysk; and a PUF challenge. However, the protocol is designed such that leakage of this
stored information cannot be used by an adversary to impersonate the token. In particular, the
stored challenge is used to allow the token to reproduce a specific PUF response while the secret
key is used to encrypt helper data produced by the fuzzy extra@ersoperation on the token.

The encryption of the helper data prevents the adversary from reverse engineering the helper data
in an attempt to learn the PUF response to the NVM-stored chatienge

Another key feature of the protocol, in support of the privacy objective, is the implementation
of a key update mechanism. After each successful authentication, the key stored on the token and



in the server’'s database is updated by applying a new challenge to the PUF and obtaining its
response, thereby creatinghainedsequence of keys across successive authentications. A copy
of the state information to be replaced is maintained as a countermeasure to de-synchronization,
and subsequent denial-of-service, attacks.

Prover (token ht; with ID;) Verifier (server)
sk, ¢, (sky, ¢;) « TRNQ) I
NVM , ite(SKq, €1) (Verifier generates secret kesg;, andg

PUF challenge
r, — PUF(c)) : g€y
1 ,  DB(skyry,Skyry)
(Server stores two copies for DB

8Enroll

NVM{ sk;, ¢, } DB(sky, 1, SKoia Fora) :

(Token storesk, and challenge;) 2

~—

n, n, « TRNQ) .‘2‘

r'1 ~ PUF( Cl) — (Server generates noneg g

(PUF regenerateas, using stored,) g

(z,, hd) — Gen(r) <

(Token distills entropy te; and gens helper datal) Fori in DB

hd,,,. = Enc(sk;, hd) (Search DB for match; =t'; where
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(Token encrypté with stored keysk) _ _ C _
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(PUF-keyed pseudo-random-function of nonces (Build noisy PUF response fron)

to produce a set of ke , , ,
T';N 5 (', . t's) « PRE(Z, 0y lIny)

C2 < Q) (Generatd, and check for match tg)

(Token generates challengg

If t, = t'; verify:

r, « PUF(c) . 2
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My enc= Moty If verified:
(Token XOR encrypts, with t,) ) = Ty encH s
(Recoverry)

m = PRP(tg hdg,cll Ty eno
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(Update DB)
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ID t; and MAC to server) , If both searches fail:
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4= 1y
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Fig. 16. Part 1: Mutual, Privacy-preserving authentication protocol proposed in [21][139].




A graphical illustration of the protocol operation is shown in Fig. 16. The Enroliment opera-
tion is carried out in a secure environment. The server generates a secedq eyl a challenge

c, that is stored in NVM on the token. The token generates a resperisem the PUF and pro-
vides it to the server through a one-time interface. The server stores two copieskyf amelr; in
its secure database. The combinatiorskgfandr; is used to derive an ID for the token, as dis-

cussed below.
The server begins the authentication process by generating a ngrvekich is transmitted to

the token. The token’s challengg is read from the NVM and used to generate a noisy PUF
response’ ;. TheGencomponent of the fuzzy extractor produ@g(an entropy distilled version

of r’ 1) and helper dathd. Helper datandis encrypted using the kesk; from the NVM to produce

hds,c The token then generates a nongeThe PUF-generated key, and the concatenated non-
ces(ny||ny) are used as input to a pseudo-random funcB&¥to produce a set of unique values

t, throughtg that are used as an ID, keys and challenges in the remaining steps of the protocol. A
second responssg is obtained from the PUF using a new randomly generated challEngéich

will serve as thechainedkey for the next authentication (assuming this one succeeds). It is XOR-
encrypted as, encfor secure transmission to the servieRF’ is then used to compute a MAG

usingtz as the key, over the concatenated, encrypted helper data and neWwdkgyire end to
allow the server to check the integrity bfl,,.andr, ¢ The encrypted valueisds,.andry enc
plusn,, t; andmare transmitted to the server. The ﬁom@eas usual, introduces ‘freshness’ in the
exchange, preventing replay attacks. The{Will be the target of a search in the server database

during the server side execution of the protocol.
The server begins an exhaustive search of the database, carrying out the following operations
for each entry in the DB: 1) decrypt helper d&id.,. using the current DB-storesk to produce

hd”, 2) constructz” using the fuzzy extractorBepprocedure and helper datd”, 3) computd’
throught’s from PRHZz", n4||n,) and 4) compare token generated valygvith t' 4. If a match is
found, then the server verifies that the token’s MAOnatches thdRF'(t'3, hepdlr2 end cOM-
puted by the server. If they match, then the token’s PUF-generatedzkisyrecov_ered using

(r> encXORt'5), and the database is updated by replacakg) €1, Skyig, roig) With (t's, o, Ski, r7).

