
LAB Assignment #3 for ECE 525

Description: Regeneration: Process HELP Timing Data into PND and PNDc

The HELP algorithm for regeneration consists of a sequence of modules called PNDiffs, TVComp,

Modulus and then BitGen (see PUFs II(F) through II(J)). In this lab, you will write C code to

implement the first two of these modules. The remaining modules will be implemented in subse-

quent labs. The goal is to build a codesign version of HELP regeneration with a portion of it run-

ning in the PL-side (hardware), namely the LaunchCapture timing engine component, and the

remaining portion running on the PS-side (software). The enrollment version that you ran in lab

#2 implements the hardware component. You will reuse the PL-side for regeneration and will

modify the enrollment C code to implement the regeneration version.

The enrollment version accepts challenge vectors from the server, transfers them to the PL-side

through a GPIO register, starts the LaunchCapture timing engine, retrieves the digitized timing

values from a second GPIO register and transmits the timing values back to the server over the

network. You should preserve this operation in the regeneration version except for the last step,

i.e., do not transmit the timing data back to the server. Instead, store the timing values into two

arrays, PNR and PNF, and process the 2048 PNR and PNF through the HELP modules as

described below and in the following labs.

0) I have provided you a starter program token_regeneration.c that you should modify as

described below. You also need to run a new version of the verifier that is stored in the PROTO-

COL directory. You can compile it on your laptop or UNM server by running ./compile.csh. You

run the verifier_regeneration on your laptop or UNM server BEFORE running

token_regeneration.elf on the Zybo board (as was true for lab2). See the README.txt file for the

command line parameters.

1) The enrollment version stores the PN in an array as each vector is transferred through the GPIO

register. The array is dimensioned as a 64 x 16 (2-D array of PN and samples).

This 2-D array shows the functional unit outputs as a set of 64 rows and the samples in 16 col-

umns. Note that challenge vectors rarely generate timing values for all 64 outputs. Usually, only a

subset of this array is filled in with actual timing data, with as few as only 1 row of data for some

challenge vectors as shown above. The values read from the hardware through the GPIO register

are always integers as shown. You need to first compute the average value for each row as shown

by the column on the far right. Only the average value for each row is to be stored in the 1-D PNR

Table 1: 2-D array of PN collected per vector

Output S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Ave

0 307 307 308 308 308 308 308 308 308 308 308 308 308 307 309 308 307.8750

1

...

63

and PNF arrays. Round to 4 binary digits of precision when computing the floating point average

by using the following formula, where ave is the floating point average:
PNR[i] = (float)((int)(ave*16.0))/16.0

When printed as base 10 values, you should only see the following fractions, .0000, .0625, .1250,

..., .9375 in the PNR and PNF array.

NOTE: All of the floating point arrays that you will create and store data into, including PND,

PNDc, PNDco, modPNDco, should round to 4 binary digits as you do here. This is to ensure that

the values you compute are consistent with the server version (I will provide the server version of

regeneration in a later lab).

NOTE: You will need to determine if the challenge vector that is being applied is a rising or fall-

ing vector so you know which array, PNR or PNF, to store the average values into. This informa-

tion is given as the num_rise_vecs in the ReceiveVectors routine in the enrollment version (which

you will reuse in your regeneration version).

2) Once all 2048 PNR and 2048 PNF are collected into the arrays, then you need to implement the

PNDiff module to compute the differences. Store the differences in a 1-D PND floating point array

of 2048 elements as described below.

3) Add the following code to your new token_regeneration.c file. It defines two 11-bit LFSRs that

count pseudo-randomly from 0 to 2047. You will use these below to compute PND by subtracting

a falling PN from a rising PN.

//==

//==

uint16_t LFSR_11_A_bits_low(int load_seed, uint16_t seed)

 {

 static uint16_t lfsr;

 uint16_t bit, nor_bit;

/* Load the seed on the first iteration */

 if (load_seed == 1)

 lfsr = seed;

 else

 {

/* Allow all zero state. */

 if (!((((lfsr >> 9) & 1) == 1) || (((lfsr >> 8) & 1) == 1) ||

 (((lfsr >> 7) & 1) == 1) || (((lfsr >> 6) & 1) == 1) || (((lfsr >> 5) & 1) == 1) ||

 (((lfsr >> 4) & 1) == 1) || (((lfsr >> 3) & 1) == 1) || (((lfsr >> 2) & 1) == 1) ||

 (((lfsr >> 1) & 1) == 1) || (((lfsr >> 0) & 1) == 1)))

 nor_bit = 1;

 else

 nor_bit = 0;

 bit = ((lfsr >> 10) & 1) ^ ((lfsr >> 8) & 1) ^ nor_bit;

/* Change the shift of the bit to match the width of the data type. */

 lfsr = ((lfsr << 1) | bit) & 2047;

 }

 return lfsr;

 }

//==

//==

uint16_t LFSR_11_A_bits_high(int load_seed, uint16_t seed)

 {

 static uint16_t lfsr;

 uint16_t bit, nor_bit;

