
LAB Assignment #2 for ECE 525

Description: Run HELP Enrollment Process

This lab is the first one in a sequence, where each will build on previous labs and culminate in the

project for this course. The goal of these labs and projects is to have you implement an actual

PUF-based authentication scheme that will authenticate your FPGA with a trusted authority (a

server). I have provided a set of 19 hardware implementations of the HELP PUF, as FPGA bit-

streams. Each implementation is identical in design but is placed in a different location on the PL

side of the FPGA (see PUFs II(A) through II(J) screencasts). Therefore, each of these bitstream

implementations represents a different token despite the fact that they are located on the same

FPGA device. I will refer to the 19 implementations as instances in the following.

The first step of the process is to run enrollment, which is what you will do in this laboratory. For

HELP, enrollment collects digitized timing data for a set of paths and stores the timing data in a

separate file for each instance. The timing data can then be combined into one large file, called the

MasterDB.txt file, and used for subsequent (in-field) authentications (PUF-based authentication

will be covered in detail in the screencasts including the HELP protocol that you will use here).

I have also provided the C code that you will use to collect enrollment data for the 19 instances.

The enrollment process involves running one C program on the server, called verifier_enrollment,

and a second C program on the Zybo board, called token_enrollment.elf. The two programs use a

network connection to communicate with each other. The verifier sends challenges to the token

and stores timing data sent by the token to a data file. The token_enrollment.elf program coordi-

nates with a PL-side implementation of the HELP algorithm. The VHDL code implementation of

HELP programmed into the PL-side carries out clock strobing to measure path delays of paths

defined within a combinational logic function, which is also embedded on the PL-side. The com-

binational logic function is a component of the AES encryption algorithm, and as we discussed in

the HELP PUF screencast, serves as the source of Entropy for HELP. The digitized path delays

are transferred through a GPIO interface between the PL and PS-sides on the FPGA. The token

program running on the PS-side collects this data and transmits it across the network to the veri-

fier.

The enrollment process is completely automated, i.e., once it is started, the timing data for all 19

instances is collected one-at-a-time and stored in a set of 19 data files on the verifier. The PL-side

programming operation is carried out within the C program as each instance is enrolled. There-

fore, you will not do any programming in this lab but rather will be exposed to the Xilinx SDK

tool, networking and other components of the experimental testbed. The sequence of steps you

need to follow are given below. A separate screencast, titled SDKInstruction_HELPEnrollment,

gives details on using the Xilinx SDK tool. The remaining laboratories and project will build on

what you do in this lab so I encourage you to use this lab to become familiar with SDK, linux and

the networking environment.

0) Create a directory called lab2 and cd into it.
mkdir lab2

cd lab2

1) Download the following files from lab2 from the course website.

From the PROTOCOL directory from the course website to your laptop in a directory called
PROTOCOL:
common.h
common.c
compile.csh
construct_MasterDB.csh
KG_FU_TVChar_NumSeeds_15_optimalKEK_TVN_0.60_WID_1.10.txt
KG_FU_TVChar_NumSeeds_15_optimalKEK_TVN_0.60_WID_1.10_masks.txt
Makefile_VE
verifier_common.c
verifier_common.h
verifier_enrollment.c
README.txt

From the SDK directory from the course website to your laptop in a directory called SDK:
common.h
common.c
token_common.c
token_common.h
token_enrollment.c

From the BITSTREAM directory from the course website to your laptop in a directory called
BITSTREAM:
*.bin (all 19 xxx.bin files)
design_1_wrapper.hdf

2) Compile the verifier code by running ‘compile.csh’ on your laptop. This creates

‘verifier_enrollment’ which you will run below.
cd PROTOCOL

./compile.csh

3) You do NOT need to create a Vivado project because we are giving you the bitstreams for the

board. You will need a hardware description of the project we built (when we created the bit-

streams) to pass to sdk so it knows what the hardware platform looks like. The hardware platform

is described in design_1_wrapper.hdf. You need to run the following command from the BIT-

STREAM directory:

xsdk -vmargs -Dorg.eclipse.swt.internal.gtk.cairoGraphics="false" &

Use the current BITSTREAM directory when prompted with ‘Select Workspace Directory’. Once

SDK opens, under ‘File’, ‘New’, ‘other’, choose ‘Hardware Platform Specification’ under ‘Xil-

inx’, then browse to the ‘design_1_wrapper.hdf’ file under ‘Target Hardware Specification’.