If the exhaustive search fails, then the entire process is repeated s&NG €oigi)- If both
searches fail, the server generates a rantlgivhich guarantees failure when the token authenti-
cates). Otherwise, th&, produced from a match during the first or second search is transmitted to
the token. The token compares fiswith the received’,. If they match, the token updates its
NVM replacing €k, ¢;) with (ts, c,). Otherwise, the old values are retained.

Note that the old values are needed for de-synchronization attacks where the adversary pre-
vents the last step, i.e., the proper transmissiotidifom the server to the token. In such cases,

the server has authenticated the token and has committed the update to the DBswish <k,

r,) but the token fails to authenticate the server, so the token retains its old NVM vakyes;J.

On a subsequent authentication, the first search process fails to fitig, thecomponents but the
second search will succeed in findslg, r,. This allows the token and server to re-synchronize.

The encryption of the helper dakal, as mentioned, prevents the adversary from repeatedly
attempting authentication to obtain multiple copies of the helper data, and then using them to



reverse engineer the PUF’s secret. Note that encryption does not prevent the adversary from
manipulating the helper data, and carrying out denial-of-service attacks, so the MAC operation is
required to attain this security goal.

The weakest part of the algorithm is the very limited amount of PUF response information
maintained by the server, i.e, effectively only one PUF response. Although the authors claim that
circuit countermeasures can be used to prevent the PUF response from being extracted from the
token using, e.g., differential power analysis, the entire security of the protocol is based on this
premise. If, for example, the tokerzs, is extracted, a clone that impersonates the token can be

easily constructed (one that does not even need to embed a PUF), and once it authenticates suc-
cessfully the first time, the authentic token is barred forever from succeeding (denial-of-service).
The very limited amount of PUF response information stored on the server, although attractive
from a storage overhead point-of-view, makes it vulnerable to this type of de-synchronization
attack. Other issues relate to the requirement for NVM and the not-so-light-weight encryption
function, which work against the low-cost, resource-constrained objective.

6.6 Protocol 6: The HELP Authentication Protocol

Similar to Protocol 5, the HELP authentication protocol is privacy-preserving and mutual, tar-
gets resource-constrained tokens and makes the same assumptions regarding adversarial threats to
the token and server [117]. However, HELP does not make use of NVM, does not implement pri-
vacy using ahainedkey-update mechanism and requires no cryptographic operation to be imple-
mented on the token. The protocol is unique among those discussed in that it store®fPUF
informationon the server instead of bitstrings or PUF models. Soft information refers to digitized
path delay values, which from Section 5.4.2, can each be represented as an 14-bit value, depend-
ing on the digital clock manager parameters. When combined with the set of user-defined param-
eters described in Section 5.4, includiMgdulus Margin, p andRng two 11-bit LFSR Seedsnd
a Path-Selection-Maskhis feature, i.e., storing path delay information, provides some distinct
advantages over storing response bitstrings, as highlighted below.

The enrollment operation is graphically illustrated along the top of Fig. 17. The authentication
protocol uses a common set of challen§gg for all tokens as a mechanism to preserve privacy
while establishing the token’s identity on the server duringh@haseof in-field authentication.

The challengegc,} are transmitted to the token in a secure environment during enrollment and
applied as inputs to the PUF. A set of PN are produced and returned to the serf@jasihe
server generates an internal identifiey; for each token usingerverGenlDand stores the set
{PN} underlID; in the secure database.

