LAB Assignment #2 for ECE 525

Assigned: Mon., Feb. 24, 2016
Due: Wed., Mar. 2, 2016

Description: Analyze the timing values produced by the HELP
1) Program the Zedboard with your bitstream (or the one that I have provided on my website)
2) Transfer the Linux_GPIO_version.elf to the Zedboard using scp (see ‘Zedboard instructions

for creating a project, programming the board and configuring linux + network’ link on the

course webpage. The elf file is located in the project directory at:
Vivado/WDDL_AES_SBOX_NR/AES_SBOX_WDDL/AES_SBOX_WDDL.sdk/Linux_GPIO_version/Debug

2) Transfer the vector file from the TestVectors directory from the tar.gz file that I supplied to you:
AES_SBOX_456_WDDL_ATPG_risingfalling HW_vecfile.txt

3) Run the program from the / directory as follows (‘mv’ the two files above from ‘root’ to ‘/’ if
needed):
JLinux_GPIO_version.elf Cx 0 0 AES_SBOX_456_WDDL_ATPG_risingfalling_ HW_vecfile 0

Substitute the ‘x’ in Cx with the number from your board.

4) The PUF timing values are stored in:
/tmp/Cx_25C_1.00V_E_PUFNums.txt

5) Transfer the timing values produced by the Zedboard to your host computer using scp

6) The functional unit is a WDDL version (glitch-free) of the AES SBOX with the following
inputs and outputs:

PIs: true compl.

8 8
SBOX
POs: 18 8

7) The format of the file is as follows:
V: x O:y C:z T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11l T12 T13 T14 T15 T16 0

‘V’ is vector number (0 to 11,595)

‘O’ is output number (0 to 15)

‘C’ is a counter (0 to 116,287)

‘Tx’ are 16 samples of the timing values associated with the path.

8) Write a perl program that reads the data into an array and carries out the following process:

a) Compute the average values of the 16 Tx values on each line

b) Compute randomized differences:

In part A, we will work with the first 4,096 timing values (numbered O to 4,095) of the
116,288 total number of values.

Divide the first 4,096 average values into two groups. For each sequential value numbered 0 to
2,047 in the first group, pseudo-randomly select a value in the second group (from 2,048 to
4,095) using the following LFSR code. Note: this code returns a value between 0 and 2,047
that must be offset by adding the constant 2,048 to the returned value. Use a ‘seed’ of 1.

sub LFSR_11_A_bits
{
my ($load_seed, $seed, S$lfsr) = @_;

my (bit, Snor_bit);

£

Load the seed on the first iteration
if ($load_seed == 1)
{ $lfsr = $seed; }
else

{

£

Allow all zero state. See my BIST class notes in VLSI Testing. Note, we use low order bits
here because bit is shifted onto the low side, not high side as in my lecture slides.

=

if (1 ((($lfsr >> 9) & 1) == 1) || ((($lfsr >> 8) & 1) == 1) ||
((($lfsr >> 7) & 1) == 1) || ((($lfsr >> 6) & 1) == 1) || ((($1lfsr >> 5) & 1) == 1) ||
((($1fsr >> 4) & 1) == 1) || ((($1fsr >> 3) & 1) == 1) || ((($1fsr >> 2) & 1) == 1) ||
((($1fsr >> 1) & 1) == 1) || ((($1lfsr >> 0) & 1) == 1)))
{ $nor_bit = 1; }
else
{ $nor_bit = 0; }
xor_out := rand(10) xor rand(8);
$bit = (($lfsr >> 10) & 1) ~ (($1lfsr >> 8) & 1) ~ S$nor_bit;

Change the shift of the bit to match the width of the data type.
Slfsr = (($lfsr << 1) | Sbit) & 2047;

#printf "LFSR value %dNOR bit value %dlow order bit %d\n", $1lfsr, Snor_bit, $bit;
}

return $1lfsr;

}

In your loop that creates the differences, the first call to the LFSR should be as follows:
$lfsr = 0

($1lfsr) = LFSR_11 A _bits(l, Sseed, S$lfsr);

All of the 2,047 subsequent calls should be made as follows:

($1fsr) = LFSR_11 A _bits (0, Sseed, $lfsr);

c¢) For each of the 2,048 difference values, compute the a modulus of the values using a modu-
lus of 64.

d) Compute a bitstring using the following procedure. The difference values after computing
the modulus can be represented as a graph shown below. Here, MPNDc stands for modulus-
PUFNum-difference-compensated, where refers to the values you computed after completing
step c¢) above (you have not compensated the values yet -- we’ll do that later). The x-axis plots
the index of consecutative values in your array while the y-axis represents the computed val-
ues). In order to avoid bit flip errors, you need to apply a margin technique that excludes spe-
cific MPNDc’s from participating in the bitstring generation process. The margin in the

following illustration is set to 6. The margin creates weak-bit regions around the bit-flip lines
0, 31 and 63. MPNDc’s that fall within these weak-bit regions have a higher probability of
introducing a bit flip error during regeneration than those in the strong-bit regions.

03 weakchitreg . |
strong-bit reg.
o . e bit=1 . ° ..
A R S — N
E 26 A b A
* bit=0 . strong-bit reg. *
0 [Weak=bitreg. * =]
1| I I I |5 I I I I 1|O I I I I 1|5 I I I |
Index of MPNDc

For example, if we were to re-collect the MPNDc’s under other environmental conditions, i.e.,
with different supply voltage values and/or temperature conditions, the values will shift as
shown by the following set of curves. The red dots represent a ‘worst-case’ shift that occurs to
each MPNDc. The vertical shift in MPNDc’s that are close to the bit-flip lines can result in the
MPNDc value being re-classified from a ‘1’ to a ‘0’ or vise versa (identify where this occurs
in the graph).

03 [weak-bit reg.”
strong-bit reg.
bit=1 /\

37
26

MPNDc

{ bit=0
> [Weak=hit reg.

T T T [T T T T T T 1
1 5 10

Index of MPNDc
Therefore, MPNDc’s that fall within the weak-bit regions are to be skipped when generating
the bitstring. For example, the strong bitstring generated by processing the MPNDc’s shown
the graph is as follows:

_7

[0[1[1]0]1]1]1]1]0]

So only 9 bits of the possible 18 are actually used. A helper data bitstring is also generated
that identifies which bits are classified as strong-bits during the enrollment process (blue
points).

[L[tjo[o[t]o[1[1]1]o[t]o[t]o[1]1]1]O]
1 5 10 15

The helper data bitstring is used during regeneration to ‘select’ the MPNDc values to be used
for generating the bitstring, i.e., the margins are NOT used during regeneration. The helper
data bitstring does NOT reveal any information about the bitstring itself, which is the secret
generated by the PUF.

Apply this technique to the subset of 2,048 MPNDc values that you obtain from step c) above.

