// ======================================================================================================== // ======================================================================================================== // ************************************************* aes.c ************************************************ // ======================================================================================================== // ======================================================================================================== // ********************** THIS VERSION IS RE-ENTRANT ************************** // This is an implementation of the AES128 algorithm, specifically ECB and CBC mode. #include #include #include "aes.h" // The number of columns comprising a state in AES. This is a constant in AES. Value=4 #define Nb 4 // The number of 32 bit words in a key. #define Nk 4 // Key length in bytes [128 bit] #define KEYLEN 16 // The number of rounds in AES Cipher. #define Nr 10 // jcallan@github points out that declaring Multiply as a function reduces code size considerably with the Keil ARM compiler. // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3 #ifndef MULTIPLY_AS_A_FUNCTION #define MULTIPLY_AS_A_FUNCTION 0 #endif // ======================================================================================================== // ======================================================================================================== // state - array holding the intermediate results during decryption. typedef uint8_t state_t[4][4]; //static state_t *state; // The array that stores the round keys. //static uint8_t RoundKey[176]; // The Key input to the AES Program //static const uint8_t* Key; // Initial Vector used only for CBC mode //#if defined(CBC) && CBC // static uint8_t* Iv; //#endif // ======================================================================================================== // ======================================================================================================== // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM. The numbers // below can be computed dynamically trading ROM for RAM - This can be useful in (embedded) bootloader // applications, where ROM is often limited. static const uint8_t sbox[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; // ======================================================================================================== // ======================================================================================================== static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // ======================================================================================================== // The round constant word array, Rcon[i], contains the values given by x to th e power (i-1) being powers // of x (x is denoted as {02}) in the field GF(2^8). Note that i starts at 1, not 0). static const uint8_t Rcon[255] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb }; // ======================================================================================================== // ======================================================================================================== static uint8_t getSBoxValue(uint8_t num) { return sbox[num]; } // ======================================================================================================== // ======================================================================================================== static uint8_t getSBoxInvert(uint8_t num) { return rsbox[num]; } // ======================================================================================================== // ======================================================================================================== // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. static void KeyExpansion(uint8_t *RoundKey, const uint8_t *Key) { uint32_t i, j, k; // Used for the column/row operations uint8_t tempa[4]; // The first round key is the key itself. for ( i = 0; i < Nk; ++i ) { RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } // All other round keys are found from the previous round keys. for ( ; (i < (Nb * (Nr + 1))); ++i ) { for ( j = 0; j < 4; ++j ) tempa[j] = RoundKey[(i-1) * 4 + j]; if ( i % Nk == 0 ) { // This function rotates the 4 bytes in a word to the left once. [a0,a1,a2,a3] becomes [a1,a2,a3,a0]. // Function RotWord() { k = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = k; } // SubWord() is a function that takes a four-byte input word and applies the S-box to each of the four