A similar process is carried out during theithen Phasef enroliment except that the chal-
lenges are selected from a large set ussedpctChallenges(lpfor each token among those that
have been generated using random vectors or automatic test pattern generation (ATPG). The
server ensures that the selected set overlaps with those chosen for other tokens, but with no more
than 50% overlapping with any one token. This policy prevents the challenges usediutiies
Phaseduring in-field authentication from being used to track the token (explained further below).
The set of PN PN} generated in thé\uthen Phasare also stored, along with the challenge vec-
tors, in the secure database unt&r The number of structural paths for the data path component
of SHA-3 is larger than 860,000, with more than 80% testable, so the set of challenge vectors
available is large. Note that the task of generating 2-vector tests for all paths is likely to be compu-
tationally infeasible for even moderately sized functional units. However, it is feasible and practi-
cal to use random vectors and ATPG to target random subsets of paths for the enroliment
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Fig. 17. The HELP Authentication Protocol.

requirements.

The cardinality of PNy} is approx. twice that of PN} at 8192 but both are relatively smalll
because the parameters, particularly Bath-Selection-Maskallow an exponential number of
different combinations to be constructed over successive authentications. The example from Sec-
tion 5.4.7 uses thPath-Selection-Masto select 50 PN per challenge. In this case, the number of
challenges that need to be applied in tBeand Authen Phaseduring enroliment is approx. 80
and 160, resp.

The protocol for token authentication is shown in the bottom portion of Fig. 17. The token ini-
tiates the process by generating and sending a nojtethe server. The server generates a nonce



n,, retrieves the fixed set of challengeg}{and transfersi, and the challenges to the token. Both
the token and server compute; (XOR n,) to producens. This strategy prevents eéhosen-mes-

sageattack by adversaries, where the ‘message’ refers the HELP parameters. The XOR’ed nonce
Nz is used as input to &elParfunction to derive théviod, S p, Rng Mar parameters. Th8elPar

function selects bit fields in3 for use in a lookup-table operation pseudo-randomlgonstrain
the Mod andMar parameters to a specific set of values (as given in Fig. 11). Other bit fields are

used to defin@t andRng constrained, in this case, to a range of fixed-point values. The Saine
Par operation is carried out on the server. This component of the protocol is similar to the strategy
proposed for the Slender PUF Protocol described in Section 6.4 [137] but is used there for chal-
lenge selection.

The set £} of challenges are applied to the PUF to generate the Bbt;f. The difference,

TVComp and modulus operations shown on the right side of Fig. 4 are appliéNg{o gener-
ate the setfMIPNDc’}. Bitstring generation using the single helper data schedit&enSis then

performed as described in Section 5.4.4 usingMlae parameterBitGenSproduces a strong bit-
stringSBS’and helper data strifgd, which are both transmitted to the server.
A search process is carried out on the server, where ¢} data for each tokenin the

database is processed in a similar fashion. However, bitstring generation is carried out using the
dual helper data schemBi{GenD). BitGenDreturns arSBScomputed using the server data and a
modified bitstringSBS”, which is a reduced-in-size version of the tokeBBS’(see section 5.4.4

for details). The search process terminates when the number of bits that dEfBSaEndSBS”is

less than a toleranae(which may be zero) or the database is exhausted. In the former case, the
token identifierD; is passed to thAuthen PhaseOtherwise, authentication terminates with fail-

ure at the end of th® Phase

Note that token privacy is preserved in ttiePhasebecause, with high probability, the trans-
mitted informationSBS’andhd’ will be different from one run of the protocol to the next, given
the diversity of the parameter space providedd, S, 1, Rng Mar andPath-Select-MaslAlso
note that this is a compute-intensive operation for large databases because the difference,
TVComp, modulus and BitGenD operations must be applied to each server data set. However, the
search operation can be carried out in parallel on multiple CPUs given the independence of the
operations. Trial run experiments without any type of explicit parallelism yields runtimes of 200
us per database entry using a database of 10,000 elements when evaluated on an Intel i7-4702HQ
CPU @ 2.2 GHz running Linux.

