
LAB Assignment #4 for ECE 525

Description: Process PNDc into PNDco and modPNDco

1) This lab adds to the code you created for in the previous lab and implements the Offset and

Modulus operations that are part of the HELP algorithm.

2) From the previous lab, you have an array of floating point values, PNDc, of size 2048. Convert

the PNDc to PNDco as described by the pseudo-code and then store the values into a 5th 2-D float-

ing point array of 2048 elements (beyond the PNR, PNF, PND and PNDc arrays) called PNDco.

The following pseudo-code describes a method that will add a random offset to each the elements

in the new array PNDco. Later, when we implement the server portion of the authentication opera-

tion, you will replace the random offsets with values computed and transmitted by the server to

the token. Use the LFSR_11_A_bits_low routine provided in the previous lab in the LFSR calls

below. Note: random offset is restricted to a value between 0 and Modulus/2
void ComputePNDco(int max_PNDiffs, float PNDc[max_PNDiffs], float PNDco[max_PNDiffs],

 int LFSR_seed, int Modulus)

 {

 Divide the parameter Modulus by 32 and store this floatig point constant in a variable

 called offset_delta

 for each i in PNDc,

 if i is 0

 LFSR_11_A_bits_low: Initialize LFSR with LFSR_seed and get first LFSR_val

 else

 LFSR_11_A_bits_low: Get next LFSR_val

 Zero out bits 4 to 31 in LFSR_val using a mask, i.e., keep only the low order 4 bits

 Multiply LFSR_val by offset_delta (round to 4 bits of binary precision) and add to PNDc

 Store result in PNDco

 }

3) The modulus operator is then applied to the PNDco to create modPNDco. The PNDco are float-

ing point values so you’ll need to compute the Modulus of the PNDco using the following pseudo-

code
void ComputeModulus(int max_PNDiffs, float PNDco[max_PNDiffs], float modPNDco[max_PNDiffs], int Modulus)

 {

 for each PNDco

 Copy PNDco into modPNDco, rounding to 4 binary digits

 while(1)

 {

 if modPNDco is less than 0

 Add Modulus to modPNDco

 else if modPNDco is greater than 0

 Subtract Modulus from modPNDco

 else

 break

 }

 Round final modPNDco to 4 binary digits

 }

In your trials, use a LFSR_seed of 0 and a Modulus of 20 for the parameters to these routines. Use

the verifier_regeneration program from the previous lab.

4) Create a lab report that includes a description of this lab. Include a copy of your ComputeP-

NDco and ComputeModulus C code. Run your code on the Zybo board and generate a histogram

graph using your favorite software (matlab) of the modPNDco array.