Select it and click ‘Finish’. This should add ‘design_1_wrapper_hw_platform_0’ to your sdk

Project Explorer.

4) Under ‘File’, ‘New’, ‘Application’, use ‘token_enrollment’ as the Project name, select linux as

OS Platform, and then empty application. This creates token_enrollment in the Project Explorer.

Add the source files from your SDK directory to the token_enrollment application and build the

application (see screencast).

5) The token_enrollment.elf file will be in the token_enrollment/Debug directory created under

the BITSTREAM directory. Use scp to copy token_enrollment.elf file to the Zybo board using:
cd BITSTREAMS/token_enrollment/Debug

scp token_enrollment.elf root@192.168.1.10:/

Replace the .1. with the IP you have been assigned.

6) Copy all *.bin files in the BITSTREAM directory to the /tmp directory on your Zybo board.
cd BITSTREAMS

scp *.bin root@192.168.1.10:/tmp

7) Execute ‘verifier_enrollment’
cd PROTOCOL

./verifier_enrollment 192.168.1.20

You MUST change the .1. to the IP you have been assigned.

NOTE: If after running ./verifier_enrollment command on your laptop, you get the following

message
ERROR: OpenSocketServer(): failed to bind!

Wait 30 seconds and try again. Keep trying, it will eventually connect to the socket and print
Waiting for incoming connections from clients for Enrollment

8) In a separate Xterm, ssh to the Zybo board and run token_enrollment.elf.
ssh root@192.168.1.10 (type root for the password)

cd /

./token_enrollment C1 192.168.1.20

Change the chip name from C1 to the number you have been assigned.

NOTE: If after running ./token_enrollment command on the Zybo board, you get the following

message
-sh: token_enrollment.elf: not found

Then you must change the compiler settings in SDK as follows:
Right click on token_enrollment in the Project Explorer pane

Select Properties (very bottom of drop-down menu)

Expand C/C++ Build tab

Select Settings

Click on ARM v7 Linux gcc assembler

Replace string in Command field with arm-xilinx-linux-gnueabi-gcc

Click on ARM v7 Linux gcc compiler

Replace string in Command field with arm-xilinx-linux-gnueabi-gcc

Click on ARM v7 Linux gcc linker

Replace string in Command field with arm-xilinx-linux-gnueabi-gcc

Press OK

This will recompile your code with the correct compiler. Transfer the token_enrollment.elf file to

the Zybo board, overwriting the version that produces the error:
scp token_enrollment.elf root@192.168.1.10:/

Replace the .1. with the IP you have been assigned.

9) If all goes well, the token_enrollment.elf command will finish and a set of 19 data files file by

the name ‘C1_V*_KG_FU_25C_1.00V_E_PUFNums.txt’ will be created on your laptop in the

PROTOCOL directory. This is the enrollment data for the 19 instances of the HELP PUF obtained

from your Zybo board.

10) Edit construct_MasterDB.csh and replace the C1 with the chip number you have been

assigned and run it.
./construct_MasterDB.csh

This script simply creates a MasterDB.txt file that is the concatenation of all the individual data

files. You can delete the 19 individual ‘C1_V*_KG_FU_25C_1.00V_E_PUFNums.txt’ files.

NOTE: The instance of HELP that is programmed onto the Zybo board is the last one pro-

grammed when you ran enrollment. For labs beyond this one, you can reprogram the board with

any of the 19 HELP instances by running the program_FPGA.elf program that I have provided in

the BITSTREAMS directory for this lab. Download program_FPGA.elf from UNM learn, trans-

fer it to your Zybo board and run it as follows:
program_FPGA.elf 10

This programs the FPGA with the 10th bitstream from the /tmp directory.

NOTE: Do not attempt to program the FPGA using xsdk or vivado. I have not provided the .bit

files that you would need for this, nor do you have permission to the usb programming ports.

Please use the program_FPGA.elf process instead.