/* Load the seed on the first iteration */

 if (load_seed == 1)

 lfsr = seed;

 else

 {

/* Allow all zero state. */

 if (!((((lfsr >> 9) & 1) == 1) || (((lfsr >> 8) & 1) == 1) ||

 (((lfsr >> 7) & 1) == 1) || (((lfsr >> 6) & 1) == 1) || (((lfsr >> 5) & 1) == 1) ||

 (((lfsr >> 4) & 1) == 1) || (((lfsr >> 3) & 1) == 1) || (((lfsr >> 2) & 1) == 1) ||

 (((lfsr >> 1) & 1) == 1) || (((lfsr >> 0) & 1) == 1)))

 nor_bit = 1;

 else

 nor_bit = 0;

 bit = ((lfsr >> 10) & 1) ^ ((lfsr >> 8) & 1) ^ nor_bit;

 lfsr = ((lfsr << 1) | bit) & 2047;

 }

 return lfsr;

 }

4) Write a routine that computes the PND as follows. The function definition should look similar

to this:
float ComputePNDiffs(int max_PNDiffs, float PNR[max_PNDiffs], float PNF[max_PNDiffs],

 float PND[max_PNDiffs], int LFSR_seed_low, int LFSR_seed_high)

‘max_PNDiffs’ should be set to 2048 when you call this routine from main. The ‘PNR’ and PNF’

arrays are the array names that store the 2048 rising and falling average PNs, resp. ‘PND’ is a new

array that you create in main (in addition to PNR and PNF), dimensioned as a 1-D array of 2048

floating point elements. ‘LFSR_seed_low’ and ‘LFSR_seed_high’ are parameters that can be set

to any value between 0 and 2047. For the trials, use 0 and 0 for the two seeds when you call this

routine from main.

5) You need to create a ‘for’ loop that computes the PND from the PNR and PNF. Add calls to the

LFSRs as follows on the FIRST ITERATION ONLY:
lfsr_val_low = LFSR_11_A_bits_low(1, (uint16_t)LFSR_seed_low);

lfsr_val_high = LFSR_11_A_bits_high(1, (uint16_t)LFSR_seed_high);

‘lfsr_val_low’ and ‘lfsr_val_high’ can be used as indexes into PNR and PNF to select the two val-

ues used in the difference and stored in the PND array. Always store the difference value in the

PND array at the index given by ‘lfsr_val_low’.

6) On subsequent iterations, use the following calls to obtain the next set of ‘lfsr_val_low’ and

‘lfsr_val_high’ indexes for the remaining 2047 PND:
lfsr_val_low = LFSR_11_A_bits_low(0, (uint16_t)0);

lfsr_val_high = LFSR_11_A_bits_high(0, (uint16_t)0);

7) The TVCOMP module used within HELP is described in the screencasts. Use the following

pseudo-code to develop your C version of this module. ComputeBoundedRange creates a histo-

gram distribution of the PND:

ComputeBoundedRange(int max_PNs, int num_PNs, float PN_vals[max_PNs], float rangel_low_limit,

 float range_high_limit, int DIST_range)

 {

 Find the smallest value in the array of 2048 PND and store it in smallest_val (note, PND is usually

 a negative number)

 Create and zero out an integer array called PN_bins that is dimensioned of size DIST_range

 For each PND,

 Subtract the smallest_val from the PND

 Round up by adding 0.5

 Truncate to an integer using (int)

 Use this value as an index into the PN_bins array

 Add one to the indexed cell in PN_bins

 Set sum = 0.0, low_done = 0, low_index = 0 and high_index = 0

 For each bin i in PN_bins

 Add PN_bins[i] to sum

 Check if low_done is 0 and sum >= range_low_limit

 If true

 Set low_done to 1

 Save the current bin number into low_index

 Check if sum <= range_high_limit

 If true

 Save the current bin number into high_index

 Return range as high_index - low_index

 }

Use the following pseudo-code to develop your C version of this module. TVCOMP computes the

mean and range of the original PND distribution, applies two transforms and stores the results in a

1-D floating point array PNDc. Note that the constants range_low_limit, range_high_limit and

DIST_range are already defined in common.h.
void TVComp(int max_vals, int num_vals, float PND[max_vals], float range_low_limit,

 float range_high_limit, int DIST_range, float reference_mean, float reference_range,

 float PNDc[max_vals])

{

Compute the mean of the PND array values and store in orig_mean

Compute the range of the PND (call ComputeBoundedRange) and store in orig_range

For each PND

 Standardize the PND, i.e., subtract orig_mean and divide the difference by orig_range

 Compute the PNDc by applying 2nd transform, i.e., multiply standardized PND by reference_range

 and add in the reference_mean

}

8) Create a lab report that includes a description of this lab. Include a copy of your Compute-

BoundedRange and TVComp C code. Run your code on the Zybo board and generate a histogram

graph using your favorite software (matlab) of the PND and PNDc arrays. Use 0 for the

reference_mean and 180 for the reference_range. Report the original mean and range of the PND.

As noted above, use 0 for both the LFSR_seed_low and LFSR_seed_high parameters to the Com-

putePNDiffs module.

