
LAB Assignment #7 for ECE 525

Description: ZeroTrust Light-Weight Authentication

The overall setup for PUF-Cash is shown in the following figure:

In previous labs, PUF authentication and key generation was done between devices, e.g., Alice

(Bob), and a secure server, e.g., a Bank, using the timing database created during provisioning

(shown as thick black lines in figure).

We classify this type of authentication as ‘heavy weight’ (HW) because it utilizes a large database

on the server to ‘clone’ a portion of the challenge-response-pairs associated with the devices (see

Appendix).

As an alternative, PUF-Cash utilizes a light-weight version of the timing database to enable

devices to authenticate between themselves (and with the financial institution), and without the

need for a trusted authority, e.g., the Central Bank or Token Issuer or TI, to be involved.

The light-weight version utilizes authentication tokens (ATs) that are constructed using the SiRF-

PUF on each device. As is true of all authentications, the AT can only be used once in an

authentication operation, and therefore, the AT scheme requires a refresh operation to replace

the ‘used’ AT with a fresh one..

Bank

Bank

Central Bank

Financial Institution

Alice

Bob

MAHW and

HW: Heavy-weight (Timing DB)

LW: Light-weight (AT-based)

AT: Authentication Token MALW: Light-weight Mutual Authentication

SKGLW: Light-weight Session Key Generation

MAHW: Heavy-weight Mutual Authentication

SKGHW: Heavy-weight Session Key Generation

MA
HW and SKG

HW

MAHW and SKGHW Timing2

NATDB

Timing1

Timingn

MALW and SKGLW

MALW and

MALW
 and SKGLW

ZT-ATDB

IDA ZHKa1 na1

IDA ZHKa2 na2

IDC ZHKc1 nc1

SKGLW SKGHW

ZT-ATDB

IDB ZHKb1 nb1

IDB ZHKb2 nb2

IDC ZHKc1 nc1

ZT-ATDB

IDA ZHKa1 na1

IDB ZHKb1 nb1

IDC ZHKc1 nc1

FI

TI

FI: Financial Institution

TI: Token Issuer (Central Bank)

ZT-ATDB

IDA ZHKa1 na1

IDB ZHKb1 nb1

IDC ZHKc1 nc1

TTP_DB.elf

verifier_regenerationdevice_regeneration.elf

device_regeneration.elf

In previous labs, we ran code that carried out heavy-weight (HW) authentication, which utilizes

the timing databases stored at the Central Bank (also called the TI or token issuer).

We also added code to allow Alice and Bob to generate AT for light-weight authentication. The

AT were transmitted to the TI for storage in a database.

In this lab, we add code which allows Alice and Bob to request unique subsets of ATs from the TI

that are associated with other party(s). We refer to this as distributing the ATs. The AT are used for

in-field authentication and session key generation as shown by the following diagram.

This function is invoked by selecting Option 8 from the menu after you run

device_regeneration.elf on Alice and Bob’s FPGAs.

The message exchange diagram associated with the distribute AT operation is shown below.

• Step 1) Alice/Bob and TI authenticate and generate a session key using the heavy weight func-

tions.

• Step 2) Alice/Bob request ZHK (AT) from the TI.

• Step 3) TI selects a unique subset of ZHK from it’s master database, ZT-ATDB, one for each

customer excluding self.

• Step 4) TI encrypts the entries and transmits them to Alice and Bob. Alice and Bob decrypt

and store them in its local ZT-ATDBc.

TI Alice Bob

IDB ZHK1 n1CN1

IDC ZHK1 n1CN1
IDD ZHK1 n1CN1

IDA ZHK1 n1CN1

IDC ZHK2 n2CN2
IDD ZHK2 n2CN2

REQ ZHK 2 2REQ ZHK
3 Select distinct ZHKi

ZT-ATDB

ZT-ATDB

4

MANA & SKG

{IDA, SKTA}

1 MANA & SKG

{IDB, SKTB}

Zero-Trust

IDA ZHK1 n1

IDA ZHK2 n2

CN1

CN1
IDB ZHK1 n1CN1

C2 :=

SKTA.Enc({IDi, ZHKi, ni})
{IDi, ZHKi, ni} :=

SKTA.Dec(C2)

Repeat for Bob

4

Cx: Ciphertext

SKG: HW Session Key Gen.

