
LAB Assignment #6 for ECE 525

Description: ZeroTrust Light-Weight Authentication, Generate and Distribute

ATs

The overall setup for PUF-Cash is shown in the following figure:

Alice, Bob are single-threaded and run on ZYBO and/or CORA FPGAs

(device_regeneration.elf)

FI is multi-threaded and runs on ZYBO or CORA (TTP_DB.elf)

TI (central bank) is multi-threaded and runs on a laptop (verifier_regeneration)

In previous labs, PUF authentication and key generation was done between devices, e.g., Alice

(Bob), and a secure server, e.g., a Bank, using the timing database created during provisioning

(shown as thick black lines in figure).

We classify this type of authentication as ‘heavy weight’ (HW) because it utilizes a large database

on the server to ‘clone’ a portion of the challenge-response-pairs associated with the devices (see

Appendix).

As an alternative, PUF-Cash utilizes a light-weight version of the timing database to enable

devices to authenticate between themselves (and with the financial institution), and without the

need for a trusted authority, e.g., the Central Bank or Token Issuer or TI, to be involved.

The light-weight version utilizes authentication tokens (ATs) that are constructed using the SiRF-

PUF on each device. As is true of all authentications, the AT can only be used once in an

authentication operation and therefore, the AT scheme requires a refresh operation to replace

the ‘used’ AT with a fresh one.

Bank

Bank

Central Bank

Financial Institution

Alice

Bob

MAHW and

HW: Heavy-weight (Timing DB)

LW: Light-weight (AT-based)

AT: Authentication Token MALW: Light-weight Mutual Authentication

SKGLW: Light-weight Session Key Generation

MAHW: Heavy-weight Mutual Authentication

SKGHW: Heavy-weight Session Key Generation

MA
HW and SKG

HW

MAHW and SKGHW Timing2

NATDB

Timing1

Timingn

MALW and SKGLW

MALW and

MALW
 and SKGLW

ZT-ATDB

IDA ZHKa1 na1

IDA ZHKa2 na2

IDC ZHKc1 nc1

SKGLW SKGHW

ZT-ATDB

IDB ZHKb1 nb1

IDB ZHKb2 nb2

IDC ZHKc1 nc1

ZT-ATDB

IDA ZHKa1 na1

IDB ZHKb1 nb1

IDC ZHKc1 nc1

FI

TI

FI: Financial Institution

TI: Token Issuer (Central Bank)

ZT-ATDB

IDA ZHKa1 na1

IDB ZHKb1 nb1

IDC ZHKc1 nc1

TTP_DB.elf

verifier_regenerationdevice_regeneration.elf

device_regeneration.elf

In this lab, we do the first part of the Zero-Trust light-weight authentication and session key gen-

eration protocol.

The message exchange diagram for creating the light-weight ATs is shown in the following figure.

We refer to this model of authentication and session key generation as zero-trust, because Alice

and Bob establish a secure communication channel without utilizing the TI.

The AT are created by running the PUF in long-lived key (LLK) generation mode. LLK mode

refers to the ability of the SiRF PUF to generate (enrollment) and then re-generate (regeneration)

the same key later in time using helper data generated during enrollment.

The enrollment process requires the TI to be involved. For each AT to be generated, the following

operations are carried out:

• Step 1) Alice and TI authenticate and generate a session key using the heavy weight functions

• Step 2) The TI sends at least one challenge to the device, which its stores in its LLKDB

• Step 3) The device runs the SiRF PUF in LLK mode to generate helper data, XHD, which is

stored in the LLKDB

• Step 4) The TI sends a request to the device to generate p ATs

• Step 5) For each AT, the device runs it SiRF TRNG to generate a nonce, ni. The device XORs

the ni with the ZT_LLK, and then hashes the XOR’ed bitstring to create an ZHK, i.e., ZHK :=

(nonce XOR ZT_LLK).

TI Alice

Send ChlngZT
ChlngZT

LLKDB

v1

NVM

MANA & SKG

{IDA, SKTA}

1

ZT-ATDB

IDA ZHK1

{ZT_LLK1, XHD1} :=

2

CN1 XHD1SF1

ChlngZT

n1

IDA ZHK2 n2

CN1

CN1
IDB ZHK1 n1CN1

num_ATs

3

4

ni := TRNG()
for i in num_ATs

ZTni := ni ^ ZT_LLK1
ZHKi := Hash(ZTni)
C1 := SKTA.Enc({ZHKi, ni})

{ZHKi, ni} := SKTA.Dec(C1)

5

6

Bob

HPUFE(ChlngZT)

MANA & SKG

{IDB, SKTB}

LLKDB

{ZT_LLK1, XHD1} :=

3

HPUFE(ChlngZT)

ni := TRNG()
for i in num_ATs

ZTni := ni ^ ZT_LLK1
ZHKi := Hash(ZTni)
C2 := SKTB.Enc({ZHKi, ni})

5

{ZHKi, ni} := SKTB.Dec(C2)6

Zero-Trust Enroll

p1

v1

NVM

CN1 XHD1SF1

ChlngZT

p1

Cx: Ciphertext

SKG: HW Session Key Gen.

HPUF(cA): HPUF rsp. to chlng.

<Key>.XOR(): XOR with <Key>

<Key>.Enc(): Encypt with <Key>

SK<actor>: Session Key

Hash(): Hash function GenNonce: TRNG nonce gen.
<Key>.Dec(): Decrypt with <Key>

MA: HW Mutual Authentication

(x,y): Concat. x and yv<actor>: PUF vec. seed

LLK<actor>: KEK keySPUF(cA): SPUF rsp. to chlng.