The Authen Phasés not shown but is identical to tH® Phasewith the following exceptions.
The subset of 80 token-specific challengeg {are randomly selected from the larger set of 160
in {c,} that were applied during enrollment. As indicated earlier, the 160 challenges selected for a
token overlap with those selected for other tokens, making it impossible for adversaries to track
specific tokens across multiple authentications. A second difference is thatithenphase rep-
resents thenutual authenticatiorstep, in which the server is authenticated to the token. There-
fore, the server generates tB8S’andhd’ using the Single Helper Data scheme, which are then
transmitted to the token, and the token implements the Dual Helper Data scheme and fuzzy match

operations (opposite to that shown in Fig. 117I)his is possible in a resource-constrained environ-

1. If needed, an optional third phase can be implemented to carry out a second token
authentication but using tHe,} challenges instead of thie Phase {¢} challenges.



ment because of the symmetry in energy requirements of the proposed error avoidance schemes,
i.e., the work performed by the Single Helper Data and Dual Helper Data schemes are nearly the
same.

7. PUF-based Authentication for SoC
System-on-chip (SoC) devices continue to proliferate as core components in loT applications.

Although not considered a resource-constrained device, the heterogeneous multi-core, multi-tech-
nology characteristics of SoCs, many of which integrate third party IP, make them easy targets for
sabotage, reverse engineering, substitution and cloning. The threat is exacerbated when the SoC
integrates cryptographic IP blocks. PUF-based authentication mechanisms can be used to detect
manipulation and substitution in the supply-chain and later as installed components in fielded sys-
tems.

Applications of PUF-based authentication in SoC is expanding. Recent work focuses on pre-
venting scan chain attacks, carrying out entity authentication and providing authentication of bit-
streams for FPGAs. For example, the authors of [140] propose a secure test wrapper which allows
testing of multiple IP blocks using PUF-based authentication as a mechanism to improve the
security of SoCs that embed IP cores. A low-cost PUF-based authentication architecture designed
to secure code execution in 10T SoCs is proposed in [141] The proposed architecture extracts a
PUF-based key from the processor’s cache to address threats against code and data authenticity
and integrity. A scan chain PUF is proposed in [142] for authenticating SoCs as part of an Infra-
structure IP designed to provide multiple security functions. An overview of traditional and mod-
ern-day bitstream authentication (and encryption) in FPGASs is provided in [143].

8. Conclusion
Authentication protocols, although proposed initially for digital systems over 40 years ago,

continue to evolve as new cryptographic functions, such as the Physical Unclonable Function,
become available as primitives for enabling physical layer security properties including secure
key generation and storage. Adversarial attack surfaces are widening with the proliferation of
low-cost and embedded devices for home automation, RFID, smart cards/cars/grids, embedded
medical devices, and other types of Internet-of-Things applications. Adversarial attack mecha-
nisms, including physical-layer information extraction techniques, model building and sophisti-
cated network communication tracking algorithms, exacerbate the task of implementing secure
unilateral, mutual and privacy preserving authentication protocols. The introduction of PUFs as
primitives can be leveraged to serve as significant countermeasures to adversarial attack mecha-
nisms, particularly for authentication in resource-constrained environments.

This chapter covered both traditional and emerging PUF-based authentication protocols. The
primary function of a PUF is to securely generate and store secrets, that can be converted, at any
instance in time, into bitstrings for direct use in authentication functions and/or as keys for hash-
ing and encryption functions within authentication protocols. The source of a PUF’s entropy is
based primarily on within-die variations that occur among circuit components of an integrated cir-
cuit. Within-die variations are uncontrollable and unique to each copy of the IC, which allows the
PUF to produce unclonable and instance-specific bitstrings.

The integration of PUFs into commercial products is not yet wide-spread. However, published
work on PUF constructions and their use in security and trust protocols is growing day-by-day. A
wide variety of PUF primitives exist, each with distinctive characteristics related to the number of
generated bits (weak vs. strong), robustness to on-chip noise sources, and the statistical quality of
the generated bitstrings, e.g., randomness and uniqueness. Existing work shows how PUFs can



address shortcoming and provide new capabilities to traditional software-based approaches to
authentication but, as discussed in [121][138], care must be taken to properly characterize the
security properties of specific PUF constructions in order to ensure functional and/or practical
implementations.
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