
LAB Assignment #5 for ECE 525

Description: Process modPNDco into strong bitstrings

1) This lab adds to the code you created for in the previous lab and implements HELP’s Single

Helper Data scheme as described in the screencasts. After the last lab, you have an array of float-

ing point values, modPNDco, of size 2048. Write a routine that computes the strong bitstring and

helper data bitstring described as follows and in the HELP screencasts.

The modPNDco values can be represented as a graph shown below. The x-axis plots the index

of consecutative values in your array while the y-axis represents the computed values. In order
to avoid bit flip errors, you need to apply the HELP Margining technique that excludes spe-
cific modPNDco from participating in the bitstring generation process. The margin in the fol-
lowing illustration is set to 2. The margin creates weak-bit regions around the bit-flip lines 0,
10 and 20. modPNDco that fall on or within these weak-bit regions have a higher probability

of introducing a bit flip error during regeneration than those in the strong-bit regions.

For example, if we were to re-collect the modPNDco under other environmental conditions,

i.e., with different supply voltage values and/or temperature conditions, the values will shift as
shown by the following set of curves. The red dots represent a ‘worst-case’ shift that occurs to
each modPNDco. The vertical shift in modPNDco that are close to the bit-flip lines can result

in the modPNDco value being re-classified from a ‘1’ to a ‘0’ or vise versa (identify where this

occurs in the graph).

0

20

Index of modPNDco

bit = 0

bit = 1

strong-bit reg.

weak-bit reg.

weak-bit reg.

weak-bit reg.

1 5 10 15

strong-bit reg.

2

8

12

18

m
o

d
P

N
D

co

0

20

Index of modPNDco

bit = 0

bit = 1

strong-bit reg.

weak-bit reg.

weak-bit reg.

weak-bit reg.

1 5 10 15

strong-bit reg.

2

8

12

18

m
o

d
P

N
D

co

Therefore, modPNDco that fall within the weak-bit regions are to be skipped when generating

the bitstring. For example, the strong bitstring (SBS) generated by processing the modPNDco

shown by this graph is as follows (NOTE: values that fall ON the line are considered weak):

So only 11 bits of the possible 18 are actually used. A helper data bitstring is also generated
that identifies which bits are classified as strong-bits (blue points) during the enrollment pro-
cess.

The helper data bitstring is used during regeneration to ‘select’ the modPNDco values to be

used for generating the bitstring, i.e., the margins are NOT used during regeneration.

The following pseudo-code can be modified to use of two functions for inserting bits into and
extracting bit from the array of unsigned char bytes used to store the strong bitstring and
helper data bitstring.
int GetBitFromByte(char byte, int bit_pos)

 { return ((byte & (1 << bit_pos)) == 0) ? 0 : 1; }

void SetBitInByte(char *byte_ptr, int bit_val, int bit_pos)

 { *byte_ptr = (bit_val == 0) ? (*byte_ptr) & ~(1 << bit_pos) : (*byte_ptr) | (1 << bit_pos); }

int SingleHelpBitGen(int max_PNDiffs, float fmodPNDco[max_PNDiffs], unsigned char SBS[max_PNDiffs/8],

 unsigned char SHD[max_PNDiffs/8], unsigned short Margin, unsigned short Modulus)

 {

 set floating point threshold to Modulus/2

 set SBS_num_bits to 0

 for each fmodPNDco

 {

 Decide if current fmodPNDco generates a 0 or 1 bit

 Classify the current fmodPNDco as a strong or weak bit

 Store the helper data bit into the SHD array

 For those fmodPNDco classifed as strong, add the strong bit to the SBS array

 }

 return the number of strong bits

 }

4) Create a lab report that includes a description of this lab. Include a copy of your ComputeP-

NDco and ComputeModulus C code. Use a Modulus of 20 and a Margin of 3 in your trial runs.

Run your code on the Zybo board and generate the strong bitstring and helper data bitstring and

include both in your report.

0 1 1 0 0 1 1 1 1 1 0

1 5 10 15
1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0