HPUF(cA): HPUF rsp. to chlng.

<Key>.XOR(): XOR with <Key>

<Key>.Enc(): Encypt with <Key>

SK<actor>: Session Key

Hash(): Hash function GenNonce: TRNG nonce gen.
<Key>.Dec(): Decrypt with <Key>

MA: HW Mutual Authentication

(x,y): Concat. x and yv<actor>: PUF vec. seed

LLK<actor>: KEK keySPUF(cA): SPUF rsp. to chlng.

HD<actor>: Helper Data

TID: Transaction ID

eCtx: e-cash tok.

Chn: new Chng.

Distribute AT

ZT-ATDB

In-Field Zero-Trust Authentication and Session Key Generation:

In this lab, we also add code for the ZeroTrust protocol between Alice and Bob.

The ZT-AT in-field process is carried out when Alice contacts Bob to pay for goods or services in

an environment where connectivity exists only between Alice and Bob (no TI is available). The

message exchange protocol is shown in the following figure, and is described as a sequence of the

following operations:

The transaction begins with Alice sending Bob a request to authenticate and generate a shared

session key.

• Step 1) Alice requests lightweight authentication and session key generation to Bob

• Step 2) Alice sends Bob an identifier, IDA, that allows Bob to locate the corresponding AT in

his ZT-ATDB.

• Step 3) Bob responds to Alice with an Ack or Nak (as status) on whether or not he possesses

an AT for Alice. He also responds with his own identifier IDB in cases where he possesses an

AT for Alice.

• Step 4) Alice determines if she has an AT for Bob in her ZT-ATDB using the Bob’s IDB.

• Step 5) She transmits a corresponding Ack or Nak to Bob.

• Step 6) Assuming both Alice and Bob have AT for each other, they both retrieve the AT for the

other party from their ZT-ATDB, which is represented by the tuple {ZHKx, nx} with x := b or

a, respectively.

Shared Key Generation:

• Step 7) Alice and Bob exchange the nonce components, nx, of the AT.

• Step 8) Both parties regenerate their long-lived keys ZT_LLK using challenge information

stored in their LLKDB, and then compute a local version of the ZHK’x using Hash(ZT_LLKx

XOR nx) (NOTE: XOR operation is annotated as ^ in the diagram).

• Step 9) Alice and Bob create a shared key SKAB by XOR’ing the local copy of ZHK’x with

the ZHKx that they store for the other party in their ZT-ATDB.

Authentication:

• Step 10) Authentication begins with Alice and Bob encrypting the nx they received from the

other party with the newly created shared key SKAB to create enx.

• Step 11) Alice and Bob exchange the encrypted nonces enx.

• Step 12) Alice and Bob decrypt the enx using the shared key.

• Step 13) Alice and Bob compare the decrypted nx with the ones they store in their ZT-ATDB.

• Step 14) The status of the comparison is shared with the other party with each transmitting an

Ack or Nak.

Alice and Bob have authenticated and posses a shared key at this point assuming both have
acknowledged that the nonces nx match their own local copies.

A refresh operation is carried out in Steps 15) through 19), which is left as an exercise. This

allows Alice and Bob to carry out another, future, transaction without returning the TI to get new

AT.

REMEMBER, once the original AT is used, it MUST BE DISCARDED to avoid replay
attacks.

This function can be invoked by pressing Option 2. Option 2 is labeled Transfer, which you will

expand on in the project to allow Alice to pay Bob.

Alice Bob

IDB ZHKb nb

REQ LW MA/SKG1

2

3

Mutual-Self-Trust In-Field

IDC ZHKc nc

IDA ZHKa na

IDC ZHKc nc

IDA status :=
Is IDA in ZT-ATDB

{IDB, status}

ZT-ATDB

status :=
Is IDB in ZT-ATDB

4

status5
6 {ZHKb, nb} {ZHKa, na}

nbna7

ZHK’a := Hash(ZT_LLKa ^ na)8 ZHK’b := Hash(ZT_LLKb ^ na)

SKAB := ZHK’a ^ ZHKb9

Shared Key generation:

