
LAB Assignment #6 for ECE 525

Assigned: Tue., Mar. 7, 2017

Due: Thur., March. 9, 2017

Description: Process PND into PNDc, PNDco and modPNDco

1) This lab adds to the code you created for lab5, and assumes you did not do the extra credit por-

tion of creating the PNDc.

2) From lab5, you have an array of floating point values, PND, of size 2048. Write a routine that

computes the PNDc as follows. Functional definition should look similar to this:

void ComputePNDc(int max_PNDiffs, float PND[max_PNDiffs], float

PNDc[max_PNDiffs], float reference_mean, float reference_range)

3) Use the following equation to convert from PND to PNDc:

The constants µTVx and RngTVx are computed as the mean and 3*standard deviation using the

values in the PND array. Multiply the computed standard deviation by 3 to obtain the Rng (range).

Look up the mean and standard deviation formulas on wikipedia under Gaussian distributions.

Make the reference_mean and reference_range equal to 0 and 100, respectively.

4) PNDc are then transformed by adding a random offset to another new array, PNDco. Functional

definition should look similar to this:
void ComputePNDco(int max_PNDiffs, float PNDc[max_PNDiffs], float

PNDco[max_PNDiffs], int LFSR_seed, int Modulus)

The random offset is restricted to a value between 0 and Modulus/2. The random offset is com-

puted individually for each PNDc using an LFSR as follows:

Use the two calls to the LFSR that I provided for lab5, one that initializes and returns the first
LFSR value, one that returns only the next value in the LFSR sequence.
Divide the parameter Modulus by 32 and store this constant in a variable called offset_delta.
For each LFSR value that is returned, mask off (make zero) all bits from 4 to 31 (use ONLY
the low order 4 bits, i.e., bits 0 through 3, of the LFSR value).
Multiply the 4-bit LFSR by the offset_delta and then add it to the PNDc. Store the new value
in the same position but in the new PNDco array.

Use a seed of 0 for the LFSR and a Modulus of 20.

5) The modulus operator is then applied to the PNDco to create modPNDco. Functional definition

should look similar to this:
void ComputeModulus(int max_PNDiffs, float PNDco[max_PNDiffs], float modP-

NDco[max_PNDiffs], int Modulus)

Eq. 1.
zval

i

PND
i

µ
TVx

–()

Rng
TVx

---------------------------------------=

PNDc zval
i
Rng

ref
µ

ref
+= Eq. 2.

The PNDco are floating point values so you’ll need to compute the Modulus of the PNDco using

the following pseudo-code:
while(1)

 if PNDco < 0, add Modulus to modPNDco

 else if PNDco > Modulus, subtract Modulus from modPNDco

 else break

The modPNDco are the floating point values from which you will generate the bitstring in the next

lab.