bytes to produce an output word. // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i/Nk]; } // Function Subword() else if ( Nk > 6 && i % Nk == 4 ) { { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; } return; } // ======================================================================================================== // ======================================================================================================== // This function adds the round key to state. The round key is added to the state by an XOR function. static void AddRoundKey(state_t *state_ptr, uint8_t *RoundKey, uint8_t round) { uint8_t i, j; for ( i = 0; i < 4; ++i ) for ( j = 0; j < 4; ++j ) (*state_ptr)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; return; } // ======================================================================================================== // ======================================================================================================== // The SubBytes Function Substitutes the values in the state matrix with values in an S-box. static void SubBytes(state_t *state_ptr) { uint8_t i, j; for ( i = 0; i < 4; ++i ) for ( j = 0; j < 4; ++j ) (*state_ptr)[j][i] = getSBoxValue((*state_ptr)[j][i]); return; } // ======================================================================================================== // ======================================================================================================== // The ShiftRows() function shifts the rows in the state to the left. Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. static void ShiftRows(state_t *state_ptr) { uint8_t temp; // Rotate first row 1 columns to left temp = (*state_ptr)[0][1]; (*state_ptr)[0][1] = (*state_ptr)[1][1]; (*state_ptr)[1][1] = (*state_ptr)[2][1]; (*state_ptr)[2][1] = (*state_ptr)[3][1]; (*state_ptr)[3][1] = temp; // Rotate second row 2 columns to left temp = (*state_ptr)[0][2]; (*state_ptr)[0][2] = (*state_ptr)[2][2]; (*state_ptr)[2][2] = temp; temp = (*state_ptr)[1][2]; (*state_ptr)[1][2] = (*state_ptr)[3][2]; (*state_ptr)[3][2] = temp; // Rotate third row 3 columns to left temp = (*state_ptr)[0][3]; (*state_ptr)[0][3] = (*state_ptr)[3][3]; (*state_ptr)[3][3] = (*state_ptr)[2][3]; (*state_ptr)[2][3] = (*state_ptr)[1][3]; (*state_ptr)[1][3] = temp; return; } // ======================================================================================================== // ======================================================================================================== static uint8_t xtime(uint8_t x) { return ((x << 1) ^ (((x >> 7) & 1) * 0x1b)); } // ======================================================================================================== // ======================================================================================================== // MixColumns function mixes the columns of the state matrix static void MixColumns(state_t *state_ptr) { uint8_t i; uint8_t Tmp, Tm, t; for ( i = 0; i < 4; ++i ) { t = (*state_ptr)[i][0]; Tmp = (*state_ptr)[i][0] ^ (*state_ptr)[i][1] ^ (*state_ptr)[i][2] ^ (*state_ptr)[i][3]; Tm = (*state_ptr)[i][0] ^ (*state_ptr)[i][1]; Tm = xtime(Tm); (*state_ptr)[i][0] ^= Tm ^ Tmp; Tm = (*state_ptr)[i][1] ^ (*state_ptr)[i][2]; Tm = xtime(Tm); (*state_ptr)[i][1] ^= Tm ^ Tmp; Tm = (*state_ptr)[i][2] ^ (*state_ptr)[i][3]; Tm = xtime(Tm); (*state_ptr)[i][2] ^= Tm ^ Tmp; Tm = (*state_ptr)[i][3] ^ t; Tm = xtime(Tm); (*state_ptr)[i][3] ^= Tm ^ Tmp; } return; } // ======================================================================================================== // ======================================================================================================== // Multiply is used to multiply numbers in the field GF(2^8) #if MULTIPLY_AS_A_FUNCTION static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); } #else #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xtime(x)) ^ \ ((y>>2 & 1) * xtime(xtime(x))) ^ \ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ #endif // ======================================================================================================== // ======================================================================================================== // MixColumns function mixes the columns of the state matrix. The method used to multiply may be difficult // to understand for the inexperienced. Please use the references to gain more information. static void InvMixColumns(state_t *state_ptr) { int i; uint8_t a, b, c, d; for ( i = 0; i < 4; ++i ) { a = (*state_ptr)[i][0]; b = (*state_ptr)[i][1]; c = (*state_ptr)[i][2]; d = (*state_ptr)[i][3]; (*state_ptr)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); (*state_ptr)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); (*state_ptr)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); (*state_ptr)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } return; } // ======================================================================================================== // ======================================================================================================== // The SubBytes Function Substitutes the values in the state matrix with values in an S-box. static void InvSubBytes(state_t *state_ptr) { uint8_t i, j; for ( i = 0; i < 4; ++i ) for( j = 0; j < 4; ++j ) (*state_ptr)[j][i] = getSBoxInvert((*state_ptr)[j][i]); return; } // ======================================================================================================== // ======================================================================================================== static void InvShiftRows(state_t *state_ptr) { uint8_t temp; // Rotate first row 1 columns to right temp = (*state_ptr)[3][1]; (*state_ptr)[3][1] = (*state_ptr)[2][1]; (*state_ptr)[2][1] = (*state_ptr)[1][1]; (*state_ptr)[1][1] = (*state_ptr)[0][1]; (*state_ptr)[0][1] = temp; // Rotate second row 2 columns to right temp = (*state_ptr)[0][2]; (*state_ptr)[0][2] = (*state_ptr)[2][2]; (*state_ptr)[2][2] = temp; temp = (*state_ptr)[1][2]; (*state_ptr)[1][2] = (*state_ptr)[3][2]; (*state_ptr)[3][2] = temp; // Rotate third row 3 columns to right temp = (*state_ptr)[0][3]; (*state_ptr)[0][3] = (*state_ptr)[1][3]; (*state_ptr)[1][3] = (*state_ptr)[2][3]; (*state_ptr)[2][3] = (*state_ptr)[3][3]; (*state_ptr)[3][3] = temp; return; } // ======================================================================================================== // ======================================================================================================== // Cipher is the main function that encrypts the PlainText. static void Cipher(state_t *state_ptr, uint8_t *RoundKey, const uint8_t *Key) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(state_ptr, RoundKey, 0); // There will be Nr rounds. The first Nr-1 rounds are identical. These Nr-1 rounds are executed in the loop below. for ( round = 1; round < Nr; ++round ) { SubBytes(state_ptr); ShiftRows(state_ptr); MixColumns(state_ptr); AddRoundKey(state_ptr, RoundKey, round); } // The last round is given below. The MixColumns function is not here in the last round. SubBytes(state_ptr); ShiftRows(state_ptr); AddRoundKey(state_ptr, RoundKey, Nr); return; } // ======================================================================================================== // ======================================================================================================== static void InvCipher(state_t *state_ptr, uint8_t *RoundKey, const uint8_t *Key) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(state_ptr, RoundKey, Nr); // There will be Nr rounds. The first Nr-1 rounds are identical. These Nr-1 rounds are executed in the loop below. for ( round = Nr - 1; round > 0; round-- ) { InvShiftRows(state_ptr); InvSubBytes(state_ptr); AddRoundKey(state_ptr, RoundKey, round); InvMixColumns(state_ptr); } // The last round is given below. The MixColumns function is not here in the last round. InvShiftRows(state_ptr); InvSubBytes(state_ptr); AddRoundKey(state_ptr, RoundKey, 0); return; } // ======================================================================================================== // ======================================================================================================== static void BlockCopy(uint8_t *output_ptr, uint8_t *input_ptr) { uint8_t i; for ( i = 0; i < KEYLEN; ++i ) output_ptr[i] = input_ptr[i]; return; } /*****************************************************************************/ /* Public functions: */ /*****************************************************************************/ #if defined(ECB) && ECB // ======================================================================================================== // ======================================================================================================== void AES128_ECB_encrypt(uint8_t *input_ptr, const uint8_t *key_ptr, uint8_t *output_ptr) { state_t *state_ptr; // The array that stores the round keys. uint8_t RoundKey[176]; // The Key input to the AES Program const uint8_t *Key; // Copy input to output, and work in-memory on output BlockCopy(output_ptr, input_ptr); state_ptr = (state_t *)output_ptr; Key = key_ptr; KeyExpansion(RoundKey, Key); // The next function call encrypts the PlainText with the Key using AES algorithm. Cipher(state_ptr, RoundKey, Key); return; } // ======================================================================================================== // ======================================================================================================== void AES128_ECB_decrypt(uint8_t *input_ptr, const uint8_t *key_ptr, uint8_t *output_ptr) { state_t *state_ptr; // The array that stores the round keys. uint8_t RoundKey[176]; // The Key input to the AES Program const uint8_t *Key; // Copy input to output, and work in-memory on output BlockCopy(output_ptr, input_ptr); state_ptr = (state_t *)output_ptr; // The KeyExpansion routine must be called before encryption. Key = key_ptr; KeyExpansion(RoundKey, Key); InvCipher(state_ptr, RoundKey, Key); } #endif // #if defined(ECB) && ECB #if defined(CBC) && CBC // ======================================================================================================== // ======================================================================================================== static void XorWithIv(uint8_t *Iv, uint8_t *buf) { uint8_t i; for ( i = 0; i < KEYLEN; ++i ) buf[i] ^= Iv[i]; return; } // ======================================================================================================== // ======================================================================================================== void AES128_CBC_encrypt_buffer(uint8_t *output_ptr, uint8_t *input_ptr, uint32_t length, const uint8_t *key_ptr, const uint8_t *iv_ptr) { state_t *state_ptr; // The array that stores the round keys. uint8_t RoundKey[176]; // The Key input to the AES Program const uint8_t *Key; uintptr_t i; // Remaining bytes in the last non-full block uint8_t remainders = length % KEYLEN; uint8_t *Iv; BlockCopy(output_ptr, input_ptr); state_ptr = (state_t *)output_ptr; // Skip the key expansion if key is passed as 0 if ( 0 != key_ptr ) { Key = key_ptr; KeyExpansion(RoundKey, Key); } // If iv is passed as 0, we continue to encrypt without re-setting the Iv. Jim: Can NOT make Iv a static pointer // so iv_ptr MUST always be passed in. On the first iteration, it is set to a specific value. On subsequent // iterations, set it to previously encrypted block, i.e., output_ptr - 1 block // if ( iv_ptr != NULL ) Iv = (uint8_t *)iv_ptr; for ( i = 0; i < length; i += KEYLEN ) { XorWithIv(Iv, input_ptr); BlockCopy(output_ptr, input_ptr); state_ptr = (state_t *)output_ptr; Cipher(state_ptr, RoundKey, Key); // This does nothing since Iv is NO LONGER a global variable. See above note. Iv = output_ptr; input_ptr += KEYLEN; output_ptr += KEYLEN; } if ( remainders ) { BlockCopy(output_ptr, input_ptr); memset(output_ptr + remainders, 0, KEYLEN - remainders); /* add 0-padding */ state_ptr = (state_t *)output_ptr; Cipher(state_ptr, RoundKey, Key); } return; } // ======================================================================================================== // ======================================================================================================== void AES128_CBC_decrypt_buffer(uint8_t *output_ptr, uint8_t *input_ptr, uint32_t length, const uint8_t *key_ptr, const uint8_t *iv_ptr) { state_t *state_ptr; // The array that stores the round keys. uint8_t RoundKey[176]; // The Key input to the AES Program const uint8_t *Key; uintptr_t i; /* Remaining bytes in the last non-full block */ uint8_t remainders = length % KEYLEN; uint8_t *Iv; BlockCopy(output_ptr, input_ptr); state_ptr = (state_t *)output_ptr; // Skip the key expansion if key is passed as 0 if ( 0 != key_ptr ) { Key = key_ptr; KeyExpansion(RoundKey, Key); } // If iv is passed as 0, we continue to deencrypt without re-setting the Iv. Jim: Can NOT make Iv a static pointer // so iv_ptr MUST always be passed in. On the first iteration, it is set to a specific value. On subsequent // iterations, set it to previously encrypted block, i.e., input_ptr - 1 block // if ( iv_ptr != NULL ) Iv = (uint8_t *)iv_ptr; for ( i = 0; i < length; i += KEYLEN ) { BlockCopy(output_ptr, input_ptr); state_ptr = (state_t*)output_ptr; InvCipher(state_ptr, RoundKey, Key); XorWithIv(Iv, output_ptr); Iv = input_ptr; input_ptr += KEYLEN; output_ptr += KEYLEN; } if ( remainders ) { BlockCopy(output_ptr, input_ptr); memset(output_ptr + remainders, 0, KEYLEN - remainders); /* add 0-padding */ state_ptr = (state_t*)output_ptr; InvCipher(state_ptr, RoundKey, Key); } return; } #endif // #if defined(CBC) && CBC