HD<actor>: Helper Data

TID: Transaction ID

eCtx: e-cash tok.

Chn: new Chng.

The XOR operation cryptographically binds the nonce to the ZT_LLK, while the hash opera-
tion obfuscates the ZT_LLK, i.e, the ZT_LLK cannot be recovered from the hash because the
hash is a one-way function.
This allows the device to openly transmit the AT, i.e., nonce plus ZHK, over an insecure net-
work while preventing adversaries from snooping and collecting model-building data about a
device.

• Step 6) The device encrypts the AT using the HW session key from Step 1, and transmits the

encrypted AT to the TI. The TI stores the AT in the ZT-ATDB.

Note that the device does NOT store the ZT_LLK or ZHK, only the challenge and helper data

needed to reproduce them.

Later in the field, it regenerates the ZT_LLK and carries out the same sequence to reproduce
the ZHK as needed

The TI collects multiple ZHK from all devices in the population and stores them in a master ZT-

ZT-ATDB.

Appendix: Heavy-Weight Authentication
The message exchange diagram for heavy-weight (HW) functions is shown in the figure.

The following details the operations performed:

• The device requests authentication from a server.

• The server generates a random vector-selection seed vx, random nonces nx and p’x, and a set

of SpreadFactors, SFx, collectively referred to as the Chlng, cA. The seed vx will be used by

the server and device to select a set of vectors from the common pool of vectors stored in the

VecsDB. The nonce nx represents the authentication nonce. The nonce p’x is used to specify

parameters to the SiRF algorithm once it is XORed with a corresponding device-generated

nonce. The SFx are derived from DVi stored in the NATDB and are used to increase the num-

ber of strong (unable) bits produced by the SiRF PUF. The vx, p’x, SFx and nx are transmitted

to the device.

• The device XORs p’x with its own TRNG-generated version to produce px, which is transmit-

ted back to the server. The px construction and exchange process prevents adversaries from

engaging in chosen-message attacks on the device. The device extracts vecsx from its VecDB

and applies vecsx, px, SFx and nx to its hardware PUF, HPUFE, in enrollment mode. The PUF

produces only a helper data bitstring, HDx, when configured in SKE mode.

• The device transmits HD_x to the server.

• The server performs authentication by searching its NATDB for a device i that can reproduce

nx. For each device i in the NATDB, the DVi corresponding to the vectors vecsx, along with px,

Cx: Ciphertext

SKG: HW Session Key Gen.

HPUF(cA): HPUF rsp. to chlng.

<Key>.XOR(): XOR with <Key>

<Key>.Enc(): Encypt with <Key>

SK<actor>: Session Key

Hash(): Hash function GenNonce: TRNG nonce gen.
<Key>.Dec(): Decrypt with <Key>

MA: HW Mutual Authentication

(x,y): Concat. x and yv<actor>: PUF vec. seed

LLK<actor>: KEK keySPUF(cA): SPUF rsp. to chlng.

HD<actor>: Helper Data

TID: Transaction ID

eCtx: e-cash tok.

Chn: new Chng.

Timing2

ATDB

Timing1

Timingn

vec1

vec2

VecDB

Timing2

NATDB

Timing1

Timingn

Device ServerPARCE Protocol

NATDB

IDA

IDB

2

3

4

Authentication request1

For i in NATDB

HDx
5

ni := SPUFR(vecsx, px, SFx, HDx, DVi)

6
if accept == 1, proceed with

{vx, p’x, SFx, nx}

Chlng drawn from

DVA

DVB

HDx := HPUFE(vecsx, px, SFx, nx)

common set

{vx, p’x, nx} := TRNG()

vecsx := VecDB(vx)

TimingData := NATDB(vecsx)

SFx := GenSF(vecsx, TimingData)

vecsx := VecDB(vx)

If PCC > threshold, accept = 1, break loop
server authentication

accept = 0

vec1

vec2

VecDB

vec1

vec2

VecDB

px := p’x XOR TRNG()
px

CCs[i] := HammingDist(nx, ni)

sort(CCs), compute PCC using smallest two CCs

Chlng, cA

SFx and the device-generated HDx, are used as input to a software version of the PUF, SPUFR,

configured to run in regeneration mode. A correlation coefficient (CC) is computed for each

device in the database using ni and nx as input to a function called HammingDist.

• HammingDist counts the number of mismatching bits that exist between nx and ni. The CC

array is sorted once all CCs are computed, and then the two smallest CCs are used to compute

a percentage-change coefficient, PCC, which represents the percentage difference between to

two smallest PCCs. If the PCC exceeds a server-defined threshold, the server accepts the

authentication request, otherwise it rejects and halts the process.

Server Authentication:

In cases where the server accepts the device authentication request, the device performs a similar

process to authenticate the server. Although the process is NOT shown in the figure, the following

operations are carried out. The device generates a nonce ny, and transmits it to the server. The

server generates a new challenge and runs SPUFE (enrollment) using the DVi from its NATDB (it

knows the identity of the device) to produce a helper data bitstring HDy. The challenge and HDy

are transmitted to the device. The device runs the SiRF PUF in regeneration mode, HPUFR, to

generate n’y and computes a CC using the HammingDist function. The device accepts the authen-

tication if the CC is less than a threshold, otherwise it rejects. The server is notified of the authen-

tication decision and proceeds to engage with the device to generate a shared key if the device

accepted the authentication request.

Although the NATDB provides an exponential number of CRPs for each device, it is large (multi-

ple GB with 10’s of thousands of devices) and therefore, not suitable for storage on resource-con-

strained devices. Moreover, the NATDB holds many secrets for all fielded devices and even if it

could be stored, it would not be secure to distribute the NATDB to all devices.