SKAB := ZHK’b ^ ZHKa

10

Authentication:

ena := SKAB.Enc(na) enb := SKAB.Enc(nb)

enaenb11

n’b := SKAB.Dec(enb)12 n’a := SKAB.Dec(ena)

if (n’b == nb)13 if (n’a == na)14

Refresh ZHKs:

15

Ack/Nak

na_n := TRNG()

Ack/Nak

nb_n := TRNG()

ZHKa_n :=

Hash(ZT_LLKa ^ na_n)

ZHKb_n :=

Hash(ZT_LLKb ^ nb_n)

16 C1 := SKAB.Enc({ZHKa_n, na_n}) C2 := SKAB.Enc({ZHKb_n, nb_n})

C1C217

{ZHKb_n, nb_n} := SKAB.Enc(C2)18 {ZHKa_n, na_n} := SKAB.Enc(C1)

19 Replace {ZHKb, nb} in

ZT-ATDB

ZT-ATDB with {ZHKb_n, nb_n}

Replace {ZHKa, na} in

ZT-ATDB with {ZHKb_n, nb_n}

Cx: Ciphertext

SKG: HW Session Key Gen.

HPUF(cA): HPUF rsp. to chlng.

<Key>.XOR(): XOR with <Key>

<Key>.Enc(): Encypt with <Key>

SK<actor>: Session Key

Hash(): Hash function GenNonce: TRNG nonce gen.
<Key>.Dec(): Decrypt with <Key>

MA: HW Mutual Authentication

(x,y): Concat. x and yv<actor>: PUF vec. seed

LLK<actor>: KEK keySPUF(cA): SPUF rsp. to chlng.

HD<actor>: Helper Data

TID: Transaction ID

eCtx: e-cash tok.

Chn: new Chng.

The following describes the sequence of operations that occurs in device_regeneration.elf, which

Alice and Bob run on the FPGA.

• GenLLK(): Generate a long-lived key (LLK) with the TI, which Alice, Bob, FI will use to

generate AT.

• ZeroTrustGetCustomerATs()

• AliceGetClient_IPs()

PUF-Cash DB

ID AID mask Chlng status

ID: chip #
AID: anonymous chip #
mask: Components of Chlng
Chlng: vectors, params, etc

status: 0: un-used, 1: used

if LLK exists

Regenerate LLK with SiRF

else
MAHW, SKGHW with TI

Get Chlng
Generate LLK with SiRF
Store Chlng info to LLK Table

LLK Table

AuthenticationToken DB

ID CH_LLK n_x status

ID: chip #
AID: anonymous chip #
CH_LLK: hash(LLK XOR n_x)
n_x: nonce

status: 0: un-used, 1: used

if AT do NOT exist

ZeroTrust_Enroll() ZeroTrustAuthenToken Table

ZeroTrust_Enroll()

If LLK non-null, ERROR
MAHW, SKGHW with TI

Get number of AT to generate from TI
For each AT

Generate nonce, n_x
CH_LLK = hash(LLK XOR n_x)

encrypt(CH_LLK) and send to TI
encrypt(n_x) and send to TI
TI adds to ZeroTrustAuthenToken table

MAHW, SKGHW with TI

Get customer IPs from TI
Get TTP IP from TI
Store results Client_CIArr data structure

• Loop forever:

Set up socket to listen for connections from Alice or Bob

If Alice or Bob requests connection
ProcessInComingRequest()

Get user request from Alice or Bob

If MENU_TRANSFER
AliceTransferDriver()

If MENU_GET_AT
ZeroTrust_GetATs()

AliceTransferDriver()
Open socket to Bob

AliceDoZeroTrust()
ExchangeIDsConfirmATExists()

Send Alice ID to Bob

Alice gets status from Bob and Bob ID
Alice check if she has Bob AT (ZeroTrustGetCustomerATs())

Bob checks if he has Alice AT (ZeroTrustGetCustomerATs())

ZeroTrust_GetATs()

If both Alice and Bob have ATs for each other
ZeroTrustGenSharedKey()

MAHW, SKGHW with TI
Alice gets ATs for Bob, Bob gets ATs for Alice, stores them in their

ZeroTrustAuthenToken Table

